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of Users Communicating via Multiple Messages
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Abstract—A major objective of any system-wide attack on an
anonymity system is to uncover the extent to which each user of
the system communicated with each other user. A probabilistic
attack attempts to achieve this objective by arriving at some
probability values for each of the system’s possible input–output
message pairs of reflecting actual communication. We show
that these values lead to a probability distribution on the set
of all possible system-wide communication patterns between
users, and develop a combinatorial technique to determine this
distribution. We give a method to measure from this distribution
the effectiveness of any such attack or, alternatively, the level
of anonymity remaining in the system in the aftermath of the
attack. We also compare our metric with three earlier attempts
in the literature to solve a similar problem, and demonstrate that
the scope of our metric is far wider than those of all earlier ones.

Index Terms—Combinatorial matrix theory, probabilistic
attacks, system-wide anonymity metric.

I. Introduction

THE IMPORTANCE of accurate techniques for measuring
the effectiveness of attacks on anonymity systems has

been well recognized for a long time. Such techniques help
determine the amount of anonymity that still remains in an
anonymity system in the aftermath of an attack.

Much of the well-known work in this area, such as that of
Serjantov and Danezis [1] or of Diaz et al. [2], has focused
on measuring effectiveness of attacks that aim to uncover the
sender (or receiver) of a single message passing through the
system. In contrast, Bagai et al. [3] and Edman et al. [4]
studied system-wide attacks that attempt to link each input
message of an anonymity system with the corresponding
output message it exited the system as. Specifically, they
studied the following two classes of attacks.

1) A-Inf: Attacks whose analysis determines infeasibility
of some of the system’s input–output message pairings
of being actual linkages. Attacks in this class are called
infeasibility attacks.

2) A-Prob: Attacks whose analysis arrives at probability
values for each system’s input–output message pairing
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of being an actual linkage. Attacks in this class are called
probabilistic attacks.

Measuring the effectiveness of any attack in the above
classes results in a system-wide measure of the level of
anonymity provided by the anonymity system. By presenting
an information-preserving embedding of the class A-Inf into
the class A-Prob, Bagai et al. [3] showed that the latter class
is significantly wider and more general than the former. They
also constructed a unified metric for measuring the anonymity
left in the system upon conclusion of any attack in these
classes. For attacks in A-Inf, this unified metric was shown to
coincide with an earlier metric proposed by Edman et al. [4],
while for attacks in A-Prob the unified metric of Bagai et
al. [3] was shown to be more accurate than one that appeared
in [4].

Gierlichs et al. [5] demonstrated the need for considering
linkages between the senders and receivers of the anonymity
system, instead of just its input and output messages. They
argued that since users may send/receive multiple messages
and the system attempts to hide the number of messages any
particular sender sent to any particular receiver, the anonymity
of linkages between senders and receivers is, in general, lower
than that of exact linkages between messages. A modification
of the basic metrics, namely the metric of Edman et al. [4]
for attacks in A-Inf, and the unified metric of Bagai et al. [3]
for attacks in A-Inf and/or A-Prob, thus became necessary in
order to take multiple messages sent/received into account.

To date, three works have addressed the issue of modifying
the basic metrics for the multiple messages sent/received
scenario. Grégoire and Hamel [6] only reiterated the need for a
modified metric for attacks in A-Inf, but did not propose any
metric that takes an attack into account. Gierlichs et al. [5]
presented a modified metric for attacks in A-Inf, but their
metric was later shown to be applicable not to this entire
class, rather just a portion of it, whose size becomes smaller
as the numbers of messages sent/received by users grow.
Bagai et al. [7] succeeded in developing a modified metric for
the entire class A-Inf. None of these earlier works, however,
considered probabilistic attacks, i.e., attacks in the wider class
A-Prob. Later in our paper we explain in more detail the exact
limitations of each of these related works.

The main contribution of our paper is a technique to
measure the system-wide anonymity in the wake of any
probabilistic attack, when users may send/receive multiple
messages. Our technique is built upon the basic unified metric
of Bagai et al. [3] that employs Shannon entropy [8] to
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measure such an attacker’s uncertainty of which matching
between the system’s input and output messages is the actual
communication pattern. In the presence of multiple messages
sent/received by users, an equivalence relation is induced
by message multiplicities on the set of all such matchings.
Equivalence classes of this relation correspond to the possible
levels of communication between senders and receivers. While
only one of these equivalence classes reflects the actual level
of communication, we develop a method to compute the
probability distribution arrived at by the attacker on the set of
all equivalence classes, of being the actual one. The attacker’s
uncertainty inherent in this distribution correctly measures the
anonymity of the actual communication level between the
system’s senders and receivers.

Our technique for measuring anonymity is significant
both practically as well as theoretically. Its practical signif-
icance is on two accounts. First, as already pointed out by
Gierlichs et al. [5], its underlying system model that takes
into consideration multiple messages sent/received by users
accurately reflects reality. In contrast, the basic metric of
Bagai et al. [3] ignores that important practical aspect. Second,
it is well-known and reiterated in [9] that most attacks on
real anonymous systems are probabilistic, i.e., members of
the class A-Prob. Our technique is tailored for such attacks,
while all earlier attempts at measuring anonymity in the
multiple messages sent/received scenario, namely attempts by
Gierlichs et al. [5], Grégoire and Hamel [6], and Bagai et al.
[7], consider attacks only in the subclass A-Inf. The theoretical
significance of our technique lies mainly in its scope, and
stems from the fact that the class A-Inf is just a finite subclass
of the uncountably infinite class A-Prob. As shown later
in this paper, even for the significantly modest class A-Inf,
only one of the three earlier attempts at arriving at a metric
for measuring anonymity for the multiple messages scenario
succeeded completely. The other attempts were at best partial.
On the other hand, the technique developed in this paper,
based on certain regions of probability matrices and extracts
within those regions described in Section V, results in accurate
anonymity measurement for any attack in A-Prob.

The rest of this paper is organized as follows. Section II
gives an overview of the model of the anonymity system
considered by Bagai et al. [3], an example of a probabilistic
attack on such a system, and their basic anonymity metric.
Section III extends this model by adding users that may send
and/or receive multiple messages. This section then introduces
the central concept of an equivalence relation induced by
message multiplicities on the set of all matchings between
messages, discusses the number of equivalence classes of this
relation, and gives a method to compute the size of any class.
Section IV presents our new anonymity metric, which is based
on a probability distribution, arrived at by the attacker, on
these classes. A technique for determining this distribution
is then developed in Section V, and an application of our
method to measure anonymity provided by a pool mix is
contained in Section VI. Section VII compares our method
with the three existing attempts in the literature for solving
a similar problem. It first establishes that each of the earlier
works only attempted to measure effectiveness of attacks in

Fig. 1. Example for t = 4. (a) System’s complete bipartite graph Kt,t

between X and Y . (b) t × t probability matrix Pmax for the maximum
anonymity case.

the finite class A-Inf, which is essentially a subclass of the
uncountably infinite class A-Prob, to which our new method
is applicable. It then characterizes the exact scope, within A-
Inf, of the earlier methods. Finally, Section VIII concludes our
work and mentions some directions for future work.

