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Abstract: An important goal of an anonymity system is to hide the level of communication between
two users, i.e., the number of messages one user sent to another. We construct an anonymity metric
that measures the extent to which the system-wide communication pattern of all users of an anonymity
system is hidden, among other possible patterns, in the aftermath of an attack. Our model allows users
to send or receive multiple messages via the anonymity system, and our metric handles attacks that
are capable of determining infeasibility of some of the system’s input-output message combinations.
We also analyse two earlier attempts in the literature at arriving at such a metric, and show that one of
those attempts is limited to only a small class of such attacks, while the other fails to take any attack
into account. In comparison, our metric is comprehensive, as it is applicable to all attacks mentioned
above.
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1 Introduction

Accurate measurement of the degree of anonymity remaining
in an anonymity system upon conclusion of an attack has been
a fundamental problem in the area of computer communication
privacy. Most anonymity metrics that have been proposed for
this task, such as the ones by Serjantov and Danezis (2002),
and Diaz et al. (2002), measure anonymity from the point of
view of a single message of the system. Edman et al. (2007),
on the other hand, gave a system-wide metric for measuring
an attacker’s uncertainty in linking all incoming messages
of a system with its outgoing ones. They modelled possible
associations between these messages as edges of a complete
bipartite graph, whose vertices represent the system’s input
and output messages. An attack results in labelling some
edges of this graph as infeasible, thus also some perfect
matchings between input and output messages. Anonymity
in this framework is measured by comparing the number of
matchings that remain feasible, after the attack, to that of all
possible ones.

This metric of Edman et al. (2007) was reviewed by
Gierlichs et al. (2008), who argued for the need to go a step
further and measure the attacker’s uncertainty in linking the
system’s users, i.e., senders and receivers, as against just
messages. Indeed, as the attacker’s ultimate goal is to uncover
the communication pattern between users, this extra step is
essential. Gierlichs et al. (2008) showed that when users
send/receive multiple messages, an equivalence relation ∼
is induced on the set of all feasible perfect matchings, any
equivalence class of which essentially represents a feasible
communication pattern between the system’s users. The class
sizes lead to the attacker’s probability distribution over such
communication patterns, from which the anonymity of the
actual pattern is measured by the well-known Shannon-
entropy technique of Diaz et al. (2002). A method for
computing the all important class sizes is also presented in
Gierlichs et al. (2008).

Contributions of our paper are two-fold. Our minor
contribution is to show that the method of Gierlichs et
al. (2008) for computing sizes of equivalence classes of
∼ is limited to a small family of attacks. We accurately
characterise this attack family, and show that it shrinks
in size as the number of messages sent/received by users
grows. Our major contribution is an improved technique for
arriving at the attacker’s probability distribution over feasible
communication patterns. The improvement achieved by our
technique is in its generality, as it works for all possible attacks.

We depart from the approach of Gierlichs et al. (2008)
by considering the equivalence relation ◃▹ on the set of
all perfect matchings of the complete bipartite graph of

Edman et al. (2007). Equivalence classes of ◃▹ represent all
possible communication patterns and, as we show, are aptly
denoted by nonnegative integer matrices, whose individual
rows add up to numbers of messages sent by the senders,
and columns to numbers of messages received by the
receivers. When feasibility information of perfect matchings,
resulting from any attack, is also taken into account, it
becomes necessary to determine the number of feasible perfect
matchings in classes associated with such matrices. We present
a recursive method to compute these values, and a system-wide
anonymity metric based on them to measure the anonymity of
the communication pattern between the system’s users.

The rest of this paper is organised as follows. Section 2
gives an overview of the model of the anonymity system
considered by Edman et al. (2007), some example attacks on
such a system, and the basic anonymity metric proposed by
them. Section 3 extends this model by adding users that may
send and/or receive multiple messages, and introduces the
nonnegative integer matrices that denote equivalence classes
of ◃▹. It then presents our anonymity metric, which is based
on the number of feasible perfect matchings in these classes.
A combinatorial technique for computing this number is also
developed. This technique works for any attack. This section
ends with a complexity analysis of our metric. Section 4
studies two alternative approaches proposed in the literature
for solving this problem. It shows that the method of Gierlichs
et al. (2008) is limited to a small family of attacks, and
characterises that family. Another method, proposed later by
Grégoire and Hamel (2009), does not consider any attack, and
is thus shown to just determine the number of equivalence
classes of ◃▹. Finally, Section 5 concludes our work and gives
some directions for future work.

2 An existing system-wide anonymity metric

In this section we give an overview of the anonymity metric
proposed by Edman et al. (2007). Their metric gives a system-
wide measure of the anonymity provided to the messages sent
via an anonymity system, rather than to any single message
going through it.

2.1 Model of the anonymity system

Let X be the set of t messages observed by an attacker
having entered an anonymity system, and Y be the set of
messages observed by the attacker having exited from that
system. Under the assumption that the system neither destroys
nor generates any messages of its own, we have that |X| =
|Y | = t. The anonymity system attempts to hide from the
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attacker which input message in X exited the system as which
output message inY . It may employ a number of techniques to
conceal this association, such as modifying message encoding
by encryption/decryption to prevent straightforward message
bit-pattern comparison, or sending messages out in an order
other than the one in which they arrived to prevent sequence
number association, etc. The maximum anonymity this system
can strive to achieve is when for any particular input message
x ∈ X , each of the output messages in Y appears to be a
feasible candidate for being the one that x exited the system
as. This situation is depicted by the complete bipartite graph
Kt,t betweenX and Y , as shown in Figure 1(a) for t = 5. Any
edge ⟨xi, yj⟩ in this graph indicates that the incoming message
xi could possibly have been the outgoing message yj .

