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Abstract

Fault-tolerant virtual machine (VM) placement refers
to the process of placing multiple copies of the same VM
cloud application inside cloud data centers. The challenge
is how to place required number of VM replicas while min-
imizing the number of physical machines (PMs) that store
them, in order to save energy consumption of cloud data
centers. We refer to it as fault-tolerant VM placement
problem. In our previous work, we have proposed a greedy
algorithm to solve this problem. In this paper, we compare
it with an existing research that is based on well-known
Welsh Powell Graph-Coloring Algorithm to place items
into bins while considering the conflicts between items and
items and items and bins. Via extensive simulations, we
show that our greedy algorithm can turn off 40-50% more
PMs than existing work and can place upto four times
as many VM replicas as existing work, achieving much
stronger fault-tolerance with less energy consumption. We
also compare both algorithms with the optimal integer lin-
ear programming (ILP)-based algorithm, which serves as
the benchmark of the comparison.

1. Introduction

Cloud data centers serve as the digital infrastructure of
our society and provide various Internet services including
social media, video streaming, and search engines. Virtu-
alization, the building block of cloud data centers, refers
to the technology where multiple OS environments run on
the same physical machine (PM). With virtualization, the
hardware resources of PMs such as CPU cycles, memory,
and bandwidth are divided into several smaller isolated
computing units, called virtual machines (VMs). VMs can
then be allocated and rented to cloud users in a pay-as-you-
go manner (e.g., Amazon EC2 and Microsoft Azure).

To provide a seamless service to cloud users in spite of
failures such as cloud outages and server failures, repli-
cating VMs and placing their replica copies into differ-
ent PMs becomes an important fault-tolerant technique in
cloud data centers [7,11]. For example, Amazon S3 Repli-
cation can automatically replicate S3 (Simple Storage Ser-
vice) objects across different AWS Regions [1]. For Mi-

crosoft Azure, the data in its geo-redundant storage is al-
ways replicated three times in the primary region [2]. In
general, when considering fault-tolerant VM placement,
there are three constraints that need to be satisfied.

• Fault-tolerance constraint of VMs: For the fault-tolerant
purpose, it is preferred that multiple replica copies of the
same VM application are placed into different PMs.

• Resource capacity constraint of PMs: Each PM in cloud
data center has limited amount of cloud resources such as
CPU cycles, memories and storages, and bandwidth.

• Compatibility constraint of VMs to PMs: Due to software
and platform incompatibility, some VM applications (and
their replicas) cannot be installed onto some PMs.

Meanwhile, it is well-known that energy consumption in
cloud data centers contributes around 1.5% of the world-
wide electricity usage [9] and the energy consumption of
cloud servers (i.e., PMs) contributes around 40-60% of the
total energy consumption of a typical data center. There-
fore how to place multiple replica copies of VMs in cloud
data centers while satisfying above three constraints and
minimizing the number of active PMs (i.e., PMs that are
turned on) becomes an important problem.

In our previous work [6], we have designed an optimal
integer linear programming (ILP)-based algorithm and a
time-efficient greedy heuristic algorithm to achieve fault-
tolerant VM replica placement. In this paper, we further
validate our algorithms and compare them with some ex-
isting work. Gupta et al. [8] proposed a server consol-
idation problem, in which multiple conflicting underuti-
lized servers are consolidated into fewer servers to save en-
ergy. They introduced both item-item and bin-item incom-
patibilities, which are corresponding to the fault-tolerance
constraint of VMs and compatibility constraints of VMs
to PMs addressed in our paper. It proposed a two-stage
item-to-bin placement heuristic based on the well-known
Welsh-Powell graph coloring algorithm [10]. We refer to
is as Two-Stage Algorithm. As Two-Stage is very related
to ours as well as well-cited with more than 90 citations
[3], comparing with it is an important step to validate the
quality of our research.

Paper Organization. The rest of the paper is organized as
follows. To make the paper self-contained, we introduce
the problem formulation in Section 2 and our algorithms



in Section 3. We also describe in details the Two-Stage
Algorithm. [8] in Section 3. We construct an example to il-
lustrate how different algorithms work and give our insight
why Two-Stage does not perform as well as our algorithm.
In Section 4, we compare all the three algorithms and dis-
cuss the results in details. Section 5 concludes the paper
with some possible future work.