II. A System-Wide Anonymity Metric

In this section we give an overview of the technique of
Bagai et al. [3] for measuring the amount of anonymity
remaining in an anonymity system, after a probabilistic attack
has been carried out. Their method determines the system-wide
level of anonymity provided to messages sent via the system,
rather than to any particular message going through it.

A. The Underlying Model

Let X = {x1, x2, . . . , xt} be the set of t input messages
observed by an attacker having entered an anonymity system,
and Y = {y1, y2, . . . , yt} be the set of output messages
observed by the attacker having exited from that system. We
assume that every input message eventually appears at the
output, and that no message originates from within the system,
thus |X| = |Y | = t.

Definition 1 (Matchings): A matching is any one-to-one
correspondence between X and Y . The set of all matchings
is denoted by M. Of all the t! matchings in M, the unique
one reflecting the system’s actual communication pattern is
called genuine; all others are called fake.

The foremost goal of the anonymity system is to hide from
the attacker which input message in X exited the system as
which output message in Y . In other words, the system at-
tempts to hide the genuine matching by making fake matchings
seem probable. It may employ a number of techniques to this
end, such as outputting messages in an order other than the one
in which they arrived to prevent sequence number associations,
or modifying message encoding by encryption/decryption to
prevent message bit-pattern comparisons, etc.

While any given message xi ∈ X exits the system as some
unique message yj ∈ Y , all matchings are possible, and can
therefore be modeled by the complete bipartite graph Kt,t

between X and Y , as shown in Fig. 1(a) for an example value
of t = 4. In this graph, any vertex xi is connected to all
members of Y , indicating that xi may have exited the system
as any of its output messages. However, for any given xi or
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yj , exactly one of the edges connected to that vertex is part
of the genuine matching.

Maximum anonymity is achieved when for any message
xi ∈ X, each output message in Y appears to the attacker to
be equally likely for being the one that xi exited the system
as. If each edge of the complete bipartite graph is assigned
by the attacker a probability of its being a member of the
genuine matching, then for this maximum anonymity situation,
all edges uniformly get the value 1/t as their probability.
We use real values from the closed interval [0, 1] for prob-
abilities, and employ a t × t probability matrix for storing
attacker’s probabilities for all edges in this graph. Fig. 1(b)
shows the probability matrix Pmax corresponding to maximum
anonymity, for the example complete graph of Fig. 1(a).

The attacker, however, attempts to use some information
gained about the system and/or messages to arrive at nonuni-
form probabilities for the graph’s edges, i.e., some probability
matrix that is preferably different than Pmax. Given that the
genuine matching has to be a one-to-one correspondence
between X and Y , any probability matrix resulting from an
attack must be doubly stochastic, i.e., the sum of all values in
any of its rows or columns is 1.

Ideally, the attacker would like to gain enough information
for arriving at a matrix in which each row and column contains
a single occurrence of 1 and (t−1) occurrences of 0, as such a
matrix pinpoints the genuine matching, and the system would
then provide no anonymity. In general, however, the attacker
has some partial information resulting in a probability matrix
corresponding to an anonymity level that lies somewhere
between the two extremes of maximum anonymity and no
anonymity. Section II-B contains an example attack and its
probability matrix, and Section II-C outlines the method of
Bagai et al. [3] for measuring the anonymity level correspond-
ing to any given probability matrix resulting from an attack.

B. Attack Example

As an example of a probabilistic attack, consider the simple
anonymity system shown in Fig. 2(a), with two proxy nodes,
N1 and N2, and four input as well as output messages. The
message from node N1 to N2 is internal to the network. As
discussed in [1], suppose each proxy node randomly shuffles
all its input messages before sending them out, i.e., a message
entering any proxy node is equally likely to appear as any
of that node’s output messages. If this characteristic of proxy
nodes is known to the attacker, and the entire message flow
pattern of the network (including internal messages) is visible
to the attacker, the attacker can arrive at probabilities for each
input–output message pairing of the system, as shown next
to the output messages in Fig. 2(a). The probability matrix
P containing all these probabilities is shown in Fig. 2(b).
Any entry Pij in this matrix contains the probability that the
system’s input message xi appeared as its output message yj .
Note that P is doubly stochastic.

C. Anonymity Metric

We briefly review the metric of Bagai et al. [3] for mea-
suring the anonymity remaining in the system upon con-
clusion of a probabilistic attack that results in some t × t

Fig. 2. (a) Example message flow via an anonymity system, observed
by attacker to arrive at probabilities of input–output message pairings.
(b) Probability matrix resulting from this attack.

doubly stochastic probability matrix P . In a nutshell, their
approach first recognizes the fact that P induces a certain
probability value for any given matching of being the genuine
one, and then employs the well-known technique of Shannon
entropy [8] to measure the attacker’s uncertainty contained
in this probability distribution of which matching is indeed
genuine.

Definition 2 (Lines): A line in P is any subset of its cells
that contains exactly one cell from each row of P . The set of
all lines in P is denoted by L(P).

Each line therefore has exactly t cells. As any cell in the
matrix P corresponds to an edge of the system’s complete
bipartite graph between X and Y , a line corresponds to a
subgraph of that graph obtained by removing all but one
edge connected to each member of X, i.e., a function from X

to Y .
Definition 3 (Line Weights): The weight of any line l in P ,

denoted by W(l), is the product of values in all cells of l.
We first make the following observation about the sum of

weights of all lines.
Proposition 1: For any probability matrix P∑

l∈L(P)

W(l) = 1.

Proof: From the definition of weights, and by algebraic
rearrangement, we have

∑
l∈L(P)

W(l) =
t∑

j1=1

t∑
j2=1

· · ·
t∑

jt=1

P1j1P2j2 · · · Ptjt

=
t∏

i=1

(Pi1 + Pi2 + · · · + Pit) = 1.

The last equality follows from the fact that the sum of each
row of P is 1.

Definition 4 (Diagonals): A line in P is called a diagonal
if no two of its cells lie in the same column of P . The set of
all diagonals in P is denoted by D(P).

