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Abstract—Base station-less sensor networks (BSNs) refer to
emerging sensing applications deployed in challenging environ-
ments (e.g., underwater exploration). As installing a base station
in such an environment is not feasible, data generated in the BSN
will be preserved in the network before being collected by the
uploading opportunities. This process is called data preservation
in the BSN. Considering that sensor nodes are intelligent and
selfish, this paper studies the Nash Equilibrium (NE) for data
preservation in BSNs. We design a suite of data preservation
algorithms, examine whether they achieve NEs, and rigorously
analyze the performance of the NEs using existing (i.e., price of
anarchy and price of stability) and our own designed metrics (i.e.,
rate of efficiency loss). We find that a minimum cost flow-based
algorithm produces a NE that achieves the social optimal with
minimum energy consumption in the data preservation process.
We show the NE from one of our straightforwardly designed
greedy algorithms achieves a price of anarchy of 3. On the other
hand, we prove that a greedy algorithm always exists (although
non-straightforward), achieving the socially optimal NE. Finally,
we conduct extensive simulations to investigate the performances
of various data preservation NEs and validate our theoretical
results under different network parameters.

Keywords – Nash Equilibria, Efficiency Loss, Price of
Anarchy, Price of Stability, Data Preservation, Base Station-
less Sensor Networks.

I. Introduction

Background and State-of-the-Arts. In recent years, base
station-less sensor networks (BSNs) have drawn much atten-
tion from the research community [28], [30], [17], [29], [35].
BSNs refer to an array of emerging data-intensive sensing
applications with various sensing capabilities, including under-
water or ocean exploration [19], [13], [37], volcano eruption
monitoring [12], and offshore oil and gas refineries [1], [34].
As the above applications are all deployed in challenging
and remote environments, it is not feasible to deploy high-
power and high-storage data-collecting base stations in or near
the sensing area. The sensory data generated inside the BSN
will be collected when uploading opportunities arise (e.g., the
periodic visits of autonomous underwater vehicles (AUVs) [6]
and robots [33], [18]). One important function of BSNs is
thus storing large volumes of sensory data inside the network
between two uploading opportunities. BSNs in challenging
environments differ significantly from traditional sensor net-
works and IoT applications in a friendly environment, wherein
base stations are always available to collect sensory data.

Our BSN model is as follows. Some sensor nodes (referred
to as source nodes) are close to the events of interest and con-
stantly generate large amounts of sensory data, thus depleting
their storage spaces. The newly generated data that cannot be
stored in the source nodes’ local storages is called overflow
data. To avoid data loss, such overflow data must be offloaded
to other sensor nodes in the BSN with available storage
(referred to as storage nodes). We refer to the process of
offloading overflow data from source to storage nodes as data
preservation in BSNs. Various research has been conducted to
achieve different objectives for data preservation in the BSN,
including energy minimization [29], [35], data aggregation
[28], [30], and network lifetime maximization [17].

Motivation and Challenges. In this paper, we consider that
sensor nodes could behave selfishly in the data preservation
process for the following three reasons. First, with the strides
made in sensor technologies over the past decade, sensor
systems have become more intelligent [5]. Equipped with
artificial intelligence and machine learning technologies, in-
telligent sensors could actively perceive, learn, and reason on
top of the sensing, computing, and communication performed
by the conventional sensors [5], [11]. Second, many emerging
IoT sensing applications are unrestricted within a building or a
small geographical area. They could be on a global scale and
distributed in nature, with the sensor nodes being controlled
by different entities, each aiming to pursue its self-interest
and maximize its benefit. For example, in offshore oil and
gas refineries [1], [34], the IoT sensors that detect possible
oil and gas leaks could belong to different companies and
countries with other goals and incentives [1], [34]. Third, the
sensor nodes are usually resource-constrained, with limited
processing power, battery energy, and storage spaces. As such,
the intelligent sensor nodes in the BSN can behave selfishly,
only to conserve their own resources and have little incentive
to participate in the data preservation process [10].

This paper applies game-theoretical techniques to analyze
sensor nodes’ selfish data preservation behavior in BSNs.
Game theory, which studies collaboration and competition
among multiple intelligent agents (i.e., players), has increas-
ingly attracted attention from the research community [3].
In particular, we will focus on Nash Equilibrium (NE) [22],
[23], a game-theoretical solution that characterizes selfish
players’ optimal strategies in a non-cooperative game. NEs



have become an essential solution concept for multi-agent re-
inforcement learning [7], a burgeoning research field studying
the interaction of multiple learning agents in applications such
as autonomous driving and automated warehousing. Therefore,
we focus on studying the NEs of selfish data preservation
in BSNs. However, as a NE usually does not yield socially
optimal due to the selfish players [21], it needs to study
the performance degradation it brings to data preservation in
the BSN. In this paper, we attempt to answer the following
question: Can we design data preservation algorithms that
achieve NEs with system performance guarantees (i.e., optimal
or constant factor performance ratio) in the BSN?

