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Abstract—With the growth of commercial aviation over the
last few decades there have been many applications designed
to improve the efficiency of flight operations as well as safety
and security. A number of these applications are based on the
gathered data from flights; the data is usually acquired from the
various sensors available on the aircraft. There are numerous
senors among the electrical and electronics devices on an aircraft,
most of which are essential for the proper functioning of the
same. With the sensors being operational throughout the time
of movement of the aircraft, a large amount of data is collected
during each flight. Normally, most of the gathered data are stored
on a storage device on the aircraft, and are analyzed and studied
later off-site for research purposes focusing on improving airline
operation and efficiently maintaining the same. In certain cases,
when there is data transfer during the flight, it is between the
aircraft and an air-traffic-control (ATC) tower, which serves as
the base station. The aircraft equipped with all these sensors,
which can gather and exchange data, form a framework of
Internet of things (IoT). Detecting and avoiding any form of
turbulence for an aircraft is vital; it adds to the safety of both
passengers and aircraft while reducing the operating cost of the
airline. Therefore, in this paper, we study techniques to detect
and avoid Clear Air Turbulence (CAT), which is a specific type of
turbulence, based on the IoT framework of aircraft. We propose
algorithms that consider both direct and indirect communication
between aircraft within a specific region. Using simulation results,
we show that our proposed techniques of direct communication
using the IoT framework is faster than conventional techniques
involving radio communication via both single ATC tower and
multiple ATC towers.

Index Terms—Internet of Things, IoT, clear air turbulence,
CAT detection, aviation, sensor data, algorithms

I. INTRODUCTION

Air travel has always been the preferred mode of trans-
portation with respect to time and safety considerations. With
commercial aviation increasing the number of flights each
year, the challenges of maintaining the stringent requirements
of operation are studied now more than ever. In the United
States, currently there are about 5,000 flights airborne at any
given time. There are more than 43,000 flights handled daily
on an average by the Federal Aviation Agency (FAA), and the
total number of flights handled by the FAA in 2016 was more
than 16 million, operating from more than 19,000 US airports
[12]. In the era of IoT, frameworks have been developed and
already in use in major airports to help with luggage handling,

tracking, enhance passenger experience etc. [11][16]. Flights
also gather and store huge amounts of data along the flight
paths during the trips. These data sets are analyzed later
for insights into improving the efficiency of flight operations
[4][5][6]. However, data gathered during flights might also be
useful in certain cases if analyzed real-time rather than later
and shared among other airborne aircraft within the region.
There are options of communicating with the air traffic control
towers, that act as the base stations, to send over such gathered
data during the flight. However, to improve flight operations,
it is imperative that flights are able to communicate directly
with each other. In addition, if all flights communicate with
the base station, or use the base station as an intermediary
between them, it will become a bottleneck for the system;
there would be increased workload for the ATC towers as
well as increased latency for the data transmission. Also, to
reduce the effect of single point of failure, the data should
be offloaded as it gets generated. Compressing the transferred
data can be one technique to reduce the network bandwidth,
but the overhead adds to the latency [3][9].

In this paper, we propose a framework for IoT with regards
to aircraft and associated sensor & communication devices. We
specifically focus on detection and avoidance of turbulence
in commercial aviation. Generally there are four types of
turbulence that an aircraft might encounter during flight: thun-
derstorms, mountain wave turbulence, wake vortex and clear
air turbulence. The topic of focus for this paper is clear air
turbulence (CAT) avoidance. We introduce algorithms to detect
CAT that are based on both direct and indirect communication
among aircraft. The proposed techniques show that, in general
direct communication between aircraft using IoT framework
is the most efficient technique of avoiding CAT once it is
detected. The same principles can also be applied to detect
and avoid the other types of turbulence as well.