2. Problem Formulation

System Models. In the data center there are p PMs denoted
as Vp = {1, ..., |Vp|}. Initially a set of l distinct original
VMs Vm = {v1, v2, ..., vl} have already been submitted by
cloud users to the PMs to be executed. vj (1 ≤ j ≤ l) is
stored at its source PM s(j) ∈ Vp. A source PM can store
multiple original VMs. We denote the set of source PMs
as Vd ⊆ Vp. We define the incompatibility set of VM vj
as the set of PMs that vj and its replica copies cannot be
placed upon, and denote it as I(j) ⊂ Vp.

For each VM to run, it needs one unit of cloud resources
(i.e., CPUs, memories, and disk I/O) for execution. Let rci
denote the resource capacity of PM i ∈ Vp; that is, the
total number of original or replica VM copies PM i can
store is rci. Thus if i is a source PM of some original VMs,
its available resource capacity becomes rci − |{1 ≤ j ≤
l|s(j) = i}|. Due to diverse fault-tolerance requirement
from the cloud users, it requires to place rj ≥ 0 copies of
vj into the data center (when rj = 0, it does not need to
place any replica copies besides the original VM vj). Let
R = max{r1, r2, ..., rl}. Denote the kth replica copy of
vj ∈ Vm, where 1 ≤ j ≤ l and 0 ≤ k ≤ rj , as vj,k (vj,0
is the original copy vj). Fig. 1 shows a small cloud data
center with eight PMs {1, 2, ..., 8} and three original VMs
{v1, v2, v3}. It also shows the incompatibility set of each
VM, number of required VM replicas and their IDs.

We note that although rci is the resource capacity avail-
able at PM i, it is possible that not all of its resources
can be utilized at i. The fault-tolerance constraint, which
stipulates that multiple copies of the same VM be placed
at different PMs in order to survive PM failures, incurs
two consequences. First, any original VM and its repli-
cas must be placed onto different PMs, thus it must be
that R + 1 ≤ |Vp|; otherwise, it is infeasible for the VM
placement. Second, as there are l original VMs, a PM can
store at most l VM copies, each from a different VM, even
though its storage capacity could be larger than l. We thus
define effective resource capacity of PM i, denoted as rcei ,
as the maximum resource capacity of i that can be used
to store VMs. rcei is the smaller value between the avail-
able resource at i and the number of the VMs it can further
store (besides its own stored original VMs if it has). That
is, rcei = min{rci − |{1 ≤ j ≤ l|s(j) = i}|, l − |{1 ≤
j ≤ l|s(j) = i}|}.
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Incompatibility set:
I1 = {3, 5}
I2 = {6, 7, 8}
I3 = {2, 3, 5, 8}

Number (and IDs) of replica copies:
r1 = 3, {v11, v12, v13 }
r2 = 1, {v21}
r3 = 2, {v31, v32}

v3v2v1

Figure 1. A small cloud data center with p = 8 PMs and
l = 3 original VMs.

We define active PMs as PMs that have at least one VM
copy (either original or replica) after VM placement thus
have to be turned on. Otherwise, it is inactive therefore can
be turned off. For any source PM s(j) ∈ Vd, 1 ≤ j ≤ l,
as some original VMs have already been submitted and
are currently being executed there, they are considered as
active PMs thus cannot be turned off.

Problem Formulation. Recall that vj,k is the kth replica
copy of VM vj ∈ Vm. We define placement function r :
Vm × {1, 2, ..., R} → Vp, indicating that vj,k is placed to
destination PM r(j, k) ∈ Vp. As the original VM vj is
located at s(j), we have r(j, 0) = s(j). Let yi = 0 and 1
indicate that PM i is inactive and active respectively after
VM placement r. The goal is to find r that minimizes the
total number of active PMs, i.e., min

∑|Vp|
i=1 yi, under fault-

tolerance constraint of VMs, resource capacity constraint
of PMs, and compatibility constraint of VMs to PMs.