Just as a line corresponds to a function from X to Y , a
diagonal can be seen to correspond to a matching, i.e., a
bijection between X and Y . Clearly, P has tt lines, of which
t! are diagonals. The sum of weights of all diagonals in P is
of special significance.

Definition 5 (Permanent): The permanent of P is given
by

per(P) =
∑

d∈D(P)

W(d).
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Permanents of square matrices have been the subject of
much mathematical study (see [10] and [11]). As P is doubly
stochastic, it is well known that 0 < t!/tt ≤ per(P) ≤ 1.

We now formulate the probabilities induced by P on each
diagonal (i.e., matching) of being genuine. Consider the set
YX of all tt functions f : X → Y . Suppose a function f

is randomly chosen from YX by choosing independently, for
each i

f (xi) = yj with probability Pij.

Since the sum of each row in P is 1, i.e., each input message
in X must appear as some output message in Y , and the above
choice is performed independently for each xi, the probability
of the event that our chosen function f = f0, for any given
function f0 ∈ YX, is

∏{Pij | f0(xi) = yj}, i.e., the weight of
the line in P corresponding to f0. By Proposition 1, all such
weights add up to 1, and we have a probability distribution on
the entire set YX. It follows that, per(P) is the probability of
the event that our randomly chosen function f is a bijection
between X and Y , i.e., a matching. Furthermore, the weight
of the diagonal corresponding to any given bijection b0 ∈ YX

is the probability of the event that f chosen as above was b0.
Of particular interest to us, however, is the probability of

the event f = b0, given the event f is a bijection. This is due
to the additional constraint that the sum of each column of
P is also 1, i.e., each output message in Y must have been
some input message in X. This value is the probability of b0

being the genuine matching, given that exactly one matching
is genuine, and is now seen to be the weight of the diagonal
corresponding to b0, normalized by the sum of weights of all
diagonals, per(P).

Definition 6 (Profiles): Let 〈d1, d2, . . . , dt!〉 be an arbitrary
sequence of all diagonals of P . Then, a diagonal weight profile
(or just profile) of P is the normalized sequence of weights
of diagonals in the above sequence

1

per(P)
〈W(d1),W(d2), . . . ,W(dt!)〉.

As all doubly stochastic matrices have nonzero permanents,
the above sequence is well defined. A profile of P is the
probability distribution arrived at by the attacker on the
diagonals of P , i.e., matchings, of being the genuine matching.
From the point of view of a system-wide anonymity metric,
this is the most vital piece of information contained in P .

Strictly speaking, P may have multiple profiles, but all its
profiles are simply permutations of each other and, as we
will see shortly, lead to the same measure of anonymity. We
therefore ignore the order of values in profiles and consider P

to have a unique profile.
For the example matrix P of Fig. 2(b), t = 4 and there are

t! = 24 matchings. Exactly 12 of these matchings can be seen
to have weight 1/108 each, and the remaining 12 have zero
weight each. The sum of weights of all matchings is 12/108 =
1/9 = per(P). Thus, the profile of P is a sequence with exactly
12 occurrences of the value (1/108) / (1/9) = 1/12, and 12
occurrences of the value 0. The 24 values in this sequence are
the attacker’s probabilities for each of the matchings of being
genuine.

We can now state the anonymity metric of Bagai et al. [3]
for a system’s degree of anonymity after an attack that results
in a probability matrix P . Ever since the works of Serjantov
and Danezis [1] and Diaz et al. [2], Shannon entropy [8]
of a probability distribution is a well-accepted measure of
anonymity. Bagai et al. [3] employ the same technique over the
profile of the matrix as a measure of the attacker’s uncertainty
of which matching is indeed genuine.

Definition 7 (Basic Metric): Let P be a t × t probability
matrix resulting from an attack, with profile 〈w1, w2, . . . , wt!〉.
The system’s degree of anonymity after this attack is

�(P) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if t = 1

−
t!∑

i=1

wi · log(wi)

log(t!) , otherwise.

In the above summation, a subexpression 0 · log(0) is
interpreted as 0. This metric measures the extent to which the
genuine matching is still hidden, after the attack, among all
fake ones. It is easily verified that �(P) = 1 iff P = Pmax, as
in Fig. 1(b), and �(P) = 0 iff P contains a single occurrence
of the value 1 in each of its rows and columns. For the matrix
P of Fig. 2(b), �(P) = log(12)/ log(24) ≈ 0.78.

III. Sending/Receiving Multiple Messages

The basic metric of Definition 7 measures a system’s
effectiveness in thwarting an attacker’s attempt at determining
the unique genuine matching. Stated alternatively, it measures
the extent to which the attacker falls short of achieving the
goal of pinpointing the genuine matching. Gierlichs et al. [5]
pointed out that the attacker, in fact, usually has a more modest
goal, especially in the commonly occurring scenarios where
system users send and/or receive multiple messages. In such
scenarios, the attacker is content with figuring out just how
many messages each sender sent to each receiver, and not
necessarily which messages.

As a simple example, suppose an attacker knows that mes-
sages x1 and x2 of Fig. 2 were both sent by the same sender,
say Alice, and that message y1 was the only message received
by some receiver, say Bob. Consider now the anonymity of
the Alice-Bob pair. Although the attacker is still unsure of
whether y1 was the message x1 or x2 (each event has a 50%
probability), he has determined with 100% certainty that Alice
sent one message to Bob. From the point of view of the
anonymity of relationships between senders and receivers, the
attacker does not care to determine exactly which message
sent by Alice went to Bob, first or second, but is content to
determine the number of such messages.

To measure the anonymity of relationships between a sys-
tem’s senders and receivers, who may be sending/receiving
multiple messages, a modification of the metric of Definition 7
is therefore needed, as this basic metric considers relationships
only between the system’s input and output messages. It is
worth noting that, while an attack, such as the example in Sec-
tion II-B, still arrives at probabilities of message relationships,
leading to a t × t probability matrix P , the modified metric
needs to measure sender–receiver relationship anonymity.
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Fig. 3. Users sending and receiving multiple messages.

A. Sender–Receiver Associations

As shown in Fig. 3, let m be the number of senders in the
system and, for any i ∈ {1, 2, . . . , m}, let Xi be the set of
messages sent by sender i.

Similarly, let n be the number of receivers and, for any
j ∈ {1, 2, . . . , n}, let Yj be the set of messages received by
receiver j. It is easy to see that,

∑m
i=1 |Xi| = t =

∑n
j=1 |Yj|,

and that

{Xi × Yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
is a partition of X × Y . Any member Xi × Yj of this partition
is the set of all edges in Kt,t from sender i to receiver j.