Our Contributions. We design a suite of data preservation
algorithms and examine whether they achieve NEs in the BSN.
We rigorously analyze the performance of the achieved NEs
and derive their efficiency loss using the price of anarchy
(PoA) and price of stability (PoS) [21], two main concepts
in economics and game theory that measure the system
degradation due to selfishness. In particular, we show that
our minimum cost flow-based algorithm achieves not only
NEs but also minimum preservation cost (i.e., social optimal),
thus suffering no system degradation that is common for
systems with selfish players. In addition, we prove that there
always exists a greedy algorithm (albeit non-straightforward)
that produces NEs of socially optimal data preservation (i.e.,
PoS = 1). For one of our designed greedy algorithms, we
show that the PoA of its NE is guaranteed to be less than 3. As
PoA and PoS focus on analyzing the upper- and lower-bound
performance of NEs, we further design a metric called rate
of efficiency loss (REL) to measure the performance loss of
any data preservation NEs in our proposed algorithms. Finally,
we conduct extensive simulations to investigate the efficiency
loss of various NEs and validate our theoretical results under
different network parameters using all three metrics.

Paper Organization. Section II reviews the related literatures.
Section III formulates the data preservation problem (i.e.,
DPP) and introduces data preservation NEs. In Section IV,
we design a suite of data preservation algorithms, examine
if they achieve NEs, and analyze the performance loss of the
resultant NEs. In Section V, we conduct extensive simulations
to compare different NEs and validate our theoretical results.
Section VI concludes the paper with future work.

II. Related Work
Game theory techniques have been extensively applied to

solve research problems in computer networks in general
and wireless ad hoc and sensor networks, in particular, [25],
[26], [3], [8]. Stankovic et al. [27] focused on a coordination
problem in mobile sensor networks and studied how to reach a
distributed convergence of a NE. Voulkidis et al. [32] proposed
a coalitional game-theoretic algorithm that maximizes the
lifetime of sensor networks. Niyato et al. [24] studied the solar-
powered sensor network that uses a sleep and wakeup strategy
for energy conservation. They modeled nodes’ sleep and wake-
up strategies as a bargaining game and derived the NE as the

game’s solution. Attiah et al. [4] proposed an evolutionary
routing game for energy balance in wireless sensor networks.
They derived a mixed strategy NE that reduces the load and
avoid collisions on the most used routes in a distributed man-
ner. Kannan et al. [20] studied energy-constrained information
routing in sensor networks and derived NE for different payoff
models and utility functions.

However, none of the above works tackled data preservation
in BSNs. The above results assumed a traditional sensor
network scenario where a base station is always available;
thus, the generated sensory data packets can be transmitted
and uploaded back to the base station. They mainly focused
on incentivizing the nodes on the shortest path or minimum
spanning tree among the data source and the base station. In
contrast, in data preservation in the BSN, the overflow data
packets must be stored in the BSN for some time, waiting
for the uploading opportunities. Therefore, it needs to find the
storage nodes for the data packets and then route them to the
storage nodes energy-efficiently. We show that such a unique
data preservation model gives rise to a minimum-cost network
flow (MCF)-based solution [2]. MCF generalizes the shortest
path and minimum spanning tree used in existing works.

The only works that applied game theory to analyze data
preservation in the BSN are [36], [9]. They used algorithmic
mechanism design techniques to incentivize selfish sensor
nodes to participate in the data preservation. However, they
did not study NEs in data preservation. NE is the most
fundamental game theory concept that determines the optimal
strategies for selfish players who are not incentivized. We
design a suite of data preservation algorithms that reach NEs.
In particular, we show that our MCF-based algorithm achieves
both NEs and minimum preservation cost, thus suffering no
system degradation expected in NEs. We also prove that the
PoA is no more than 3 for one greedy algorithm and that a
greedy (although not straightforward) algorithm always exists
that achieves NEs with PoS = 1.

III. Data Preservation Nash Equilibrium in the BSN
In this section, we formulate the data preservation problem

in the BSN and define its data preservation Nash Equilibrium.

A. Data Preservation Problem (DPP)

Network Model. We model a BSN as an undirected connected
graph G(V,E), where V = Vs ∪ Vr includes a set of
source nodes Vs and a set of storage nodes Vr. Assume
|V | = n, |Vs| = k, |Vr| = q, where k + q = n, and
denote Vs = {S1, S2, ..., Sk}, and Vr = {R1, R2, ..., Rq}. Let
di > 0 denote the number of overflow data packets generated
at source node Si ∈ Vs. Let d =

∑k
i=1 di be the total number

of overflow data packets and let D = {D1, D2, ..., Dd} denote
the set of d data packets. Let Ss(j) ∈ Vs, 1 ≤ j ≤ d,
denote the source node where Dj is generated. Let mj > 0
be the available free storage space (regarding the number
of data packets) at storage node Rj ∈ Vr. We assume that∑q

j=1mj ≥ d; otherwise, the BSN has insufficient space to
store all the overflow data packets. Each packet is a bits.