Figure 1 (a) Complete anonymity and (b) an instance of no
anonymity

An attacker, on the other hand, attempts to eliminate as
many edges as possible from the complete bipartite graph
of Figure 1(a), due to their infeasibility concluded from the
attack. After a completely successful attack, for each outgoing
message y ∈ Y , the attacker would have identified exactly
one possible incoming message that could have exited the
system as y. In other words, the attacker would have obtained a
perfect matching between the input and output messages of the
system. In this case, the system is thus considered to provide
no anonymity. There are t! possible perfect matchings between
X and Y , an arbitrary one of which is shown in Figure 1(b).

Figures 1(a) and (b) correspond to the two extreme
situations, namely complete anonymity and no anonymity
at all. In general, after having detected some input-output
pairings as infeasible, an attack would result in a bipartite
graph that lies somewhere in between these two extreme
ends. Exactly which edges of the complete bipartite graph are
missing from the graph resulting from the attack will depend
upon how much information is available to that attack.

2.2 Some attack examples

We now look at two examples of attacks on such anonymity
systems.

Example 1: If messages passing through a system are not
padded to become of the same size, then message sizes can
clearly be used to rule out input-output message pairings that
are of incompatible sizes. Anonymity systems are therefore
recommended to pad their messages to become of equal size.

However, systems in which all messages are of the same size
are then constrained to have some maximum route length for
messages, due to the fact that each message (upon leaving the
sender) contains in it the addresses of all proxy servers it will
go via. Serjantov and Danezis (2002) present an attack that
exploits knowledge of this maximum route length to render
certain input-output pairings infeasible. Figure 2(a) shows an
anonymity system with three mix nodes, X = {x1, x2, x3},
and Y = {y1, y2, y3}. Messages a, b, and c are within the
system.

Figure 2 (a) Route length attack; (b) graph resulting from this
attack and (c) biadjacency matrix of this graph

Suppose the maximum route length for messages in this
system is 2, i.e., any xi can pass through at most 2 mix nodes.
If an attacker knows the maximum route length of this system,
and can observe messages entering and leaving each mix node,
then he can infer that message c must be x3, because if it were
eitherx1 orx2 the route length condition is violated as then that
message would have passed through 3 mix nodes. Therefore,
y3 cannot be x3. Figure 2(b) shows the graph resulting from
this analysis, from which the edge ⟨x3, y3⟩ is thus absent. The
biadjacency matrix of this graph, a 0-1 matrix with a row for
each input message and a column for each output message, is
given in Figure 2(c). �

Example 2: As another example of an attack on such
systems, consider an attacker that notes the times at which
messages enter and exit the system, and uses its knowledge
of the minimum and maximum latency of messages in the
system.

In this example, suppose each message entering the system
always comes out after a delay of between 1 and 4 time units,
and this characteristic of the system is known to the attacker.
If 5 messages enter and exit this system at times shown in
Figure 3(a), then x1 must be either y1, y2, or y5, because
the other outgoing messages, namely y3 and y4, are outside
the possible latency window of x1. Similar reasoning can be
performed on all other messages to arrive at the reduced graph
produced by this attack, shown in Figure 3(a). Note that in this
graph x1 is connected to only y1, y2, and y5, and not to y3 or
y4, since the edges ⟨x1, y3⟩ and ⟨x1, y4⟩ were determined by
the attack to be infeasible. Figure 3(b) shows the biadjacency
matrix of this graph. �
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Figure 3 (a) Graph resulting from a timing analysis attack, for a
system with latency between 1 and 4 time units and (b)
biadjacency matrix of this graph

2.3 The existing metric

The number of perfect matchings between the system’s input
and output messages allowed by the bipartite graph resulting
from an attack indicates the level of anonymity left in the
system after the attack. It is well known (see, for example,
Asratian et al. (1998)) that this number is the same as the
permanent of the biadjacency matrix of that graph. The
permanent of any k × k matrix M of real numbers is defined
as:

per(M) =
∑
ϕ∈Φk

M1ϕ(1)M2ϕ(2) · · ·Mkϕ(k),

where Φk is the set of all bijections ϕ : {1, 2, . . . , k} →
{1, 2, . . . , k}, i.e., permutations of the first k positive integers.
It can be seen that the graph of Figure 3(a) allows 12 perfect
matchings, and that is also the permanent of its biadjacency
matrix in Figure 3(b).

Given any t× t bipartite graph G resulting from an
attack, it is assumed that G contains at least one perfect
matching between the input and output messages, the one that
corresponds to the true communication pattern. The minimum
value of the permanent of its biadjacency matrix A is thus 1,
whenA contains exactly one 1 in each of its rows and columns.
In this case, the system is considered to provide no anonymity
as the attacker has identified the actual perfect matching, by
ruling out all others. The largest number of perfect matchings
in G is t!, when G is the complete bipartite graph Kt,t.
Therefore, the maximum value of per(A) is t!, when all entries
in A are 1. In this case, the system is considered to provide
maximum anonymity as the attacker has been unable to rule
out any perfect matching as being the actual one.