3. Fault-tolerant VM Placement Algo-
rithms

In this section, we first present Two-Stage Algorithm
and then our own fault-tolerant greedy algorithm. Due to
space constraint we omit the optimal ILP-based algorithm.
Please refer to [6] for more details.

Two-Stage Algorithm [8]. It consists of two stages.

Stage 1. In the first stage it constructs a conflict graph of
VM replicas. In particular, there exists an edge for any
two VM replicas (i.e., replica-nodes) from the same orig-
inal VM, as they cannot be put into the same PM. Next,
it follows the well-known Welsh-Powell graph coloring al-
gorithm [10] to color all the VM replicas such that any two
conflicting replicas must have different colors (i.e., go to
different PMs). The number of colors represents the least
number of PMs it needs to store all the VM replicas. Stage
1 has the following four steps.

1. All the vertices initially are uncolored. Sort the vertices in
the conflict graph in decreasing order of degrees.

2. Color the first vertex on the sorted list with color 1.
3. Traverse the vertices in the sorted list, and assign a vertex

the same color if it is uncolored and if the vertex does not
yet have a neighbor with the same color.



4. If there are uncolored vertices in the list, repeat Step 3)
with a new color, until all the vertices are colored.

Stage 2. In their second stage, Gupta et al. [8] considers the
incompatibility constraint between VM replicas and PMs.
The incompatibility constraint specifies that all the VM
replicas of a specific original VM cannot be placed onto
a specific PM due to software and platform incompatibil-
ity. It first introduces pre-colored dummy nodes, each for
a PM that has incompatibility with some VM replicas (i.e.,
PM-node). Then it augments the conflict graph in Stage 1
such that ‘pre-colored’ PM-node has an edge with any VM
replicas that cannot be assigned to this particular PM.

In particular, it introduced a modified Welsh-Powell Al-
gorithm that runs upon this newly augmented conflict
graph. To proceed, it maintains two sorted lists. One con-
tains the sorted ‘pre-colored’ PM-nodes in the decreasing
order of the degree. The other contains the sorted uncol-
ored replica-nodes in the decreasing order of the degree. It
then takes place in below three steps.

1. Select the next pre-colored vertex from the pre-colored
PM-node list.

2. Traverse the vertices in the uncolored list, and assign a ver-
tex the color of the pre-colored vertex of Step 1) if it is un-
colored and does not have a neighbor with the same color.
Go to Step 1).

3. For the vertices (in the uncolored list) that remain uncol-
ored at the end of the traversal process of the pre-colored
list, color them using the usual Welsh-Powell Algorithm.

Discussions. The rational of Welsh-Powell Algorithm for
graph-coloring is as follows. One undesirable situation in
graph-coloring is that a new color needs to be created to
color a node whenever all the created colors have already
been used to color its neighbors. This occurs when a node
with high degree is visited after many of its neighbors have
already been visited and colored. To prevent this situation,
we thus need to visit and color all high-degree nodes first
before visiting and coloring their neighbors. Doing so de-
creases the chance of creating a new color thus saving col-
ors. The Welsh-Powell algorithm is proven to use at most
∆(G) + 1 colors, where ∆(G) is the maximum degree of
the conflict graph G [10].

Fig. 2 shows how the Two-Stage Algorithm works for
the example in Fig. 1. In particular, Fig. 2(a) shows the
augmented conflict graph of the example. Fig. 2(b) shows
the sorted list of PM-node and the sorted list of replica-
node, and how the color is assigned from the PM-node to
the replica-node. Note that for clarity, the ID of the PM
node serves as the color of the PM-node thus the color does
not start with 1 as mentioned in the algorithm. Also note
that PMs 1 and 4 are not on the sorted list of PMs as they
do not have any conflict with any replicas. Fig. 2(c) shows
the final placement of all the replicas in the PMs. It shows
that PMs 2, 3, 6, 7, 8 have to turn on while PMs 1, 4, 5 can

(a) Augmented
conflict graph 

(b) Sorted list of PMs: 3, 5, 8, 2, 6, 7

Sorted list of 
replica nodes:

Coloring

1 2 3 4 65 7 8

v11 v12

v13

v21 v31 v32

v31 v32 v11 v12 v13 v21
3

8
2

6 6
7

1 2 3 4 5 6 7 8

v3v2v1
v21 v11

v12
v13
v31

r32(c) Final
placement

Figure 2. How Two-Stage works for the example in Fig. 1.

be turned off to save energy. The number of active PMs
from the Two-Stage Algorithm is thus 5.