The outline of our paper is as follows. In Section II, we
present information on previous work related to different
techniques for CAT detection and avoidance in commercial
aviation. Section III provides the basic information regarding
airspace sharing and the impact of turbulence on aircraft within
a region. In Section IV, we introduce the different scenarios
for clear air turbulence detection algorithms. The techniques
to detect and avoid CAT using IoT devices abroad aircraft



are introduced in Section V. Results of the implementation of
the introduced algorithms for CAT detection and avoidance
is presented in Section VI. Conclusion and future work is
discussed in Section VII.

II. RELATED WORK

Detecting air turbulence is a well studied phenomenon, and
as a part of it clear air turbulence has been investigated as well.
There have been previous research studies that have discussed
air turbulence with respect to aviation [15] and specifically the
different aspects of CAT.

Using radar to track aircraft and detect turbulence has been
proposed before. Hence, techniques to optimize radar detection
of CAT also exist [1]; however, these methods do not work in
radar shadow zones and clutter zones.

There have been enhancements proposed to radar resulting
in the usage of advanced technology such as LIDAR (Light
Detection and Ranging) systems, but they are subject to errors,
specifically due to horizontal winds at high altitudes [13][14].

Methods to predict CATs with certain probability also
exist [10]. However, since commercial aviation incurs heavy
damage if passengers or crew are injured, minimizing such
incidents using definitive techniques are required.

Related to aviation there are applications that perform
analysis on airline data using IoT devices. Automatic depen-
dent surveillance-broadcast (ADS-B) data exchanges between
receivers and equipped aircraft have been analyzed to be used
in applications including airspace and traffic monitoring [7].

To the best of our knowledge, this is the first work that
proposes using IoT based techniques to detect CAT. There
are other distributed sensor and crowdsourcing applications in
different domains that use similar basic principle. For example,
there are ways to detect potholes on roads using sensor based
applications [8]. Although this is based on detecting abnormal
conditions using sensors on existing devices [2], the challenges
involved in commercial aviation are fundamentally different.
In this paper, we consider scenarios of detecting CAT using
both direct and indirect message transfer between nearby
aircraft.

III. AIRSPACE SHARING AND IMPACT OF TURBULENCE:

Commercial aviation has advanced over the last few
decades, and there has been a huge increase in the number of
flights. Thus, the demand to share airspace has been greater
than ever. There are three different types of movement for
aircraft: vertical, horizontal and lateral. To facilitate the sharing
of airspace, there are guidelines specifying the minimum
separation of aircraft in the direction of each of the three
movements. The vertical separation is set at 1000 feet, but
often 2000 feet is used as an added precautionary measure. The
lateral separation is 50 miles, and the horizontal separation i.e.,
the space between two consecutive flights on the same path is
usually kept at a minimum of 10 minutes of travel distance.

With flights taking different altitudes during travel, there
can be different tracks on the same flight path separated
vertically. To facilitate safe sharing of airspace between flights,

it is imperative to track the exact location of flights at all
times and be aware of all other flights within a specific
distance. Flights originating and terminating over land routes
can maintain communication with ATC over radio and their
precise locations can be tracked via radar. Using the location
information, messages can be sent to flights about sudden
changes in weather conditions. However, for flights taking
oceanic routes from one continent to another often are outside
of any radar coverage and in limited communication zones.
Therefore, in such cases, communication using conventional
radio technology is not reliable.

Now, at a given time, there can potentially be a large number
of aircraft within a region of similar weather conditions.
Therefore, if certain aircraft detect turbulence, specifically
CAT, then the probability of other aircraft in the same region
experiencing turbulence is reasonably high. Hence, it is signif-
icant in the domain of commercial aviation to be able to detect
and essentially avoid any such turbulent routes if possible. So,
in this paper, we consider the different scenarios to detect CAT
and methods to take preventive action. Specifically, if CAT is
detected by an aircraft, then a message indicating the location
must be sent to all other aircraft within the same airspace to
minimize the potentially hazardous effects of turbulence.

Fig. 1: Sample Flight Communication Scenario

IV. CLEAR AIR TURBULENCE DETECTION SCENARIOS

In this Section we discuss the different scenarios that need to
be considered while implementing our algorithms for avoiding
clear air turbulence. CAT avoidance can be done either using
communication via ATC tower or via direct communication
between the IoT devices on aircraft.