Definition 1 (Edman et al., 2007): Define a system’s degree
of anonymity after an attack that results in a t× t biadjacency
matrix A as:

d(A) =

{
0 if t = 1,

log(per(A))
log(t!) otherwise. �

The above anonymity metric compares the number of perfect
matchings deemed feasible by the attack with their maximum
number. Note that0 ≤ d(A) ≤ 1. Also,d(A) = 0 iffAhas just
one perfect matching, i.e., the system provides no anonymity,

and d(A) = 1 iff t > 1 andA has t! perfect matchings, i.e., full
anonymity.

Example 3: The matrices of Figures 2(c) and 3(b) contain
4 and 12 perfect matchings, out of the 3! and 5! maximum
possible matchings, respectively. By the above metric, the
degrees of anonymity of these systems after their respective
attacks are log(4) / log(3!) ≈ 0.774, and log(12) / log(5!) ≈
0.519. �

3 A new model with message multiplicities

The metric of Definition 2.3 measures the extent to which
the anonymity system, upon conclusion of the attack, is still
hiding the actual communication pattern, represented by a
unique perfect matching between the system’s input and output
messages, among all such perfect matchings that still seem
feasible to the attacker. Gierlichs et al. (2008) pointed out that
the attacker usually has a more modest goal, especially in the
commonly-occurring scenarios where system users may send
and/or receive multiple messages. The following is a simple
example.

Example 4: Suppose the attacker knows that messages x3

and x5 of Figure 3 were both sent by the same sender, say
Alice, and that message y4 was received by the receiver
Bob. Consider now the anonymity of the sender-receiver
pair ⟨Alice,Bob⟩. Half the perfect matchings allowed by the
graph of Figure 3(a) contain the edge ⟨x3, y4⟩, and the other
half contain ⟨x5, y4⟩. Thus, although the attacker is unsure
of whether y4 was message x3 or x5 (each event has a
50% probability), he has determined with 100% certainty the
sender, namely Alice, of a message received by Bob. From the
point of view of the anonymity of the ⟨Alice,Bob⟩ pair, the
attacker does not care to determine which of the two messages,
x3 or x5, was y4, but is content to know that Alice sent a
message to Bob. �

To measure the extent to which the system is still hiding
the level of communication between its users, who may be
sending/receiving multiple messages, a modification of the
metric of Definition 2.3 is therefore needed, as this metric
considers relationships only between the system’s input and
output messages. While an attack, such as those of Examples 1
and 2, still determines infeasibility of input-output message
relationships, leading to an arbitrary t× t biadjacency matrix
A, the modified metric needs to measure anonymity of sender-
receiver relationships. We now make this more precise, and
show that sender-receiver relationship anonymity is usually
lower than that of input-output message relationship.

3.1 Associations between senders and receivers

Let m be the number of senders of a system, As shown in
Figure 4, and for any i ∈ {1, 2, . . . ,m}, let Xi be the set of
messages sent by sender i. Similarly, let n be the number
of receivers and, for any j ∈ {1, 2, . . . , n}, let Yj be the set



24 R. Bagai et al.

Figure 4 Users sending and/or receiving multiple messages

of messages received by receiver j. Note that,
∑m

i=1 |Xi| =∑n
j=1 |Yj | = t. Clearly,

{Xi × Yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a partition ofX × Y . Any memberXi × Yj of this partition
is the set of all edges in Kt,t from sender i to receiver j.

For any set E ⊆ X × Y of edges in Kt,t, we define the
(sender-receiver) association matrix of E, denoted Z(E), as
the m× n matrix of nonnegative integers given by:

Z(E)ij = |E ∩ (Xi × Yj)|.

Any entry Z(E)ij of this matrix is simply the number of edges
(i.e., input-output message associations) in E from sender i to
receiver j. It follows that the sum of all entries in Z(E) is |E|.

In all, there are 2(t
2) subsets of X × Y , of which as we

already know, t! are perfect matchings between X and Y . If
E is a perfect matching, then its association matrix Z(E) has
an additional property. Its row- and column-sums are then the
same as the sender and receiver multiplicities in the system,
respectively, i.e.,

n∑
k=1

Z(E)ik = |Xi|, 1 ≤ i ≤ m, and

m∑
k=1

Z(E)kj = |Yj |, 1 ≤ j ≤ n.

Let P be the set of all t! perfect matchings (between X and
Y ) of the system. We now define an equivalence relation ◃▹
on P.

Definition 2: Let E1, E2 ∈ P. Then E1 and E2 are
equivalent, denoted E1 ◃▹ E2, if they have the same
association matrix, i.e., Z(E1) = Z(E2). �

Perfect matchings are thus considered equivalent if they have
the same number of messages going from each sender to
each receiver. The exact input-output message relationship in
equivalent perfect matchings may, however, be different.

Example 5: In the system of Figure 3, suppose an attacker
observed thatX1 = {x1, x2},X2 = {x3, x4, x5},Y1 = {y1},
Y2 = {y2, y3}, Y3 = {y4, y5}. In other words, the system has
m = 2 senders, n = 3 receivers, and its t = 5 messages are
broken down into sender multiplicities of |X1| = 2 and |X2| =

3, and on the other side, receiver multiplicities of |Y1| = 1,
|Y2| = 2 and |Y3| = 2.