TABLE I
NOTATION SUMMARY

Notation Description
G(V,E) A BSN graph, V = Vs ∪ Vr , |V | = n
Vs Set of |Vs| = k source nodes, Vs = {S1, S2, ..., Sk}
Vr Set of |Vr| = q storage nodes, Vr = {R1, R2, ..., Rq}
di The number of overflow packets in source node Si ∈ Vs

d Total number of overflow data packets, d =
∑k

i=1 di
mj Storage capacity of storage node Rj ∈ Vr

D Set of d overflow data packets, |D| = d
s(j) Source node of data packet Dj , 1 ≤ j ≤ d
Et

u(v) Transmission energy of u to transmit one packet to v
Er

u Receiving energy of u to receive one data packet
f Data preservation function
ci Preservation costs of all packets at source node Si

c(i, j) Shortest path cost between nodes Si and Rj

Ai Set of data preservation strategies of source node Si

si ∈ Ai A data preservation strategy of Si

A Set of data preservation strategies of all source nodes Vs

s ∈ A A data preservation strategy profile
ui Payoff received by Si under strategy profile s, ui = −ci
c(s) Total data preservation cost of the strategy profile s
Eq ⊆ A The set of data preservation NEs
s∗ ∈ Eq A data preservation NE
REL(s∗) Rate of efficiency loss of a data preservation NE s∗

Following the first-order radio model [16], when node u
sends a data packet to its neighbor v over their distance lu,v ,
the amount of transmitting energy spent by u is Et

u(v) =
a · εa · l2u,v +a · εe and the amount of receiving energy spent by
v is Er

v = a·εe. Here, εa and εe are the energy consumption of
transmitting one bit on a node’s transmit amplifier and sending
or receiving one bit on its circuit, respectively; their values are
100 pJ/bit/m2 and 100 nJ/bit respectively, following [16].
Given an edge (u, v) ∈ E, we define its weight w(u, v) as the
total energy consumption of sending and receiving one packet
from u to v; that is, w(u, v) = Et

u(v) + Er
v .

Problem Formulation of DPP. We define a preservation
function as f : D → Vr, showing Dj ∈ D is offloaded from its
source node Ss(j) ∈ Vs to a storage node Rf(j) ∈ Vr along the
shortest path between them (referred to as data preservation
path). Let c(i, j) be the cost of the data preservation path
between source node Si and storage node Rj and ci be the
energy cost of offloading all the di data packets at source
node Si. The goal of the DPP is to find an f to offload all
the overflow packet D, such that the total preservation cost
C =

∑k
i=1 ci =

∑d
j=1 c

(
s(j), f(j)

)
is minimized under the

storage constraint of storage nodes: |{j|1 ≤ j ≤ d, f(j) =
i}| ≤ mi, ∀Ri ∈ Vr. Table I shows all the notations.

EXAMPLE 1: Fig. 1 shows a linear BSN with 6 nodes viz.
A to F. The energy cost on each edge is 1. Nodes B, D, and
F are source nodes; each has one overflow data packet; nodes
A, C, and E are storage nodes, each with a storage capacity
of 1. The optimal data preservation solution is to offload B’s
packet to A, D’s to C, and F’s to E, resulting in a minimum
preservation cost of 3. Any other solution is not optimal. �

B. Data Preservation Nash Equilibrium
In our data preservation game, all the k source nodes

{S1, S2, . . . , Sk} are the players, as they wish to offload

A EDB C

Storage NodesSource Nodes

F

Fig. 1. Illustrating the DPP.

their overflow data packets into the BSN for preservation.
Each source node will compensate all other nodes, including
storage and other source nodes, for their incurred energy costs
participating in the data preservation. Source node Si has a set
of data preservation strategies Ai, each indicating how many
of its di data packets are offloaded to which storage node
following the shortest path between them. Let si ∈ Ai denote
a particular strategy chosen by source node Si and s−i the
set of strategies chosen by all other source nodes in the game.
Let A = A1 ×A2...×Ak denote the set of data preservation
strategy profiles of all the source nodes and s = {si, s−i} ∈ A
one such strategy profile.

The utility function ui of Si is defined as ui : A → R+.
Given a strategy profile s ∈ A, Si receives a corresponding
utility of ui = −ci, where ci is the incurred preservation cost
for all its di data packets under s. Note that the utilities of
storage nodes and other source nodes (if any) participating in
source node Si’s data preservation are always zeros as they
are compensated by Si with the same amount as their energy
costs. Let c(s) denote the total preservation cost of all the data
packets under s, c(s) =

∑k
i=1 ci.

We are interested in a special data preservation strategy
profile s∗ = {s∗i , s∗−i} ∈ A where no source node Si,
1 ≤ i ≤ k, has any incentive to deviate from its chosen
strategy s∗i given the strategies s∗−i of other source nodes;
i.e., ui(s∗i , s

∗
−i) ≥ ui(si, s∗−i) for all si ∈ Ai. We refer to this

strategy profile as a data preservation NE. It indicates a stable
state condition wherein any source node perceives its data
preservation strategy as optimal based on others’ strategies and
thus does not want to switch its strategy. Let Eq ⊆ A denote
all the data preservation NEs. In a data preservation game, each
player Si acts selfishly to maximize its utility ui, equivalent
to minimizing its data preservation cost ci. We quantify the
performance of a data preservation NE as follows.