Definition 8 (Association Matrices): For any subset E ⊆
X×Y of edges in Kt,t , the (sender–receiver) association matrix
of E, denoted Z(E), is the m×n matrix of nonnegative integers
given by

Z(E)ij = |E ∩ (Xi × Yj)|.
In other words, any entry Z(E)ij of this matrix is the number

of edges (i.e., input–output message associations) in E from
sender i to receiver j. It follows that the sum of all entries in
Z(E) is |E|.

There are a total of 2(t2) subsets of X×Y . We already know
that exactly t! of these subsets are matchings between X and
Y . If E is any of the t! matchings, then its association matrix
Z(E) has an additional property: its row- and column-sums
are then the same as the sender and receiver multiplicities in
the system, respectively, that is

n∑
k=1

Z(E)ik = |Xi|, 1 ≤ i ≤ m, and

m∑
k=1

Z(E)kj = |Yj|, 1 ≤ j ≤ n.

Recall from Definition 1 that M is the set of all t! matchings
between X and Y . We now define a binary relation on M.

Definition 9 (Equivalent Matchings, �): Let E1, E2 ∈ M.
Then E1 and E2 are equivalent, denoted by E1�E2, if they
have the same association matrix, i.e., Z(E1) = Z(E2).

Clearly, � is an equivalence relation and, for any matching
E ∈M, the equivalence class of E is the set

{E′ ∈M | E�E′}
of all matchings equivalent to E. In other words, matchings
are considered equivalent if they have the same number of
messages going from any given sender to any given receiver.
The exact input–output message relationship in equivalent
matchings may, however, be different. Fig. 4 shows an example

Fig. 4. Example of two equivalent matchings and their common association
matrix.

of two matchings in a system with m = 2 senders, n = 3
receivers, and t = 5 messages. These matchings are equivalent
because they have the same association matrix.

The five messages in this system are broken down into
sender multiplicities of |X1| = 2 and |X2| = 3, and on the
other side, receiver multiplicities of |Y1| = 1, |Y2| = 2 and
|Y3| = 2. These values are also shown in the figure as the row-
and column-sums of the association matrix of these matchings.
It is instructive at this point to consider the following two
questions.

1) How many equivalence classes does � partition the set
M into?

2) Given a particular equivalence class, how many match-
ings does that class contain?

The rest of Section III addresses the above questions. An
understanding of these issues assists in understanding our
modified metric, given in Sections IV and V.

B. Number of Equivalence Classes

Let S and R denote, respectively, the sender and receiver
multiplicity vectors of the system, that is

S = 〈|X1|, |X2|, . . . , |Xm|〉, and

R = 〈|Y1|, |Y2|, . . . , |Yn|〉.
Associated with every equivalence class of � over the setM is
then a unique m×n association matrix of nonnegative integers,
with S as its row-sums vector and R as its column-sums vector.
The number of equivalence classes is thus the number of such
matrices.

Let us first consider the complexity of determining this
number. Valiant [12] introduced the complexity class #P, of
counting problems associated with the decision problems in
the class NP. For example, the subset-sum decision problem
in NP is to determine if there exists a subset of a given list
of integers, such that members of that subset add up to some
given value. The corresponding counting problem in #P is to
count the exact number of such subsets. Clearly, any problem
in #P is at least as hard as its counterpart in NP because its
decision variant only seeks to know whether or not the count is
greater than zero. Valiant [12] then showed that computing the
permanent of any matrix, even if all its entries are just 0 or 1, is
#P-complete. Consequently, as in Jerrum et al. [13], attention
has been given to efficient approximation of permanents to an
acceptable degree of accuracy.

Dyer et al. [14] established the well-known result that
exactly counting the number of nonnegative integer matrices
with given row- and column-sums is #P-complete. Although



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

several exact counting algorithms are known, due to this result,
one does not expect to find any polynomial-time ones, as
that would imply P = NP. Gail and Mantel [15] gave a
straightforward technique based on a recurrence. Greselin [16]
has another recursive method for counting and generating such
matrices. Macdonald’s [17] method employed complete sym-
metric functions to obtain this count. Grégoire and Hamel [6]
essentially restate that method in our context of anonymity
systems.

Given the complexity of obtaining the exact count, much
work has also been done on getting approximate answers effi-
ciently and on asymptotic expressions. Some recent techniques
are in [18]–[20].

Informative surveys on this topic are contained in [21], and
more recently in [22].

C. Cardinality of an Equivalence Class

We now turn our attention to counting the number of
matchings contained in the equivalence class identified by a
given m×n association matrix Z. In other words, the number
of matchings E, for which Z(E) = Z. As before, we let
S = 〈|X1|, |X2|, . . . , |Xm|〉 and R = 〈|Y1|, |Y2|, . . . , |Yn|〉 be
the sender and receiver multiplicity vectors. We start with a
special case, and proceed to the most general one.

If all sender and receiver multiplicities are 1, i.e., m = t = n

and |Xi| = 1 = |Yj|, for all i, j, then Z can only be a 0–1
matrix, with exactly one 1 in each of its rows and columns.
There are t! such matrices, thus equivalence classes, which is
also the total number of matchings. Any class in this case,
including the one identified by Z, therefore contains exactly
one matching.

Now suppose m < t = n, i.e., some senders sent multiple
messages but each receiver received only one message. As
all column-sums of Z are 1, in this case also Z can only
be a 0–1 matrix, with exactly one 1 in each of its columns.
Some rows of Z, however, have multiple occurrences of 1.
Consider, arbitrarily, the ith row, with k = |Xi| occurrences of
1, in columns j1, j2, . . . , jk. The k messages of this sender
could have been sent in any of k! ways to these receivers,
while still maintaining the association matrix Z. The messages
sent by any other sender can also be shuffled among their
receivers in the same way, while still maintaining the matrix
Z. The number of matchings whose association matrix is Z

is thus
∏m

i=1 |Xi|!. Note that this value is independent of Z,
i.e., all equivalence classes have the same size, which can be
determined just from S.

The case m = t > n is similar, i.e., when each sender sent
exactly one message but some receivers received multiple mes-
sages. By a symmetric reasoning, we have that the cardinality
of each class in this case is

∏n
j=1 |Yj|!.