In the first case of indirect communication, the ATC serves
as the intermediary of information. Given the flight commu-
nication scenario as shown in Fig. 1, the time taken TI , for
a message from an aircraft that detects the CAT, denoted by
ACorg to reach target aircraft, denoted by ACtar is given by
Equation 1, where TATC OH denotes time overhead at ATC.

TI = TAC org−>ATC + TATC OH + TATC−>AC tar (1)



Now, in the ideal scenario, the ATC has enough bandwidth
to communicate with every aircraft at all times. In reality, this
may not be the case, and ATC communicates with aircraft only
at predefined intervals, or based on priority. In addition, the
overhead at ATC consists of time to create a list of aircraft that
are within the range and on possible path towards the CAT.
Therefore, the total overhead possible at ATC, TATC OH , is
given by Equation 2.

TATC OH = TATCInterval
+ TATCpriority + TATCList

(2)

In the second case, using the IoT framework for commer-
cial aviation, there would be direct communication between
aircraft sharing a region of the airspace. In this case, the first
scenario is when the communication channel is always open
for flights within communication range. It can be assumed that
the IoT devices on flights can broadcast messages that can
be received by other IoT devices within range. In the second
scenario, the communication channel has to be established
between flights within range to be able to exchange data. In
the third scenario, the communication channel is established
only on demand, and then the message is sent. Therefore, the
time to send the alert directly TD between aircraft, is given
by Equation 3.

TD = TChannelEstd
+ TAC org−>AC tar (3)

The time to establish the channel TChannelEstd
is not

applicable to the first scenario where communication channel
is always open.

Algorithm 1: Dectection of CAT
Input: ACLat, ACLong, ACAlt

Output: CAT detection alert message
begin

CheckSensorValues (ACLat, ACLong, ACAlt);
δsensor ← |Sensorcurrent − Sensoravg.|;
if deltasensor ≥ SensorThreshold then

Output ← SendMessage(Alert);
else

Output ← SendMessage(NULL);
UpdateSensorValues ();
Exit ();

V. ALGORITHMS FOR CAT DETECTION AND AVOIDANCE

Whenever an aircraft experiences CAT, there is an option to
notify the respective ATC using conventional technique over
the radio to convey the CAT location to the ATC, which in
turn would convey it to other aircraft in the same airspace.
However, this conventional technique, would require manual
intervention, and is much slower than an automated detection
technique using the IoT framework.

The scenarios presented above consider communication
between aircraft directly or via ATC. In all the cases, the
assumption is there is a single ATC, which is in range of
all the aircraft being currently considered. For a single ATC
case, as shown in Fig. 1, Algorithm 2 is used to send the CAT

Algorithm 2: CAT alert via ATC
Input: Flight path
Output: CAT detection alert message
begin

forall Ti ∈ Flighttime do
Algorithm1 (ACLat, ACLong, ACAlt);
if detectedCAT then

if detectNoCommZone then
storeData ();
sendDataWhenCommEstd ();

else
if commOpenATC then

sendLoc (ACLat, ACLong, ACAlt);
else

storeData ();
estdCommATC ();
sendLoc (ACLat, ACLong, ACAlt);

receiveMsgATC ();
createListATC ();
if BandwidthAvailable then

forall ACi ∈ List{} do
sendLoc (ACLat, ACLong, ACAlt);

else if predefinedTimeInterval then
forall ACi ∈ List{} do

sendLoc (ACLat, ACLong, ACAlt);

else if MessagePriorityATC then
forall ACi ∈ List{} do

sendLoc (ACLat, ACLong, ACAlt);

else
waitATC ();

Exit ();

alert between aircraft via the ATC. However, in reality, this is
not the case, and there exists multiple ATCs. Aircraft connect
to the nearest ATC and exchange information with it. ATCs
can connect to each other as well. During a flight, aircraft can
connect to multiple ATCs one at a time, and handoffs happen
when aircraft move from the range of one ATC to another.