Definition 1: (Price of Anarchy (PoA) and Price of
Stability (PoS) in Data Preservation NEs) Giving a DPP
instance with all the players’ strategy profiles A and NEs
Eq, its PoA (and PoS) is defined as the ratio between the
total preservation cost of its best (and worst) NE and the
social optimal (i.e., minimum) data preservation cost. That is,
PoA =

maxs∈Eqc(s)
mins∈Ac(s) and PoS =

mins∈Eqc(s)
mins∈Ac(s) . �

PoA and PoS [21] are well-known metrics used in eco-
nomics and game theory to measure how a system’s efficiency
degrades due to its agents’ selfish behavior. However, as PoA
and PoS focus on the upper- and lower-bound performance of
NEs, they cannot be used to measure the performance loss of
specific data preservation NEs from our algorithms proposed
in Section IV. It is thus necessary to design a more relevant
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Fig. 2. DPP in BSN graph G(V,E) is equivalent to MCF problem in
transformed flow network G′(V ′, E′). The first number in each parenthesis
is the edge’s capacity, and the second is its cost.

metric to achieve this. We introduce the below definition.
Definition 2: (Rate of Efficiency Loss (REL) of a Data

Preservation NE) Giving a DPP instance with all the players’
strategy profiles A and data preservation NEs Eq, the REL
of any NE s∗ ∈ Eq, denoted as REL(s∗), is defined as
the ratio between its preservation cost and the minimum data
preservation cost; REL(s∗) = c(s∗)

mins∈Ac(s) . �
Besides quantifying the performance loss of a NE, the REL

is also used in Section V to validate our theoretical finding of
PoAs for different data preservation algorithms.

IV. ALGORITHMS FOR DPP

In this section, we present a suite of data preservation
algorithms viz. minimum cost flow (MCF-based) [29], Greedy
(a node-based and a cost-based), and Random, which serves
as the benchmark. We prove they have achieved NEs (or under
some conditions) and analyze their PoA and PoS.

A. MCF-Based Algorithm [29]

We first introduce MCF. Given a directed graph G′ =
(V ′, E′) with a super source node s and a super sink node t,
each edge (u, v) ∈ E′ has a capacity cu,v and a cost du,v . Let
f(u, v) be the flow on edge (u, v) ∈ E′. The goal of MCF is to
find a flow function f to minimize the total cost of transmitting
y amount of flow from s to t, i.e. Σ(u,v)∈E′

(
du,v · f(u, v)

)
,

subject to (i) capacity constraint: f(u, v) ≤ cu,v,∀(u, v) ∈
E′ and (ii) flow conservation constraint:

∑
u∈V ′ f(u, v) =∑

u∈V ′ f(v, u), for each v ∈ V ′ − {s, t}. Our MCF-based
data preservation algorithm consists of the below two steps.

Step 1: Graph Conversion. We first convert the BSN graph
G(V,E) to a flow network G′(V ′, E′) in Fig. 2 as follows.

First, we construct the nodes in G′ as V ′ = {s} ∪ {t} ∪
Vs ∪ Vr, where s is the super source node and t of the super
sink node in the flow network. Recall that Vs and Vr are the
sets of source and storage nodes, respectively.

Second, we construct the edges in G′ as E′ = {(s, Si)} ∪
{(Si, Rj)}} ∪ {(Rj , t)}}, where Si ∈ Vs and Rj ∈ Vr. This
is a complete bipartite graph between Vs and Vr.

Third, for each edge (s, Si), set its capacity as di, the
number of data packets at Si, and the cost as 0. For each

edge (Rj , t), set its capacity as mj , the storage capacity of
storage node Rj , and its cost as 0. For each edge (Si, Rj),
set its capacity as di and cost as c(i, j). Here, c(i, j) is the
energy cost of offloading one data packet from node Si to Rj

along their shortest path.
Finally, we set the supply at s and demand at t as d, the

total number of data packets in the BSN.

Step 2: Data Preservation Computation. We then compute the
data preservation by applying the MCF-Algorithm on the
above flow network; the resulting flows show the data preser-
vation solution. We adopt the implementation by Goldberg
[14], a scaling push-relabel algorithm with the highest perfor-
mance among all the algorithms. It has the time complexity
of O(l2 · m · log(l · n)), where l, m, and n are the number
of nodes, number of edges, and maximum edge capacity of
G′(V ′, E′). Next, we show that our MCF-based algorithm is
an optimal DPP algorithm and achieves NE.