In the most general case, m < t > n. Without loss of
generality, we start at the top-left corner of Z and proceed
to its bottom-right corner, but any other order of considering
all its entries leads to the same result. Consider Z11, the
number of messages from the first sender to the first receiver.
Of all the |X1| messages sent by the first sender, these Z11

messages can be chosen in
( |X1|

Z11

)
ways, i.e.,

( ∑n
k=1 Z1k

Z11

)
ways. Similarly, of all the |Y1| messages received by the

Fig. 5. Typical association matrix Z.

first receiver, these Z11 messages can be chosen in
( |Y1|

Z11

)
ways, i.e.,

( ∑m
k=1 Zk1
Z11

)
ways. Once the exact Z11 source and

destination messages between these two users are identified,
there are Z11! matchings between them. Thus⎛

⎜⎝
n∑

k=1

Z1k

Z11

⎞
⎟⎠

⎛
⎜⎝

m∑
k=1

Zk1

Z11

⎞
⎟⎠ Z11!

is the total number of ways of sending Z11 messages from
the first sender to the first receiver. Now consider Z12. On the
sender side, we now only have |X1|−Z11 messages to choose
from, which is

∑n
k=2 Z1k. This choice can be performed in( ∑n

k=2 Z1k

Z12

)
ways, leading to⎛

⎜⎝
n∑

k=2

Z1k

Z12

⎞
⎟⎠

⎛
⎜⎝

m∑
k=1

Zk2

Z12

⎞
⎟⎠ Z12!

as the total number of ways of sending Z12 messages from the
first sender to the second receiver. Proceeding in this fashion
to the bottom-right of the association matrix Z, we can get
an expression of the number of ways in which Zij messages
may be sent by any sender i to receiver j. Fig. 5 displays the
remaining choices for Zij , given that choices to its left and
top have already been made.

The total number of ways all messages may be forwarded
by the system, while adhering to the associations given by the
matrix Z, is thus

m∏
i=1

n∏
j=1

⎛
⎜⎝

n∑
k=j

Zik

Zij

⎞
⎟⎠

⎛
⎜⎝

m∑
k=i

Zkj

Zij

⎞
⎟⎠ Zij!

and that is clearly the cardinality of the equivalence class
identified by Z, of the equivalence relation � over the set
M.

The cardinality of the equivalence class corresponding to
the example association matrix of Fig. 4 can be computed by
the above expression to be 24. Two of these 24 equivalent
matchings are displayed in that figure.

IV. New Metric

In this section we develop a metric for measuring the
anonymity of the system’s sender–receiver communication
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Fig. 6. (a) SetM of all t! matchings. (b) Equivalence classes onM induced
by the multiplicity vectors S and R.

pattern, in the aftermath of a two-pronged attack that has
performed the following.

1) Arrived at probabilities of all input–output message
pairings. This portion of the attack is carried out at the
level of the system’s input and output messages, as in
the example of Section II-B. It thus results in a t × t

probability matrix P .
2) Associated the correct sender with each input message of

the system, and receiver with each output message. This
results in the sender and receiver multiplicity vectors S

and R.

The above segments of the attack are orthogonal to each other
and, independently, each has an adverse effect on the system’s
anonymity level. The metric we now develop measures their
combined effect.

We already understand the effects of each of these at-
tack segments separately. Recall that M is the set of all t!
matchings, as shown in Fig. 6(a). The sender and receiver
multiplicity vectors S and R induce the equivalence relation �
onM, whose classes are as in Fig. 6(b). Each class represents
a sender–receiver association scenario, and is identified by a
unique association matrix with S as its row-sums vector and
R as its column-sums vector. In Section III-C we gave an
expression for the size of a class in terms of its association
matrix. In the absence of the other attack component, namely
the one based on the probability matrix, these class sizes lead
directly to a probability distribution over all possible associ-
ation scenarios. The probability of any particular scenario, in
this case, is simply proportional to the number of matchings
in its corresponding equivalence class. From this distribution,
anonymity can be measured by standard techniques, such as
by Shannon entropy, as mentioned a little later.

The probability matrix P resulting from the other part of
the attack, however, alters this probability distribution. By
inducing a probability on each matching, as explained in
Section II-C, P in fact ends up assigning a probability value to
each equivalence class of �. The value assigned to any class is
the probability of the genuine matching being contained in that
class, which is now the sum of probabilities of all matchings in
that class. From an anonymity point of view, what is important
now is thus not the raw size of each class, but the sum of the
probabilities of all matchings in each class.

Definition 10 (Weights of Association Matrices): For any
given multiplicity vectors S and R, let ZS,R(M) denote the
set of all association matrices of matchings in M, i.e., the
set of all m × n nonnegative integer matrices with S as their

row-sums vector and R as their column-sums vector. Now,
for any given t × t probability matrix P , the weight assigned
by P to any matrix Z ∈ ZS,R(M), denoted WP (Z), is the
sum of weights of all matchings in the equivalence class of
� associated with Z.

We already know that∑
Z∈ZS,R(M)

WP (Z) =
∑

d∈D(P)

W(d) = per(P).

In Section V, we give a method to compute WP (Z). For
now, let ωP (Z) = WP (Z)/per(P) be the normalized weight
of Z. Clearly, the values ωP (Z) add up to 1, over all Z, and
we have a probability distribution on the set ZS,R(M) of all
sender–receiver association scenarios. For any Z, the value
ωP (Z) is the likelihood assigned by the attacker to the scenario
represented by Z.

As done in [3] for the probability distribution over all
matchings, we employ Shannon entropy [8] of the probability
distribution given by ωP (Z), for all Z ∈ ZS,R(M), as a measure
of the attacker’s uncertainty of which of the system’s sender–
receiver association scenarios is the actual one.

Definition 11 (New Metric): Let a t × t probability matrix
P , and multiplicity vectors S and R, be the result of an attack.
We define the underlying system’s degree of anonymity after
this attack as

δS,R(P) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t = 1

−
∑

Z∈ZS,R(M)

ωP (Z) · log(ωP (Z))

log(t!) , otherwise.

It is easily seen that δS,R(P) is always between 0 and 1.
We first establish that, if all multiplicities are 1, the above
metric coincides with the basic metric of Bagai et al. [3], given
by Definition 7, and that higher multiplicity values reduce
anonymity. The following proposition is verified easily from
the definitions.

Proposition 2: For all S, R, and P , δS,R(P) ≤ �(P), with
equality iff all multiplicity values in S and R are 1.

It remains to compute the weight, WP (Z), of an association
matrix Z, i.e., the sum of weights of all matchings in the class
associated with Z. The next section gives a method for this.

V. Weight of an Equivalence Class

For a given t × t probability matrix P , and an m × n

association matrix Z that corresponds to some equivalence
class of �, we now develop an expression for WP (Z).