Fig. 2 depicts the multiple ATC scenario. There are 3 aircraft
in this sample case, AC1, AC2 and AC3; in addition there are
2 ATC towers ATC1 and ATC2. Out of the 3 aircraft shown,
AC1 and AC2 are connected to ATC1 and AC3 is connected
to ATC2. Also, the CAT region is depicted as well; at the
given instant, AC3 has encountered CAT as detected using
Algorithm 1; following the flight path, AC2 and AC3 would
be entering the CAT region after certain time.

In this case, the data transfer would follow 4 steps. CAT
detection data would be generated at AC3. Since there are
no other aircraft within the region that is connected to ATC2,
the message cannot be delivered directly from ATC2 to other
aircraft. The data from AC3 would be transferred to commu-
nicating tower ATC2. The tower ATC2 would then forward
the message to tower ATC1, which in turn would relay the



Algorithm 3: Direct CAT alert between aircraft
Input: Flight path
Output: CAT detection alert to aircraft within region
begin

forall Ti ∈ Flighttime do
createListNearbyAircrafts ();
Algorithm1 (ACLat, ACLong, ACAlt);
if detectedCAT then

if CommChannelOpen then
forall ACi ∈ List{} do

sendLoc (ACLat, ACLong, ACAlt);

else if CommChannelOnDemand then
estdCommChannel ();
forall ACi ∈ List{} do

sendLoc (ACLat, ACLong, ACAlt);

else if CommChannelEstablishedAlready then
forall ACi ∈ List{} do

sendLoc (ACLat, ACLong, ACAlt);
checkNewAircraftRegion ();
if AnyNewAircraft then

forall ACi ∈ NewList{} do
sendLoc

(ACLat, ACLong, ACAlt);

else
storeDataDevice ();

Exit ();

Fig. 2: Multiple ATC Towers Scenario

message to AC1 and AC2. This scenario of multiple ATC
towers in given in Algorithm 4.

As evident from the multiple ATC tower scenario given in
Fig. 2, the alert message is sent over multiple hops and tra-
verses longer distance as compared to a direct communication
between AC3 and AC2 or between AC3 and AC1. In case of
direct CAT alert between aircraft using the IoT framework is
given in Algorithm 3.

Algorithm 4: CAT alert in multiple ATC scenario
Input: Flight path
Output: CAT detection alert message
begin

forall Ti ∈ Flighttime do
Algorithm1 (ACLat, ACLong, ACAlt);
if detectedCAT then

if detectNoCommZone then
storeData ();
sendDataWhenCommEstd ();

else
findConnectedATC ();
sendConnectedATCData ();
exchangeATCData ();
createListATC ();
forall ACi ∈ List{} ∈ CATRegion do

sendLoc (ACLat, ACLong, ACAlt);

Exit ();

VI. EXPERIMENTAL RESULTS

All the algorithms introduced in this paper are implemented
and tested using simulation programs. The results for the sce-
narios of indirect and direct communication between aircraft
are presented here. For all the scenarios, we measure the
difference between the time of CAT detection and the time
when the alert is received by the last aircraft within the region
of airspace under consideration. This data provides a measure
that can be used to compare the algorithms for the different
scenarios. All the timings are reported in seconds.

Fig. 3: Indirect Communication: Tower Broadcasts Signals

The implementation of the scenario of indirect communi-
cation, with the assumption of ATC being able to broadcast
signal to every aircraft at all times is shown in Figure 3. As
evident from Figure 3, the average difference between the
signal’s origin and maximum delivery time is increasing as
the simulation goes on. This is to be expected as all aircraft
in the simulation begin in same 1×1010m2 area but then begin
to move in random directions as the simulation continues.
Thus as the distance between the aircraft increases so does the
average difference since the signal takes longer to propagate
from the source to all other aircraft.