Theorem 1: The MCF-based algorithm gives a NE with
optimal total preservation cost. Thus its PoS = PoA = 1.
Proof: Its optimality has been proved by Tang et al. [29],
which shows that DPP in BSN graph G(V,E) is equivalent
to MCF in flow network G′(V ′, E′). Thus DPP can be solved
optimally and efficiently by the MCF algorithms such as the
scaling push-relabel algorithm by Goldberg [14].

Next, we show that data preservation strategies computed by
the MCF reach a NE for all the source nodes. Suppose a source
node in the MCF solution has an incentive to unilaterally
switch its data preservation strategy; it must be that the
preservation cost of the new strategy is smaller than that of the
MCF-based strategy. This results in a smaller total preservation
cost, contradicting the optimality of the MCF. Therefore, the
outcome of MCF is a NE. As it also minimizes the system
data preservation cost, PoS = PoA = 1.

B. Greedy Algorithms and Their PoAs

Next, we introduce two heuristic data preservation greedy
algorithms viz. Node-based (i.e., Algo. 1) and Distance-based
(i.e., Algo. 2). Although not optimal, they can be directly
applied to the BSN graph and are more time-efficient than
the MCF-based. We analyze their PoAs and PoSs as well.

Node-based Greedy Algorithm. Algo. 1 works as follows.
Each source node i offloads its di data packets to its closest
storage nodes with available spaces until all the data packets
in the BSN are offloaded. Finding the shortest storage node
between any pair of source and storage nodes takes O(|E|+
|V | · log|V |). Therefore, the time complexity of Algo. 1 is
O
(
k · q ·

(
|E|+ |V | · log(|V |)

))
.

Algorithm 1: The Node-based Greedy Algorithm.
Input: A BSN graph G(V,E);
Output: Data preservation paths f : D → Vr;
Notations: li: number of un-offloaded data packets at Si;

hj : number of available storage spaces at Rj ;
1. for (1 ≤ i ≤ k) // current data packets at Si

2. li = di;



3. for (1 ≤ j ≤ q) // current storage space at Rj

4. hj = mj ;
5. for (1 ≤ i ≤ k) // each source node Si

6. while (li > 0)
7. Find the storage node in Vr closest to Si that still

has available spaces, say Rj ;
8. Offload min(li, hj) packets to Rj along the

the preservation path between Si and Rj ;
9. li = li −min(li, hj), hj = hj −min(li, hj);
10. end while;
11. end for;
12. RETURN f : D → Vr.

R1 R3S2S1 R2

Storage NodesSource Nodes

S3

R1 S2S1 R2 R3R2R1 S1 S3

(a) (b)

(c)

Rk+1 Sk+1

S2

Fig. 3. Illustrating PoA = H(d) for NEs resulted from Algo. 1.

Theorem 2: Algo. 1 reaches a NE. It has PoA = H(d),
where H(d) ≡ 2d−1 + 2d−2 + ...+ 20.

Proof: According to the execution of Algo. 1, each source
node minimizes its cost when it moves, and the future deci-
sions made by other source nodes do not affect its cost. Thus
no source node has incentive to unilaterally deviate from its
greedy strategy, and the outcome is a NE.

We prove that PoA = H(d) for Algo. 1 by induction.
Since any data preservation problem can be rewritten into the
scenario when each source node has one overflow data and
each storage node has one capacity, we focus such a case in the
proof. In what follows, we denote data nodes as S1, S2, S3, ....
In social optimal, the corresponding destination node to which
each data node offloads its data is R1, R2, R3, .... Denote
the distance between each source node and its storage node
used in social optimal as l1, l2, l3, ...; the minimized total data
preservation cost is thus C∗ = Σi∈Dli. The total preservation
cost of a NE from Algo. 1 is denoted as CN . In addition, we
use xy to denote the shortest path between nodes x and y, and
|xy| to indicate the distance of the shortest path.

(1). Consider d = 1. The source node offloads along the
shortest path in Algo. 1, and the outcome is socially optimal.
Thus PoA = 1 = 20 = H(1).

(2). Consider d = 2. Thus C∗ = l1 + l2. In the worst
outcome of Algo. 1, S1 offloads data to R2 (otherwise S2

may offload to R2, partially restoring social optimal), which
implies that |S1R2| ≤ l1. Given that R2 is occupied, S1

minimizes its preservation cost and it can at least offload its
data to R1. The worst case for S2 is to go through all edges in
S2R2, R2S1, S1R1 to offload its data to R1. Thus the highest
data preservation cost of S2 is l2 + l1 + l1 due to |S1R2| ≤ l1.

Fig 3(a) illustrates such a scenario. We have

PoA = max
CN

C∗
= max

l1 + (l2 + 2l1)

l1 + l2

= max[1 +
2l1

l1 + l2
] = 3 = H(2).

Note that the maximization is achieved at l2 = 0, i.e., when
the preservation cost of S2 at the social optimal is infinitely
close to zero.