The row- and column-sums vectors of Z are, respectively,
the system’s sender and receiver multiplicity vectors, S =
〈|X1|, |X2|, . . . , |Xm|〉 and R = 〈|Y1|, |Y2|, . . . , |Yn|〉. Without
loss of generality, we assume that the first |X1| rows of P

correspond to messages sent by the first sender, the next
|X2| rows to messages sent by the second sender, and so on.
Similarly, the first |Y1| columns of P correspond to messages
received by the first receiver, etc. If necessary, the rows and/or
columns of P can be permuted to achieve this without affecting
the result of the weight computation method developed in this
section. There is now a natural partition of P into regions.
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Fig. 7. Regions of P , Reg(P ; i→j), for 1 ≤ i ≤ m, and 1 ≤ j ≤ n.

Fig. 8. Example extract P[[I; J]] of region Reg(P ; i→j), if Zij = 3.

Definition 12 (Regions): For any sender i and receiver j,
1 ≤ i ≤ m, and 1 ≤ j ≤ n, a region of P , denoted Reg(P ; i→j),
is the submatrix of P made up of |Xi| contiguous rows starting
from row number 1 +

∑i−1
k=1 |Xk|, and |Yj| contiguous columns

starting from column number 1 +
∑j−1

k=1 |Yk|.
There are mn regions of P , all pairwise mutually disjoint,

as shown in Fig. 7. Any particular region, Reg(P ; i→j) contains
probability information arrived at by the attacker of the subset
Xi × Yj of edges in the system’s complete graph Kt,t .

Regions are contiguous submatrices of P and are not
necessarily square. They are induced solely by the multiplicity
vectors S and R. Given, additionally, an association matrix Z,
our method will also employ square submatrices of P that
are not necessarily contiguous. These square submatrices are
extracts contained within its regions and are of sizes stated by
corresponding values in Z.

Definition 13 (Extracts): Let I be any subset of size Zij of
the set of all row indices of some region Reg(P ; i→j). Also, let J

be any subset of the same size of the set of all column indices
of that region. An extract of that region, denoted P[[I; J]], is
the Zij × Zij submatrix obtained by extracting all elements of
P at row numbers in I and column numbers in J . We also let
E(P ; i→j) denote the set of all extracts of the region Reg(P ; i→j).

Fig. 8 shows an example extract P[[I; J]] of some region
Reg(P ; i→j), assuming Zij = 3. This extract represents the
situation of the Zij input messages given by indices in I

corresponding, in any order, to the Zij output messages given
by indices in J . Each of the Zij! diagonals of P[[I; J]],
i.e., matchings between I and J , is essentially some partial
matching between X and Y . Observe that

per(P[[I; J]])

is the sum of weights of all these Zij! partial matchings
between X and Y . In general, P[[I; J]] is not doubly stochastic,
but all its row- and column-sums are always nonnegative and
at most 1. Thus, 0 ≤ per(P[[I; J]]) ≤ 1.

As Zij rows and columns may be chosen from Reg(P ; i→j)

in
( |Xi|

Zij

)( |Yj |
Zij

)
ways, that is also the number of extracts of

this region. The following proposition now becomes straight-
forward:

Proposition 3: The sum of weights given by P to partial
matchings of Zij messages from sender i to receiver j is∑

P[[I;J]] ∈ E(P ; i→j)

per(P[[I; J]]).

To determine WP (Z), i.e., the sum of weights given by P

to all matchings in the equivalence class associated with Z,
due to distributive law, a product of the above count for all
sender–receiver combinations can now be employed. A little
caution needs to be exercised though, as choosing an extract
P[[I; J]] ∈ E(P ; i→j) makes all input messages in I unavailable
for receivers other than j. Similarly, all output messages in J

become unavailable for senders other than i. We accomplish
this by zeroing-out all rows in I and columns in J of the
probability matrix P for all subsequent weight evaluation.

For any extract P[[I; J]], we let P̂[[I; J]] denote the matrix
identical to P , except it contains zeroes for all elements of
rows in I and columns in J , that is

P̂[[I; J]]uv =

{
0, if u ∈ I or v ∈ J

Puv, otherwise.

The permanent of any extract from P̂[[I; J]] that has at least
one row from I and/or at least one column from J will clearly
be 0, thus avoiding duplicate weight evaluation resulting from
associating any input message with multiple output messages,
or vice versa. We also let Ẑ[[i; j]] denote the matrix identical to
Z, except it contains a 0 for the element at row i and column
j, that is

Ẑ[[i; j]]uv =

{
0, if u = i and v = j

Zuv, otherwise.

The sum of weights, WP (Z), of all matchings in the class
associated with Z can now be expressed as a recursive formula,
which effectively multiplies the sum of weights of all partial
matchings corresponding to each sender–receiver combination.
As the base case, if all values in the Z matrix are 0, we let
WP (Z) = 1, the identity of multiplication. In general, if for
some i and j, Zij �= 0, then WP (Z) is the following value:∑

P[[I;J]] ∈ E(P ; i→j)

[
per(P[[I; J]]) · WP̂[[I;J]](Ẑ[[i; j]])

]
.

The depth of recursion in the above is exactly the number
of nonzero entries in Z. The order in which these entries are
considered is not important. At any stage, one such entry Zij

is chosen nondeterministically and, for each extract P[[I; J]] ∈
E(P ; i→j), the product of the following is obtained.

1) per(P[[I; J]]), i.e., the sum of weights of all partial
matchings within P[[I; J]].
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2) WP̂[[I;J]](Ẑ[[i; j]]), i.e., the sum of weights of all partial
matchings that can be extensions of partial matchings
within P[[I; J]].

This value is added over all such extracts for the chosen Zij

giving, due to distributive law, the desired result.
While the above recursive formula gives the exact value

of WP (Z), it is based on permanent values of extracts of
regions of P . Given the inherent complexity mentioned in Sec-
tion III-B of computing the permanent of a matrix, this formula
shows that exactly computing the weight of an equivalence
class cannot, in general, be performed efficiently. However,
as successfully accomplished by Lakshmanan et al. [23] for
a different problem involving matrix permanents, it may be
possible to arrive at efficient heuristic methods that compute
approximate weights of equivalence classes within specified
degrees of accuracy, or even be possible to identify some
special classes of P and/or Z, for which exact values can
be computed efficiently. We consider development of such
techniques beyond the scope of this paper, and leave them
for future work.

VI. Application to Pool Mixes

Pool mixes were originally introduced by Cottrell [24] as a
high-latency strategy to counter attacks aimed at correlating a
system’s input and output messages. Several generalizations of
this strategy have been analyzed by Diaz and Serjantov [25],
all of which operate in iterative rounds. In each round, any
pool mix first collects a certain number of incoming messages
and places them in its internal message pool, then flushes out
a randomly selected fraction of all messages contained in this
pool. Messages left in its pool after any round are candidates
for flushing in future rounds.