Fig. 4: Indirect Communication: Tower Broadcasts Signals in
50 second Intervals

The scenario of indirect communication using the ATC
where the signal from the ATC is broadcast at predefined
interval is implemented as shown in Figure 4. The predefined
interval for the simulation is chosen to be 50 seconds. In this
case, it is evident that the average difference depends on when
the signal originates. If the CAT is detected close to the end of
the communication interval, the difference between the signal’s
origin time and its maximum delivery time is smaller as it must
wait less time to be delivered by the tower.

Fig. 5: Indirect Communication: Tower Broadcasts Signal at
the Front of Priority Queue

The implementation of the third scenario for indirect com-
munication, where the tower operates on data stored in a
priority queue, is shown in Figure 5. It can be observed that
the difference between a signal’s origin and maximum delivery
time is determined by the density of signals created. This is
due to the priority queue at every tower getting longer as more
signals are received. Thus the peaks in Figure 5 represent
sections in time wherein a large portion of aircraft encountered
turbulence.

The scenario of direct communication between aircraft
using a broadcast of the CAT alert message is implemented
and shown in Figure 6. From the graph it is evident that there
is a linear relationship between simulation duration and max-
origin difference times; this is due to the fact of increasing

Fig. 6: Aircraft to Aircraft Communication: Signal Source
Broadcasts Signal

distance as a result of aircraft movement as the simulation
progresses.

Fig. 7: Aircraft to Aircraft Communication: Signal Source
Uses Open Connections to other Aircraft to Send Signals

The results of the simulation for the scenario where the
aircraft communicate using direct connection is shown in
Figure 7. The graph is similar in terms of performance as
compared to Figure 6 except for a small delay due to the
signals being sent via a direct connection to each aircraft rather
than a general broadcast.

For the direct communication scenario between aircraft
where establishing a connection is required, the implemen-
tation results are given in Figure 8. The main factor in this
scenario is the time it takes to establish a new connection to an
aircraft. As this time will be relatively constant for all aircraft,
the primary factor affecting this graph will be the propagation
delay of the signal. This is further evident in the scale of the
figure with the fast average signal arriving just 0.0035 seconds
ahead of the slowest signal.

The scenario of communication between aircraft in the
presence of multiple ATC towers is implemented and the
results are given in Figure 9. In terms of performance, these
results are similar to those of the broadcast scenarios from the
aircraft detecting the CAT.



Fig. 8: Aircraft to Aircraft Communication: Signal Source
creates Connections to other Aircraft to Send Signals

Fig. 9: Indirect Communication: Signal Sent via Multiple ATC
Towers that can Connected

Among the case of indirect communication, the scenario for
broadcasting signal through the tower is the most efficient as
turbulence data would be prioritized and broadcast to all other
aircraft as soon as the data reaches a tower. Compared to the
other scenarios for indirect communication however, this may
not be the most feasible as it requires an open communication
channel to be sustained between all aircraft and a nearby
tower. As this is not possible for some international flights,
the broadcast scenario might not be possible to implement
universally despite it being the most efficient.

Among cases for direct communication, the scenario for
broadcast from the aircraft detecting the CAT appears to be
the most efficient as there is no significant delay between
the time a signal is created and when it is broadcast to all
other aircraft. While this makes the scenario time efficient, it
does not guarantee the data reaches any other planes like the
scenario using multiple ATC towers does.

Overall the scenario for direct communication with all
aircraft within the region using broadcast message would be
the most efficient in delivering signals to their targets in the
least amount of time as there is no tower delay. Hence, using
the IoT framework for detecting and avoiding CAT is better
than techniques involving message delivery via ATC towers.

VII. CONCLUSION

Safety of passengers, crew and the aircraft is the top priority
in commercial aviation. Therefore, avoiding any type of tur-
bulence during a flight is relevant. In this paper we introduce
algorithms for clear air turbulence avoidance once it is detected
by one aircraft. The introduced IoT model considers different
scenarios, involving both direct and indirect communication
using devices on the aircraft. From our experimental results,
it can be concluded that direct communication between aircraft
using IoT model is able to detect CAT more efficiently than
any other scenario. Our future work would focus on other ap-
plications that can benefit from the IoT device communication
between aircraft.
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