(3). Consider d = 3. By the same argument as in (2), the
worst NE involves S1 offloading data to R2, driving S2 to
offload to R3 along the longest path, which in turn triggers S3

to offload to R1 along the longest path. The cost minimization
of each node in Algo. 1 implies that |S1R2| ≤ l1, |S2R3| ≤
|S2R2| + |R2S1| + |S1R1| ≤ l2 + l1 + l1 = 2l1 + l2. For
S3, it can at least use R1 to offload its data, and the worst
case is to go through all the edges to reach R1. We have
S3R1 ≤ |S3R3| + |R3S2| + |S2R2| + |R2S1| + |S1R1| ≤
l3 + (2L1 + l2) + l2 + l1 + l1 = 4l1 + 2l2 + l3. Thus CN ≤
l1 + (2l1 + l2) + (4l1 + 2l2 + l3) = 7l1 + 3l2 + l3. See Fig 3(b)
for such a scenario. Thus

PoA = max
CN

C∗
= max

7l1 + 3l2 + l3
l1 + l2 + l3

= 7 = H(3).

The maximization is achieved at l2 = l3 = 0.
(4). Suppose that at d = k ≥ 4,PoA = H(k). Note that

this is achieved at l2 = l3 = ... = lk = 0, giving the total
cost of preserving for S1, S2, ..., Sk as H(k)l1. We want to
show that for d = k + 1, it holds that PoA = H(k + 1).
With one additional data to offload, the worst scenario of NE
could be that the offloading of the original k data is with the
largest possible inefficiency H(k), while the last data k + 1
goes through the longest possible distance to offload. Thus the
cost of preserving for k+ 1 is |Sk+1Rk+1|+ |Rk+1Sk|+ ...+
|R2S1|+|S1R1|. Fig 3(c) shows a general case with d = k+1.
Thus

PoA = max
CN

C∗

= max
H(k)l1 + 2k+1l1 + 2kl2 + ...+ 2lk + lk+1∑k+1

i=1 li

= max
H(k + 1)l1 + 2kl2 + 2k−1l3 + ...+ lk+1∑k+1

i=1 li

= H(k + 1).

.

The maximization is achieved at l2 = l3 = ... = lk+1 = 0.

Distance-based Greedy Algorithm. Algo. 2 works in itera-
tions as well; in each iteration, it finds a source and storage
node pair with the minimum distance. In particular, we first
find the shortest distance between all the k×q pairs of source
and storage nodes and sort them in increasing order of the
distances. Next, we start from the first pair on the list and
check if the source node has un-offloaded data and the storage
node has available storage. If so, we will offload the minimum
of these two values from this source node to this storage node;
otherwise, it moves to the next pair. This continues until all



the k × q pairs are checked. Its time complexity is the same
as Algo. 1, which is O

(
k · q ·

(
|E|+ |V | · log(|V |)

))
.

Algorithm 2: The Distance-base Greedy Algorithm.
Input: A BSN graph G(V,E);
Output: Data preservation paths f : D → Vr;
Notations: li: number of un-offloaded data packets at Si;

hj : number of available storage spaces at Rj ;
1. for (1 ≤ i ≤ k) // current data packets at Si

li = di;
2. for (1 ≤ j ≤ q) // current storage space at Rj

hj = mj ;
3. Find the shortest distance between all the (Si, Rj) pairs;
4. Sort the pairs in the non-descending order of their

distances and denote it as L;
5. while (L is not empty)
6. Let (Si, Rj) be the first pair in L;
7. if (li > 0 ∧ hj > 0)
8. Offload min(li, hj) packets from Si to Rj along the

the data preservation path between Si and Rj ;
9. end if;
10. li = li −min(li, hj), hj = hj −min(li, hj);
11. if (li == 0 ∨ hj == 0)
12. Remove (Ri, Sj) from L;
13. end if;
14. end while;
15. RETURN f : D → Vr.

Theorem 3: Algo. 2 reaches a NE, which has PoA < 3.

Proof: The argument for reaching NE is similar to that for
Algo. 1. As in the proof of Theorem 2, we confine to the
case when each source node has one overflow data, and
each storage node has one unit storage. By running Algo. 2,
the order of the offloaded data is given as 1, 2, 3, ..., d. In
social optimal, the corresponding source node of each data is
denoted as R1, R2, R3, .., Rd, respectively. Denote the distance
between each source node and its storage node used in social
optimal as l1, l2, l3, .., ld. Denote the minimized total data
preservation cost as C∗ = Σi∈Dli and the total preservation
cost of a NE from Algo. 2 as CN . We use xy to denote the
shortest distance between nodes x and y, and its cost is |xy|.

(1). Consider d = 1. In this case, the source node offloads
along the shortest path in Algo. 2, and the outcome is socially
optimal. Thus PoA = 1.

(2). Consider d = 2. Thus C∗ = l1 + l2. In the worst
outcome of Algo. 2, S1 offloads data to R2 (otherwise S2

may offload to R2, partially restoring social optimal), which
implies that |S1R2| ≤ l1 and |S1R2| ≤ l2. Given that R2 is
occupied and R1 is vacant, S2 can at least go through the
edge S2R2, R2S1, S1R1 to offload its data to R1, resulting in
a data preservation cost of S2 as |S2R2|+ |R2S1|+ |S1R1| =

l1 + l2 + |R2S1|. We have

PoA = max
CN

C∗
= max

l1 + l2 + 2|R2S1|
l1 + l2

=
2(l1 + l2)

l1 + l2
= 2.