The two perfect matchingsE1, E2 ∈ P, shown in Figure 5,
are then equivalent because they have the same association
matrix, also shown in the figure. The row- and column-sums
of this association matrix can be seen to be, respectively, the
sender and receiver message multiplicities. �

Figure 5 An example of two equivalent perfect matchings and
their common association matrix

3.2 A new metric for message multiplicities

We now develop a metric for measuring the extent to which
the system’s sender-receiver communication pattern is hidden
among other such patterns, upon conclusion of a two-pronged
attack that has performed the following:

• Determined infeasibility of some input-output message
pairings. This portion of the attack is carried out at the
level of the system’s input and output messages, as in
Examples 1 and 2, thereby resulting in an arbitrary t× t
biadjacency matrix A.

• Associated the correct sender with each input message
of the system, and receiver with each output message,
thereby resulting in the sender and receiver multiplicity
vectors S and R.

It is important to note that the above segments of the attack are
orthogonal to each other and each of them, independently, has
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an adverse effect on the system’s anonymity level. Our metric
measures their combined effect.

Gierlichs et al. (2008) were the first to realise a need for
measuring their combined effect, and even proposed a metric
to that end. However, their metric works for only a small
class of biadjacency matrices. Grégoire and Hamel (2009)
considered just the effect of the multiplicity vectors, and did
not take any biadjacency matrices into account. In Section 4
we analyse these approaches in detail, and show the limitation
in their scopes.

We already understand the independent effects of each of
these attack segments. Recall that P is the set of all t! perfect
matchings, as shown in Figure 6(a).

Figure 6 (a) The set P of all t! perfect matchings; (b) equivalence
classes on P induced by the multiplicity vectors S and
R and (c) feasible/infeasible labelling of perfect
matchings in P caused by the biadjacency matrix A

The sender and receiver multiplicity vectors S and R induce
the equivalence relation ◃▹ on P, whose classes are as
depicted in Figure 6(b). Each class represents a sender-receiver
association scenario, captured by a unique association matrix
with S as its row-sums vector and R as its column-sums
vector. In the absence of the first attack component, namely
the one based on the biadjacency matrix, just the sizes of
these classes lead directly to a probability distribution over all
possible association scenarios. Anonymity can be measured
from this distribution by standard techniques, such as by
Shannon entropy, as mentioned a little later.

The biadjacency matrix A resulting from the first attack
component, however, alters this probability distribution in a
subtle, yet significant, way. By rendering some input-output
message pairings of the system infeasible, A in fact ends up
labelling some perfect matchings in P infeasible (if at least
one edge in that matching is infeasible). This effect is depicted
in Figure 6(c). For our task of measuring anonymity, what is
important now is not the raw size of each class, but the number
of feasible perfect matchings in each class.

Example 6: The two perfect matchings shown in Figure 5,
namely E1 and E2, are equivalent, as both belong to the same
equivalence class. The matching E1 is infeasible, since some
of its edges (e.g., ⟨x2, y2⟩, ⟨x3, y3⟩, etc.) were determined
by the attacker to be infeasible and are thus not contained in

the graph of Figure 3. On the other hand, the matching E2

is feasible, as all its edges are also contained in the graph of
Figure 3. �

Given any multiplicity vectors S and R, let ZS,R(P) be the
set of all association matrices of perfect matchings in P,
i.e., the set of all m× n nonnegative integer matrices with S
as their row-sums vector and R as their column-sums vector.
Additionally, given a t× tbiadjacency matrixA, let the weight
assigned by A to any matrix Z ∈ ZS,R(P), denoted WA(Z),
be the number of perfect matchings in the equivalence class
of ◃▹ associated with Z that are declared feasible by A. We
already know that:∑

Z∈ZS,R(P)

WA(Z) = per(A),

as in all there are per(A) perfect matchings that appear feasible
to the attacker. In Section 3.3, we give a method to compute
WA(Z). For now, we let

ωA(Z) = WA(Z)/per(A)

be the normalised weight of Z, i.e., the fraction of feasible
perfect matchings present in the class denoted by Z. It is easy
to see that the values ωA(Z) add up to 1, over all Z, and
we have a probability distribution on the set ZS,R(P) of all
sender-receiver association scenarios. For any Z, the value
ωA(Z) is the likelihood assigned by the attacker to the scenario
represented by Z, of being the actual communication pattern.

Ever since the works of Serjantov and Danezis (2002)
and Diaz et al. (2002), Shannon entropy of a probability
distribution is a well accepted measure of the system’s
degree of anonymity. We employ the same technique over the
probability distribution given by ωA(Z) values, for all Z ∈
ZS,R(P), as a measure of the attacker’s uncertainty of which
of the system’s sender-receiver association scenarios is the
actual one.

Definition 3: Let a t× t biadjacency matrix A, and
multiplicity vectors S and R, be the result of an attack. We
define the underlying system’s degree of anonymity after this
attack as:

δS,R(A) =


0 if t = 1,

−
∑

Z∈ZS,R(P)

ωA(Z) · log(ωA(Z))

log(t!) otherwise.

It is easily verified that δS,R(A) is always between 0 and 1. We
first establish that, if all message multiplicity values in S and
R are 1, the above metric coincides with that of Edman et al.
(2007), given by Definition 2.3, and that higher multiplicity
values reduce anonymity. The following proposition follows
from the definitions:

Proposition 1: For all S, R, and A, δS,R(A) ≤ d(A), with
equality iff all multiplicity values in S and R are 1.
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In the next subsection we develop a method for computing the
weight, WA(Z), of an association matrix Z, i.e., the number
of matchings deemed feasible by A in the equivalence class
associated with Z.