In this section we employ our method to determine the
anonymity provided by an example pool mix after its first
two rounds of operation. As shown in Fig. 9(a), suppose input
messages x1 and x3 enter the mix in Round 1, and only one of
them, called y2, is output by the mix in that round. The other
input message is retained in its internal pool. We do not need
to assign an explicit name to this message in the pool after
Round 1, because we are interested in measuring anonymity
across two completed rounds. Also, suppose input messages
x2, x4, and x5 arrive in Round 2, and messages y3, y4, and
y5 exit in that round. We let y1 denote the message left in
the pool after Round 2. Fig. 9(b) shows the 5 × 5 probability
matrix P resulting from these two rounds of operation. As an
example, as there is a 50% chance of message x3 being the
same as y2, we have P32 = 1/2. All other entries of P are
arrived at similarly.

Now, suppose the attacker observed that messages x1 and x2

were both sent by the same user, and x3, x4, and x5 by another
user, i.e., X1 = {x1, x2}, and X2 = {x3, x4, x5}. Also, treating
the mix pool after Round 2 as a receiver, suppose the attacker
observed that Y1 = {y1}, Y2 = {y2, y3}, and Y3 = {y4, y5}. This
observation of the attacker results in the following values:

m = 2, S = 〈2, 3〉,
n = 3, R = 〈1, 2, 2〉.

Fig. 9. (a) Message history of the first two rounds of an example pool mix.
(b) Probability matrix after these rounds, its regions induced by multiplicity
vectors, and an example extract collection for the circled association matrix
Z. (c) Association matrices of all equivalence classes.

These values induce six regions on P , as shown in Fig. 9(b),
and partition the set of all 5! = 120 matchings of this system
into five equivalence classes, whose association matrices are
shown in Fig. 9(c). These are all the m×n nonnegative integer
matrices that have S as their row-sums vector and R as their
column-sums vector. Incidentally, the circled association ma-
trix Z of Fig. 9(c) is identical to the one already encountered
in Fig. 4. We first step through the computation of WP (Z), by
our method of Section V.

There are four nonzero entries in Z, namely Z11 = Z12 =
Z21 = 1, and Z23 = 2. Thus any matching in the equivalence
class associated with Z is made up of four extracts of regions
of P with pairwise disjoint row-sets and column-sets: a 1 × 1
extract from each of the regions Reg(P ; 1→1), Reg(P ; 1→2), and
Reg(P ; 2→1), and a 2 × 2 extract from the region Reg(P ; 2→3).
An example collection of such extracts of the regions induced
on P is shown in Fig. 9(b). The product of permanents of
extracts in this collection is

1

4
· 1

2
· 1

4
· (

1

8
· 1

4
+

1

8
· 1

4
) =

1

512
.

Our recursive method given in Section V of computing the
weight of Z essentially adds this value for all such collections
of extracts. It can be seen from a quick enumeration of all
such collections that WP (Z) = 5/512.

The weights WP of the other four association matrices
shown in Fig. 9(c) can be similarly evaluated by our method
to be 1/128, 5/256, 1/256, and 3/512. The sum of weights
of all five association matrices is per(P) = 3/64, and dividing
their individual weights by this value leads to the normalized
weights ωP of these matrices: 5/24, 1/6, 5/12, 1/12, and 1/8.
From our metric of Definition 11, we get δS,R(P) ≈ 0.3.

To appreciate the reduction in anonymity caused by message
multiplicities, we also compute the anonymity level by the
basic metric of Bagai et al. [3]. It is easily seen that, of the
120 diagonals of P , 48 diagonals have weight 1/1024 each,
and the remaining 72 have 0 weight. The sum of weights of
all its diagonals is 48/1024 = 3/64 = per(P). Thus, the profile
of P is a sequence with exactly 48 occurrences of the value
(1/1024)/(3/64) = 1/48, and 72 occurrences of the value
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Fig. 10. Degree of anonymity of example probability matrix P for all
possible multiplicity vectors S and R.

0. According to Definition 7, �(P) = log(48)/ log(120) ≈
0.81, which is significantly higher than δS,R(P) ≈ 0.3, the
anonymity level computed previously by our method.

In general, the higher the message multiplicity values in
vectors S and R, the lower the anonymity.

Fig. 10 depicts this phenomenon over all possible message
multiplicity vectors for this probability matrix P . In the figure

α =

m∑
i=1

|Xi| +
n∑

j=1

|Yj|

m + n

is the average multiplicity count in S and R. As shown, for
some values of α the anonymity is even reduced to zero.

VII. Comparison With Existing Approaches

There have been three other attempts at measuring the
system-wide anonymity when users send and/or receive mul-
tiple messages. Gierlichs et al. [5] were the first to observe
a need for arriving at a metric for such a multiple message
scenario. This problem was then revisited, first by Grégoire
and Hamel [6] and, more recently, by Bagai et al. [7]. We
now compare our work with each of these.

A. Enhanced Scope

The main difference between our result and these previous
attempts lies in the scope of each work. While the metric
developed in this paper measures anonymity after any attack
in the class A-Prob, as defined in Section I, all existing metrics
have only addressed the attack class A-Inf. Bagai et al. [3]
showed that the class A-Inf is much smaller and properly
contained in A-Prob.

An estimate of the sizes of these attack classes is obtained
easily. An attack from A-Inf simply rules out edges in the
system’s complete bipartite graph as infeasible, thus resulting
in a t× t, 0–1 matrix. There are 2(t2) such matrices, i.e., differ-
ent attacks, for a system with t input and output messages. As
attacks in A-Prob result in t × t doubly stochastic matrices,
there are an uncountably infinite number of them.

To see that A-Inf is a subclass of A-Prob, we employ an
elegant infinite procedure of Sinkhorn and Knopp [26]. Let f ,
g, and h be functions from and to t × t real matrices, defined

Fig. 11. Example 0–1 matrix resulting from an attack in A-Inf, and the
doubly stochastic matrix resulting from its equivalent attack in A-Prob.

as follows:

f (M)ij = Mij /
∑t

k=1Mik (row normalization)

g(M)ij = Mij /
∑t

k=1Mkj (column normalization)

h(M) = g(f (M)).

Sinkhorn and Knopp [26] showed that, for any square matrix
A with nonnegative values, the matrix limk→∞ hk(A) is doubly
stochastic and has the same diagonal weight profile as A. Thus,
a procedure that alternately normalizes all rows followed by
all columns of any t× t, 0–1 matrix A resulting from an attack
in A-Inf, ad infinitum, converges to a matrix, which:

1) by being doubly stochastic, is a matrix resulting from
some attack in A-Prob;

2) by having the same profile as A, i.e., by assigning the
same probability value to each matching as A does, has
the same information content as A.