Greedy Algorithm. Next we present our own greedy al-
gorithm Algo. 1 proposed in [6], which works as follows.
As all the source PMs must be turned on, they are the ini-
tial set of active PMs. We sort all the replicas in the non-
ascending order of the cardinalities of their incompatibility
sets, and place the ones with largest incompatibility first.
Replicas with largest incompatibility sets have less number
of PMs to place upon, thus should be placed first before
running out of options. It places each replica into the first
available PM in the active PM set while satisfying fault-
tolerance, compatibility, and resource capacity constraints.
If not successful, we turn on another PM that is compatible
with this replica, place this replica in it, and add it in the
active PM set. It stops until all the replicas are placed in
the data center. Sorting takes l · logl, placing replicas takes
l · R, R = max{r1, r2, ..., rl}. Thus the time complexity
of this algorithm is O(l · (logl +R)).

Algorithm 1: Greedy VM Replica Placement Algorithm.
Input: An cloud data center instance (Vp, Vm, rci, rj , I(j)).
Output: The set of active PMs.
0. Notations:

A: set of active PMs;
1. Sort I(j), 1 ≤ j ≤ l, in the non-ascending order of

their cardinalities |I(j)|;
2. WLOG, let |I(1)| ≤ |I(2)| ≤ ... ≤ |I(l)|;
3. A = {s(j)}, 1 ≤ j ≤ l;
4. for (j = 1 to l)
5. for (k = 1 to rj)
6. Let C(j) ∩A = B;
7. if (B == φ) // B is an empty set
8. Let x be the first element in I(j);
9. A = A ∪ {x};
10. else
11. Let x be the first element in B;



12. end if;
13. Place rj,k at x;
14. end for;
15. end for;
16. RETURN A. // Return the set active PMs

Fig. 3 shows how the Algo. 1 works for the example
in Fig. 1. It shows that PMs 1, 3, 6, 8 have to turn on
while PMs 2, 4, 5, 7 can be turned out to save energy. The
number of active PMs is 4. Greedy performs better than
Two-Stage by being able to turn off one more PM.

1 2 3 4 5 6 7 8

v3v2v1
v21 v12v31

v11

v32
v13

Sorted order of PMs: 3, 6, 8, 1, 2, 4, 5, 7

Sorted order of VM replicas: v31, v32, v21, v11, v12, v13

Figure 3. How Greedy works for the example in Fig. 1.

Discussions. An interesting question to answer is: Why
Greedy performs better than Two-Stage for the example in
Fig. 1? Let’s take a look of the turned-off PMs in both
cases. Greedy turns off both PMs 2 and 7, which are left
on by Two-Stage. The reason PMs 2 and 7 are turned
on by the Two-Stage is because it maintains a sorted list
of pre-colored PM-nodes that conflict with VM replicas.
This implies that the higher incompatibility a PM has with
VM replicas, the better chance it is colored and selected to
store VM replicas. PMs 2 and 7, which both have some in-
compatibility with some VM replicas, are colored and thus
chosen to store other VM replicas. This example demon-
strates that the idea of forcing PM nodes that are incom-
patible with some VM replicas to store other VM replicas
does not seem to be a good strategy in order to turn off
more PMs. In an extreme case wherein a PM is incompati-
ble with all the VM replicas, for example, it is still colored
for storing VM replicas even though it cannot store any.
In contrast, our Greedy algorithm tries to put as many VM
replicas into source PMs (which have to be turned on), and
only turn on other PMs when needed, which has a clear
focus on turning off more PMs.