Note that the maximization is achieved at |S1R2| = l1 = l2.
(3). Consider d = k ≥ 3. By the same argument as in

(2), the worst NE involves S1 offloading data to R2; then
S2 offloads to R3, etc., and Sk−1 offloads to Rk, resulting
in Sk to go through the longest distance to offload to R1.
The cost minimization of each node in Algo. 2 implies that
|S1R2| ≤ l1, l2; |S2R3| ≤ l3, ..., and |Sk−1Rk| ≤ lk. For
Sk, its worst data offloading cost is |SkRk| + |RkSk−1| +
|Sk−1Rk−1| + ... + |S3R3| + |R3S2| + |S2R2| + |R2S1| +
|S1R1| =

∑k
i=1 li+(|RkSk−1|+...+|S2R3|+|S1R2|). In this

scenario, CN =
∑k

i=1 li+2(|RkSk−1|+...+|S2R3|+|S1R2|).

PoA = max
CN

C∗

= max

∑k
i=1 li + 2(|RkSk−1|+ ...+ |S2R3|+ |S1R2|)∑k

i=1 li

= max

∑k
i=1 li + 2|S1R2|+ 2(l3 + ...+ lk)∑k

i=1 li

=

∑k
i=1 li + (l1 + l2) + 2(l3 + ...+ lk)∑k

i=1 li

=
3
∑k

i=1 li − (l1 + l2)∑k
i=1 li

= 3− l1 + l2∑k
i=1 li

< 3.

PoA is bounded away from 3 since l1 + l2 > 0.

C. The PoS of Greedy Algorithms

Our analysis above shows that the greedy algorithms Al-
gos. 1 and 2 may or may not achieve social optimal for
data preservation. Below we prove that there exists a greedy
algorithm that achieves NEs with PoS = PoA = 1.

Theorem 4: There exists a greedy algorithm for DPP that
reaches PoS = PoA = 1.
Proof: We consider a general form of greedy algorithms
wherein source nodes make the best choice in data preservation
sequentially. To prove that its PoS = PoA = 1, it suffices to
show that the social optimal is obtained through this greedy
algorithm. W.l.o.g., we confine to the situation when each
source node has one unit of overflow data and each storage
node has one storage space. The proof involves two steps. We
omit some details due to space constraints.

Step one. We show that the socially optimal outcome for
any network involves at least one overflow data preserved via
its minimum-cost path. Due to the space limit, we only give
a proof sketch. Suppose this statement is not true. Then in
the social optimal, the preservation cost of each source node
is strictly greater than its minimum cost. We can find the
data, denoted as ξ, for which its preservation cost exceeds its
minimum preservation cost by the largest amount. Consider



instead switching the preservation of ξ via the minimum-
cost path. If the corresponding storage is not occupied in
the social optimal, contradiction follows the total preservation
cost is strictly lower due to the switch. If the corresponding
storage is occupied in the social optimal, switch the data
originally occupied that storage to using the original social
optimal storage of ξ. We can prove that because ξ is the data
with the largest efficiency loss in the social optimal, such a
switch will strictly lower the total data preservation cost, again
a contradiction to the social optimal. We conclude that any
social optimal must involve at least one data preserved via the
minimum-cost path.

Step two. Let node i be a source node that uses its minimum
cost path to preserve its data in the social optimal data preser-
vation. By removing the overflow data and corresponding
destination storage space (not the nodes), we get a reduced
network with one fewer overflow data. By the argument in
step one, for the reduced network, social optimal involves at
least one source node preserving its data via its minimum-
cost path. By reducing the overflow data and its destination
storage, we get another reduced network, for which we can
continue with the identifying and deleting procedure. Repeat
this procedure until only one overflow data is in the reduced
network. The whole procedure indicates a greedy algorithm
that reaches the socially optimal outcome. We conclude that
PoS = PoA = 1 for the greedy algorithm.

Discussions. One of the combinatorial algorithms solving
MCF optimally is the successive shortest path algorithm [15];
thus it also solves DPP optimally. It is an iterative greedy
algorithm applied to the flow network shown in Fig. 2. Each
iteration finds the shortest path in the residual graph [2] of
Fig. 2 until there is no path from s to t. It is optimal and
achieves PoS = 1. However, it has a time complexity higher
than our straightforward greedy algorithms Algo. 1 and 2.

Random. We also design a Random algorithm for comparison
purposes. In the Random, each source node offloads its data
packets to a randomly chosen storage node with available
spaces. Its time complexity is O(k · |V |). Different from MCF
and Greedy, Random only sometimes achieves NE. Below we
give the sufficient condition for Random to achieve NE.