3.3 Weight of an association matrix

For a given t× t biadjacency matrix A, and an m× n
association matrix Z that corresponds to some equivalence
class of ◃▹, we now develop an expression for WA(Z).

The row- and column-sums vectors of such a matrix Z
are, respectively, the system’s sender and receiver multiplicity
vectors,

S = ⟨|X1|, |X2|, . . . , |Xm|⟩, and
R = ⟨|Y1|, |Y2|, . . . , |Yn|⟩.

Without loss of generality, we assume that the first |X1| rows
of A correspond to messages sent by the first sender, the next
|X2| rows to messages sent by the second sender, and so on.
Similarly, the first |Y1| columns of A correspond to messages
received by the first receiver, etc. If necessary, the rows and/or
columns ofA can be permuted to achieve this without affecting
the result of the weight computation method developed in this
section.

There is now a natural partition of A into mn mutually
disjoint regions, denoted Reg(A; i→j), for 1 ≤ i ≤ m, and
1 ≤ j ≤ n, as shown in Figure 7(a). Any particular region,
Reg(A; i→j), is the submatrix of A made up of |Xi|
contiguous rows starting from row number 1 +

∑i−1
k=1 |Xk|,

and |Yj | contiguous columns starting from column number
1 +

∑j−1
k=1 |Yk|. This region contains feasibility information

determined by the attacker of the subset Xi × Yj of edges in
the system’s complete graph Kt,t.

We also need square submatrices of A that are not
necessarily contiguous. Let I and J be any subsets of size
s of the set {1, 2, . . . , t}, i.e., the row and column index set
of A. We use A[[I;J ]] to denote the s-extract obtained by
extracting the s× s submatrix made up of elements of A at
row numbers in I and column numbers in J . The s-extract
A[[I; J ]] represents the situation of the s input messages given
by indices in I corresponding, in any order, to the s output
messages given by indices in J . Observe that, according to the
attacker, there are exactly

per(A[[I; J ]])

feasible ways of achieving this correspondence, where 0 ≤
per(A[[I; J ]]) ≤ s!.

In general, an s-extract may intersect with multiple regions
of A. However, for the method we are developing in this
section to evaluate WA(Z), we will be interested in only a
small class of them. For any value Zij of the association
matrixZ, theZij-extracts that are completely contained within
their corresponding region Reg(A; i→j) are of concern to us.
As depicted in Figure 7(b) for an example value of Zij = 3,

any Zij-extract A[[I;J ]] can be easily seen to be completely
contained within the region Reg(A; i→j) if and only if

I ⊆

{
c+

i−1∑
k=1

|Xk| : 1 ≤ c ≤ |Xi|

}
, and

J ⊆

{
c+

j−1∑
k=1

|Yk| : 1 ≤ c ≤ |Yj |

}
.

Figure 7 (a) Regions of A, Reg(A; i→j), for 1 ≤ i ≤ m, and
1 ≤ j ≤ n and (b) an example 3-extract completely
contained within a region

As Zij number of rows and columns may be chosen from
Reg(A; i→j) in

(
|Xi|
Zij

)(
|Yj |
Zij

)
ways, that is also the number

of such extracts. Let E(A; i→j) denote the set of all these
Zij-extracts that are completely contained within the region
Reg(A; i→j). From the above explanation, the following
proposition now becomes straightforward:

Proposition 2: According to A, the total number of feasible
ways of sending Zij messages from sender i to receiver j is:∑

A[[I;J]]∈E(A; i→j)

per(A[[I; J ]]).

To determineWA(Z), i.e., the number of all perfect matchings
declared feasible by A in the equivalence class associated
with Z, a product of the above count for all sender-receiver
combinations can now be employed. A little caution needs
to be exercised though, as choosing a Zij-extract A[[I; J ]] ∈
E(A; i→j) makes all input messages in I unavailable for
receivers other than j. Similarly, all output messages in J
become unavailable for senders other than i. We accomplish
this by zeroing-out all rows in I and columns in J of the
biadjacency matrix A for all subsequent counting.

For any extract A[[I; J ]], we let Â[[I;J ]] denote the matrix
identical to A, except it contains zeroes for all elements of
rows in I and columns in J , i.e.,

Â[[I; J ]]pq =

{
0 if p ∈ I or q ∈ J,

Apq otherwise.
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The permanent of any extract from Â[[I; J ]] that has at least one
row from I and/or at least one column from J will clearly be
0, thus avoiding duplicate counting resulting from associating
any input message with multiple output messages, or vice
versa. We also let Ẑ[[i; j]] denote the matrix identical to Z,
except it contains a 0 for the element at row i and column j,
i.e.,

Ẑ[[i; j]]pq =

{
0 if p = i and q = j,

Zpq otherwise.

The number of feasible perfect matchings in the class
associated with Z can now be expressed as the following
recursive formula, which effectively multiplies the number
of feasible ‘pieces’ corresponding to each sender-receiver
combination:

WA(Z) =

∑
A[[I;J]]∈E(A; i→j)

[
per(A[[I;J ]]) · WÂ[[I;J]](Ẑ[[i; j]])

]
if Zij ̸= 0, for some i and j,

1 otherwise.