4. Performance Evaluation

Simulation Setting. In this section we compare our de-
signed algorithms with the existing work. We refer to
our ILP-based algorithm as ILP, the greedy VM replica
placement algorithm as Greedy, and the two-stage existing
work as Two-Stage. We implemented ILP using LP solver
lpsolve [4] and wrote our own Java simulator for other al-
gorithms on a Windows10 computer with Intel Core i7-
6500U 2.50 GHz CPU and 32 GB RAM. We compare all
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the algorithms in terms of active PMs; i.e., number of PMs
that have at least one VM copy (original or replica) after
executing each of the algorithms. We adopt the fat tree [5]
for the data center topology. We consider a small k = 8
data center with 128 PMs and a large k = 16 data center
with 1024 PMs, where k is the number of port of the switch
in fat tree topology. Each data point in the plots is an aver-
age over ten runs. The error bars indicate 95% confidence
interval. The number of replica copies of each VM rj is a
random number in [5,10] unless otherwise mentioned.

Effects of varying l, number of original VMs. Fig. 4 shows
the performance comparison when varying l. It shows that
as l increases, the number of active PMs of all three al-
gorithms increases, as more VM replicas are placed in-
side the cloud data center thus less number of PMs can
be turned off. We also observe that among the three al-
gorithms, ILP, being the optimal algorithm, always results
in the least number of active PMs, thus saving energy the
most. Greedy however, performs very close to the ILP, giv-
ing less than 5% of more active PMs compared with ILP.
Both ILP and Greedy outperform the Two-Stage, showing
that Two-Stage is the least energy-efficient fault-tolerant
VM placement algorithms. In general, we observe that
Greedy can turn off 40-50% more PMs than Two-Stage.

Fig. 5 shows the number of placed VM replicas of the
three algorithms. When l is small (l = 20, 40), all three



 0

 20

 40

 60

 80

 100

 120

 140

 160

5−10 10−15 15−20

N
u

m
b

e
r 

o
f 

A
c
ti
v
e

 P
M

s

Number of VM replicas

Two−Stage
ILP

Greedy

79.40

102.60

125.40

43.70

68.00

92.50

46.40

72.80

94.70

Figure 6. Number of active PMs by varying rj , number
of replica copies of each VM. Here, k = 8, l = 50, and
rci = 10.

 0

 200

 400

 600

 800

 1000

5−10 10−15 15−20

N
u

m
b

e
r 

o
f 

V
M

 r
e

p
lic

a
s
 P

la
c
e

d

Number of VM replicas

Two−Stage
ILP

Greedy

342.90

412.30
467.70

376.30

625.30

870.40

Figure 7. Number of placed VMs by varying rj . Here,
k = 8, l = 50, and rci = 10.

algorithms are able to place all the VM replicas required
for each original VM. However, When l gets larger (l ≥
60), Two-Stage is no longer able to place all the replicas
while Greedy and ILP are still able to place all the replicas.
This shows that our algorithms are more fault-tolerant than
Two-Stage. In some case (l = 100), Greedy can place
around four times as many VM replicas as Two-Stage.

Effects of varying rj , number of replica copies of each
VM. Fig. 6 and 7 show the performance comparisons when
varying rj . First, with the increase of rj , both the num-
ber of active PMs and number of placed VM replicas for
all three algorithms increase, as more replica copies are
placed to achieve stronger fault-tolerance. Again, we ob-
serve that Greedy performs very close to the ILP in terms
of both active PMs and placed VM replicas, while both
outperform the Two-Stage in the entire parameter range.

5. Conclusion and Future Work

We presented the performance comparison of fault-
tolerant virtual machine placement algorithms in cloud
data centers. We compared our greedy algorithm with
the existing one based on Welsh Powell graph-coloring
algorithm in terms of active PMs and VM replica copies
placed. We showed that our greedy algorithm can turn off
40-50% more PMs and can place upto four times as many
VM replicas as the existing work, thus achieving stronger

fault-tolerance with better energy efficiency. We also com-
pared both algorithms with the optimal ILP-based algo-
rithm, which serves as the bench mark of our compared
algorithms. In the future, we plan to systematically find
out if fault-tolerant VM placement can be achieved for any
given problem instance. In the future we will consider that
different VMs consume different amounts of resources,
and investigate how this affects the existing fault-tolerant
VM placement algorithms and their comparisons.
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