The infeasibility attack resulting in A and the probabilistic
attack resulting in limk→∞ hk(A) are thus equivalent. Fig. 11
shows a 3×3 example of a 0–1 matrix from an attack in A-Inf,
and the doubly stochastic matrix from its equivalent attack in
A-Prob. Reference [3] contains an alternative characterization,
based on matrix scalings, of the unique equivalent attack in
A-Prob for any given attack in A-Inf.

B. Metric of Grégoire and Hamel [6]

The scope of the work of Grégoire and Hamel [6] is,
in fact, the smallest of the existing works. While they dis-
cussed the attack class A-Inf, they proposed the formula
log(COUNT)/ log(t!) as an anonymity metric, where COUNT
is essentially the number of equivalence classes of our �
relation. This is not a metric in the true sense of the term
as it does not take any attack from A-Inf into account or,
alternatively, assumes that the attack’s 0–1 matrix contains
all 1 values. Their formula thus captures just the maximum
degree of anonymity one could expect, given some sender and
receiver multiplicities.

They describe a method based on symmetric functions for
determining COUNT. This method was originally given by
Macdonald [17] for counting nonnegative integer matrices with
prescribed row and column sums. It is also well summarized
in the survey of Diaconis and Gangolli [21].

Moreover, as shown in [7], the value of COUNT is only
of academic interest and not needed to compute the system’s
degree of anonymity after an attack in A-Inf.

C. Metric of Gierlichs et al. [5]

The most significant contribution of Gierlichs et al. [5] was
their demonstration of the need for a metric for the multiple
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Fig. 12. Example 0–1 matrix resulting from an attack in A-Inf, for which
the method of Gierlichs et al. [5] fails.

message scenario. For this scenario, they even proposed a
method for measuring the system’s anonymity after any attack
in the class A-Inf. However, their method was shown by Bagai
et al. [7] to be insufficient, as it works for only those attacks
in A-Inf that result in a 0–1 matrix, each of whose regions
contains either all 0s or all 1s. Fig. 12 contains an example
0–1 matrix for which the method of Gierlichs et al. [5] fails
to work correctly.

This is due to the highlighted region that contains at least
one occurrence of both 0 as well as 1. In this example, t = 3,
m = n = 2, S = 〈1, 2〉, and R = 〈2, 1〉.

In all, there are 2(t2), t × t, 0–1 matrices, of which 2(mn)

are such that each of their regions contains either all 0s or
all 1s. The method of Gierlichs et al. [5] works for these
2(mn) matrices. However, as sender and receiver multiplicity
values grow (i.e., values in S and R), m and n become smaller
(i.e., lengths of S and R), thereby shrinking the scope of their
method as message multiplicity values grow.

D. Metric of Bagai et al. [7]

To date, the work of Bagai et al. [7] has been the most
comprehensive, as their method is capable of measuring the
effectiveness of any attack in the class A-Inf. However, this
class is finite (with 2(t2) matrices) and, as shown earlier, is a
subclass of the uncountably infinite class A-Prob, for which
our method is designed.

Bagai et al. [7] showed that an attack in A-Inf has the effect
of labeling certain matchings as infeasible, namely those that
contain at least one edge (of the system’s complete bipartite
graph) that was determined by the attack to be infeasible.
Some matchings contained in a given equivalence class of
� over M are thus infeasible, while others are feasible, as
depicted in Fig. 13.

They gave a method for counting the number of feasible
matchings in a given equivalence class of �, which formed
the basis of their anonymity metric.

Interestingly, the odds of the genuine matching belonging
to any equivalence class are proportional to the number of
feasible matchings in that class. Thus, our method of deter-
mining effectiveness of attacks in A-Prob, coincides with the
method of [7] for attacks in A-Inf, for those 2(t2) special t × t

doubly stochastic matrices that are equivalent to 0–1 matrices,
as described earlier in Section VII-A. Stated precisely, let

Fig. 13. Feasible and infeasible labeling of matchings in equivalence classes.

A be any t × t, 0–1 matrix. Then, the effectiveness of A

according to Bagai et al. [7] is the same as the effectiveness of
limk→∞ hk(A) determined by our method. Our method is thus
an accurate generalization of theirs, from A-Inf to A-Prob.

VIII. Conclusion and Future Work

Bagai et al. [3] presented a metric for measuring the system-
wide anonymity provided by an anonymity system in the
aftermath of a probabilistic attack. Their metric measured the
extent to which the genuine matching between all system’s
input and output messages is still hidden, after the attack,
among fake ones. Gierlichs et al. [5] made the case for
modifying such a metric for the scenario where system users
send and/or receive multiple messages. As an attacker’s goal
is to uncover the communication pattern between users, and
not simply messages, this modification of the basic metric of
Bagai et al. [3] was necessary.

In this paper, we developed a metric for measuring the
extent to which the communication pattern between senders
and receivers of a system was hidden, after a probabilistic
attack that is still carried out at the level of messages. When
multiple messages were sent and/or received by users, these
message multiplicities induce an equivalence relation on the
set of all matchings between the system’s input and output
messages. We showed that a probabilistic attack ends up
assigning a probability value to each equivalence class of this
relation, which is essentially the likelihood of the genuine
matching being contained in that class. Our main offering
in the paper was a method for computing this probability
value for any given class. We also demonstrated that these
equivalence classes in fact correspond to possible communi-
cation patterns between senders and receivers, and then gave a
method based on Shannon entropy [8] to determine the system-
wide anonymity level after the attack.

Three approaches already exist in the literature for a similar
problem, and we compared our results with all three. We
established that the scope of our method is by far the widest,
as it measures the level of anonymity remaining after any
of the uncountably infinite possible probabilistic attacks is
carried out. In contrast, each of the existing methods only
achieved this, to varying degrees, for any of the finite possible
infeasibility attacks. Not only is the class of infeasibility
attacks finite, it is also a subclass of probabilistic ones.
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Our metric gives an exact measure of the system’s
anonymity level. Computation of this exact value is not
efficient, mainly due to the inherent complexity of computing
permanent values of matrices. We left development of efficient
heuristics that provide an approximate measure of anonymity
within specified error bounds as future work. Another direction
for future work is to identify special subclasses of attacks for
which anonymity levels can be determined efficiently.

Recently, Bagai and Tang [27] showed that adding data
caching abilities to the system model of Bagai et al. [3] results
in increased anonymity. It is possible to extend the metric
of this paper for this additional system ability, and we are
currently working in this direction.
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