The depth of recursion in the above is exactly the number
of nonzero entries in Z. The order in which these entries
are considered is not important. At any stage, one such entry
Zij is chosen nondeterministically and, for each Zij-extract
A[[I; J ]] ∈ E(A; i→j), the number of perfect matchings that
are extensions of some partial matching from A[[I; J ]] is
determined. This value is added over all such extracts for Zij .

Example 7: For the system of Figure 3(a) in Example 2,
let m, n, X1, X2, Y1, Y2, and Y3 be as given in Example 5.
Thus, S = ⟨2, 3⟩ and R = ⟨1, 2, 2⟩ are the observed message
multiplicity vectors for this system. These values induce six
regions on the biadjacency matrix A, as shown in Figure 8(a),
and partition the set of all 5! = 120 matchings of this system
into five equivalence classes, whose association matrices are
shown in Figure 8(b).

Figure 8 (a) Regions induced on the biadjacency matrix by
multiplicity vectors, and an example extract collection
for the circled association matrix Z and (b) association
matrices of all equivalence classes

These are all the m× n nonnegative integer matrices that
have S as their row-sums vector and R as their column-
sums vector. Incidentally, the circled association matrix Z
of Figure 8(b) is identical to the one already encountered in
Figure 5. We first step through the computation of WA(Z), by
our method.

There are four nonzero entries in Z, namely Z11 = Z12 =
Z21 = 1, and Z23 = 2. Thus any perfect matching in the
equivalence class associated withZ is made up of four extracts
completely contained within regions of A with pairwise
disjoint row-sets and column-sets: a 1-extract from each of the
regions

Reg(A; 1→1), Reg(A; 1→2), and Reg(A; 2→1),

and a 2-extract from the region

Reg(A; 2→3).

An example collection of such extracts within the regions
induced on A is shown in Figure 8(a). The product of
permanents of extracts in this collection is:

1 · 1 · 1 · (1 · 1 + 1 · 1) = 2.

Our recursive method given in this section for computing the
weight of Z essentially adds this value for all such collections
of extracts. It can be seen from a quick enumeration of all such
collections that WA(Z) = 4.

The weights WA of the other four association matrices
shown in Figure 8(b) can be similarly evaluated by our method
to be 2, 4, 0, and 2. The sum of weights of all five association
matrices is per(A) = 12, and dividing their individual weights
by this value leads to the normalised weights ωA of these
matrices: 1/3, 1/6, 1/3, 0, and 1/6. From our metric of
Definition 3 for the system’s degree of anonymity, we get
δS,R(A) ≈ 0.278. �

It is instructive to compare the value of the metric computed
in the above example with that of Edman et al. (2007) based
on just the matrix A, computed in Example 3, as d(A) ≈
0.519. The reduction in anonymity captured by our metric
is due to message multiplicities. In general, the higher the
message multiplicity values in vectors S and R, the lower the
anonymity. Figure 9 depicts this phenomenon over all possible
message multiplicity vectors for this particular biadjacency
matrix A. In the figure,

α =

∑m
i=1 |Xi|+

∑n
j=1 |Yj |

m+ n

is the average multiplicity count in S and R. As shown, for
some values of α the anonymity is even reduced to zero.

3.4 Complexity of computing the new metric

Given a t× t biadjacency matrix A, and multiplicity vectors
S andR, we now study the complexity of computing δS,R(A),
which mainly depends upon computing the permanents of
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several s-extracts of A. For any s, 1 ≤ s ≤ t, there are at most(
t
s

)2

s-extracts ofA. Although most of these s-extracts straddle
over multiple regions of A, and are therefore not relevant for
the computation of the metric, for the worst case analysis,
we go by this number of s× s submatrices of A whose
permanents need to be computed. The maximum number of
possible extracts is thus

∑t
s=1

(
t
s

)2

.

Figure 9 Degree of anonymity of biadjacency matrix A of
Figure 3(b), for all possible multiplicity vectors S and R

Valiant (1979) showed that computing the permanent of a
matrix, even if all values of the matrix are just 0 or 1,
is #P-complete. A polynomial-time solution for computing
the permanent is thus unlikely, as that would imply P =
NP . The fastest known exact algorithms for computing
the permanent of a s× s real matrix have time complexity
Θ(s2s). An example is the method of Ryser that appeared on
Page 122 of Minc (1978). Much attention has consequently
been given to arriving at approximations to permanents more
efficiently, as in Jerrum and Vazirani (1996) and Chien et al.
(2003). However, even the state-of-the-art polynomial-time
approximation method of Jerrum et al. (2004) runs in O(s22),
resulting in the worst-case complexity of O(

∑t
s=1

(
t
s

)2

s22) of

approximately computing δS,R(A). This strongly suggests the
need for arriving at a more efficient heuristic for our metric,
whose development is beyond the scope of this paper and left
as future work.

4 Comparison with existing approaches

There have been two other attempts at measuring the system-
wide anonymity after such attacks when users send and/or
receive multiple messages. Gierlichs et al. (2008) were the
first to observe a need for modifying the basic metric of
Edman et al. (2007) for such a multiple message scenario.
However, the metric they proposed is applicable, as shown
in this section, to only a small class of biadjacency matrices
resulting from attacks. Later, Grégoire and Hamel (2009)
revisited this problem, but stopped at just giving a method for
counting the number of equivalence classes. Their counting
method actually appeared earlier in Macdonald (1979), and
]vfill was also summarised in Diaconis and Gangolli (1995).

In this section, we briefly explain these approaches and
demonstrate the limitation of their scopes.

4.1 The metric of Gierlichs et al. (2008)

We first note that our equivalence relation ◃▹ is induced solely
by the multiplicity vectors S and R, and is defined over the
set P of all t! perfect matchings between X and Y . The size
of any equivalence class of ◃▹ thus depends only on S and R.
Once a biadjacency matrixA is introduced into the picture, the
weight of any class, as declared by A, is computed to measure
anonymity. Gierlichs et al. (2008), on the other hand, defined
an equivalence relation ∼ that is induced by S, R, and a given
biadjacency matrix A. While the underlying definitions of ◃▹
and∼ are the same, their relation∼ is defined on the setF of all
per(A) perfect matchings deemed feasible by A. Their metric
is similar to ours given by Definition 3, with the exception
that theirs is based upon the sizes of classes of ∼, which are
essentially the weights of the corresponding classes of ◃▹. For
the purpose of measuring anonymity, this difference between
the two approaches is therefore inconsequential.

However, a major limitation of the method given in
Gierlichs et al. (2008) to compute the equivalence class sizes of
∼ is that it works correctly for only a small class of biadjacency
matrices.

Recall that m is the total numbers of senders and n is the
total number of receivers. For any sender i and receiver j,
let the region Reg(A; i→j) of a t× t biadjacency matrix A be
called leveled if all its elements are identical, i.e., either all
values in it are 0 or all values are 1. Also, the matrixA is called
leveled if each of its mn regions are leveled. Clearly, of all the
2(t

2) possible biadjacency matrices, only 2mn are leveled, and
this number shrinks as multiplicities in the S and R vectors
grow. We now show that the class size computation method
of Gierlichs et al. (2008) is limited to leveled biadjacency
matrices.

Gierlichs et al. (2008) first consider the special case of all
receiver multiplicities being 1, i.e., |Yj | = 1, for all j, 1 ≤ j ≤
n. For this particular case, they assert the following:

Assertion 1: If |Yj | = 1, for all j, 1 ≤ j ≤ n, then all
equivalence classes of ∼ are of equal size, given by∏m

i=1 |Xi|!.

Two counterexamples to the above assertion are shown in
Figure 10.

Figure 10 Two counterexamples to Assertion 1, of Gierlichs et al.
(2008)

For the example of Figure 10(a), t = 2, m = 1, S = ⟨2⟩,
per(A1) = 1, and the only feasible perfect matching is in its
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own class, i.e., there is just one equivalence class of ∼, and
its size is 1. However,

∏1
i=1 |Xi|! = 2! = 2, which is not the

class size. For the example of Figure 10(b), t = 3,m = 2,S =
⟨1, 2⟩, per(A2) = 3, and the three feasible perfect matchings
are partitioned into two classes of unequal sizes, namely size
1 and 2, respectively. Again,

∏2
i=1 |Xi|! = 1! · 2! = 2 is not

the size of each class.
The reason why Assertion 1 fails to hold in the above

examples is that each of these biadjacency matrices contains
at least one region that is not leveled. This leads us to the
following proposition:

Proposition 3: If |Yj | = 1, for all j, 1 ≤ j ≤ n, then all
equivalence classes of ∼ are of equal size, given by∏m

i=1 |Xi|!, iff A is leveled.

Proof: Since |Yj | = 1, for all j, all regions of A are just one-
column wide. For the only-if part, suppose A is not leveled.
Then, for some sender s and receiver r, Reg(A; s→r) is not
leveled, i.e., this region contains a 0 as well as 1 value.
Consider any perfect matching deemed feasible by A that
contains the edge corresponding to this 1 value, and letC be the
equivalence class in∼of that matching. As this region contains
k < |Xs| number of 1 values, |C| is at most (

∏s−1
i=1 |Xi|!) ·

k! · (
∏m

i=s+1 |Xi|!), which is strictly smaller than
∏m

i=1 |Xi|!.
We leave out the proof of the if part as it is not relevant to our
discussion here. �

The next special case considered in Gierlichs et al. (2008) is
when all sender multiplicities are 1, i.e., |Xi| = 1, for all i, 1 ≤
i ≤ m. For this case, they asserted that all equivalence classes
of ∼ are of equal size, given by

∏n
j=1 |Yj |!. By a reasoning

symmetric to the above proposition, it can be shown that this
is also true only when A is leveled.

For the general case of any arbitrary sender and receiver
multiplicities, Gierlichs et al. (2008) contains a recursive
algorithm for computing all class sizes. One of the base cases
of that algorithm (Line 9) corresponds to the above particular
situations and gives a correct answer only when A is leveled.
The other base case (Line 5) corresponds to a solitary sender or
receiver and can also be shown to work only whenA is leveled.
Their entire method is thus limited to leveled biadjacency
matrices.

On the other hand, our method of computing weights of
equivalence classes of ◃▹, given in Section 3.3, works for all
biadjacency matrices.

To better understand the scope enhancement of our method
over that of Gierlichs et al. (2008), we define the following
five sets of biadjacency matrices:

Ψ = the set of all t× t biadjacency matrices.
Then, |Ψ| = 2(t

2). We already know that the
permanents of matrices in Ψ are integer values
between 0 and t!.

Ψ>0 = the set of all matrices A ∈ Ψ, such that
per(A) > 0. These are matrices whose
permanent is at least 1. The basic metric of
Edman et al. (2007) is for such matrices as they
label at least one perfect matching feasible, the
system’s true communication pattern. Ideally,
any extension to that metric, such as the current
one for sending/receiving multiple messages,
should cover this set. To obtain an estimate of
the number of such matrices, we define the next
two sets.

Ψ=0 = the set of all matrices A ∈ Ψ, such that
per(A) = 0. In other words, {Ψ=0,Ψ>0} is a
partition of Ψ.

Ψ00 = the set of all matrices A ∈ Ψ that contain at
least one row or column, all of whose elements
are 0. Clearly, Ψ00 ⊆ Ψ=0, but not vice versa,
as there are matrices with 0 permanent, yet each
row and column of which contains at least one
1. However, Erdős and Rényi (1964) showed
that when t is large, all sufficiently non-sparse
matrices in Ψ=0 are also in Ψ00. It is thus
reasonable to assume that Ψ=0 ≈ Ψ00. This
provides an estimate of |Ψ>0| as the number of
matrices that do not contain a row or column of
all 0 elements.

ΨL = the set of all leveled matrices A ∈ Ψ. This set
depends upon the multiplicity vectors S and
R. It is easily seen that |ΨL| = 2mn. If all
multiplicity values in S and R are 1, we have
that m = n = t, and ΨL = Ψ. However, m, n,
and ΨL, all shrink as these multiplicities grow.

Figure 11 shows all above sets. The method of Gierlichs et al.
(2008) works for all matrices in ΨL. As multiplicity values
in S and R become larger, ΨL becomes smaller and fails to
cover Ψ>0, which is the set of all biadjacency matrices that
may result from an attack. Our method of Section 3.3, on the
other hand, is applicable to all matrices in Ψ.

Figure 11 Scope of our method, Ψ, compared with that of
Gierlichs et al. (2008), ΨL
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4.2 The metric of Grégoire and Hamel (2009)

Grégoire and Hamel (2009) proposed

log(COUNT)/ log(t!)

as a ‘metric’, where COUNT is essentially the number of
equivalence classes of our ◃▹ relation. This is not a metric
in the true sense of the term as it does not take into account
any biadjacency matrix resulting from an attack or, alternately,
assumes that the biadjacency matrix contains all 1 values.
Their formula thus captures just the maximum degree of
anonymity one could expect, given some sender and receiver
multiplicities.

They describe a method based on symmetric functions for
determining COUNT. This method was originally given by
Macdonald (1979) for counting nonnegative integer matrices
with prescribed row and column sums. It is also well
summarised in the survey of Diaconis and Gangolli (1995).

Moreover, as can be seen from the discussion leading to
our metric in Definition 3, the value of COUNT is only of
academic interest and not needed to compute the system’s
degree of anonymity.

5 Conclusions and future work

Edman et al. (2007) developed a system-wide anonymity
metric based upon the extent to which the association
between an anonymity system’s input and output messages
corresponding to the actual communication pattern is hidden,
after an attack, among all associations that still seem feasible
after the attack. Gierlichs et al. (2008) made the case for
modifying this metric for the situation where system users send
and/or receive multiple messages. Clearly, as an attacker’s goal
is to uncover the communication pattern between users, and
not simply messages, this modification of the basic metric of
Edman et al. (2007) is necessary.

In this paper, we developed a metric for measuring
anonymity of associations between senders and receivers
of a system after an attack that is still carried out at the
level of messages. When multiple messages are sent and/or
received by users, this induces an equivalence relation on
the set of all perfect matchings between the system’s input
and output messages. Our main offering here is a method to
compute the number of perfect matchings, in any equivalence
class, that still seem feasible after the attack. These numbers
lead to a probability distribution on the set of all possible
communication patterns between senders and receivers, from
which the system-wide anonymity level is determined by the
Shannon-entropy method of Diaz et al. (2002).

Although a metric for this was originally proposed in
Gierlichs et al. (2008), we showed that their metric works only
for a small family of attacks. We characterised that family and
showed that its size in fact shrinks as the number of messages
sent/received by users increases. We also showed that another
related work by Grégoire and Hamel (2009) simply counts
equivalence classes and, since it does not take any attack into
account, is not an anonymity metric.

Recently, Bagai et al. (2011) developed a generalisation
of the metric of Edman et al. (2007) for attacks that end
up assigning probabilities to perfect matchings between the
system’s input and output messages, as against declaring some
infeasible. One direction for future work is to generalise our
metric of this paper for such attacks. In another work, Bagai
and Tang (2011) showed that adding data caching abilities to
the system model of Edman et al. (2007) results in increased
anonymity. Another direction for future work is to extend the
metric of this paper for this additional system ability. We are
currently working in both of these directions.

Acknowledgements

This work was partially supported by the US Navy
Engineering Logistics Office contract no. N41756-08-C-3077.

References

Asratian, A., Denley, T. and Häggkvist, R. (1998) Bipartite
Graphs and their Applications, Cambridge University Press,
Cambridge, UK.

Bagai, R., Lu, H., Li, R. and Tang, B. (2011) ‘An accurate
system-wide anonymity metric for probabilistic attacks’, in
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