Theorem 5: When
∑q

j=1mj = d, Random reaches NE.
Proof: In this case, the total number of data packets equals the
total storage spaces available. Thus there are no free spaces in
the BSN once the source nodes offload all their data packets.
Since no source node can deviate by offloading its packets to
other storage nodes, the outcome is a NE.

V. Simulations

We write our simulator in Java on a Windows 10 ma-
chine with an Intel Processor (Intel Core i7-10750H) and
32GB of memory. We randomly place 150 sensor nodes in
a 2000m×2000m sensor field. The transmission range of the
sensor nodes is set as 200m, meaning an edge exists between
two sensor nodes if their distance is within 200m. Among the
150 sensor nodes, 75 are randomly selected as source nodes

 0

 2

 4

 6

 8

 10

 12

 14

 16

50 60 70 80 90 100

R
a
te

 o
f 
E

ff
ic

ie
n
c
y
 L

o
s
s
 (

R
E

L
)

Overflow Packets

 RELR
 RELN

14.04

12.33

10.62

8.76

6.80

4.80

1.08 1.11 1.14 1.17 1.19 1.24

(a) Varying di with mj = 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

100 120 140 160 180 200

R
a
te

 o
f 
E

ff
ic

ie
n
c
y
 L

o
s
s
 (

R
E

L
)

Storage Capacity

 RELR
 RELN

4.81

8.08

10.36

11.92
13.04

14.05

1.24 1.18 1.14 1.12 1.09 1.08

(b) Varying mj with di = 100.

Fig. 4. Comparing Random and Greedy-N.

and the rest are storage nodes. Unless otherwise mentioned,
the number of data packets at each source node di = 100, and
the storage capacity of each storage node mj = 100 (that is,
it can store 100 data packets). Each packet is 512 Bytes.

We refer to the node-based Algo. 1 as Greedy-N, the
distance-based Algo. 2 as Greedy-D, the MCF-based optimal
algorithm as MCF, and the random algorithm as Random.
To measure the performance degradation of different data
preservation NEs, we apply each algorithm on 20 randomly
generated BSN topologies and compute the average of the
RELs of the resultant NEs. We denote the RELs of Greedy-
N, Greedy-D, and Random as RELN , RELD, and RELR,
respectively. The error bars indicate 95% confidence intervals.

Comparing Greedy-N and Random. Fig. 4(a) compares the
RELs of Greedy-N and Random by increasing di from 50, 60,
..., to 100 while fixing mj as 100. After the data preservation
(i.e., data offloading), the network is half-full at di = 50 and
full at di = 100. First, we observe that RELR is much larger
than RELN in all the cases. This shows that Random has
a much more significant efficiency loss than Greedy-N, as it
does not attempt to save the preservation cost when offloading
data packets. On the other hand, the most significant RELN is
1.24, showing the efficiency loss of the Greedy-N is at most
24% of the optimal preservation cost by the MCF. Second, it
shows that when increasing di, the RELN increases gradually.
Although the total preservation costs of both Greedy-N and
MCF increase, Greedy-N increases more than MCF does
(as MCF is optimal), resulting in a larger RELN . Third,
RELR decreases dramatically with increased di, showing that
Random performs much better in more “crowded” scenarios.
This is because when more data packets are offloaded, the
randomness’ negative effect of getting high preservation costs
will be gradually eliminated, as each source node has fewer
options to decide which storage nodes to offload data packets.

Fig. 4(b) compares the RELs of Greedy-N and Random
by increasing mj from 100, 120, ..., to 200 while fixing di
as 100. It again shows the big difference between RELN

and RELR. However, unlike Fig. 4(a), Fig. 4(b) shows that
with the increase of the mj , RELR increases evidently. With
the increase of the mj , the preservation cost of the MCF
decreases while that of the Random increases (due to its
randomness), resulting in a larger RELR. It also shows that
with the increase of the mj , RELN decreases slightly, from
1.24 to 1.08. While the preservation costs of both MCF and
Greedy-N decrease with the increase of the mj , it seems
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Greedy-N has more leeway to improve upon its preservations
at smaller mj compared to MCF.

Comparing Greedy-N and Greedy-D. As Greedy-N per-
forms much better than Random in the RELs, we focus on
Greedy-N and Greedy-D next. Fig. 5(a) compares them by
varying the di. First, we observe that the RELD is constantly
smaller than RELN , showing that NEs in Greedy-D have
less efficiency loss for data preservation than Greedy-N does.
Second, at di = 50, when there are twice as many storage
spaces as the number of data packets, Greedy-N and Greedy-
D yield RELs of 1.09 and 1.05, respectively. This shows that
the total data preservation costs of Greedy-N and Greedy-D
are at most 9% and 5% more than the optimal, indicating
both are energy-efficient. Third, with the increase of di, both
RELs increase. This shows the efficiency loss in NEs of both
algorithms increases in more challenging scenarios wherein
more data packets are to be preserved.

Fig. 5(b) shows that with the increase of mj , both RELN

and RELD decrease. This shows that more storage spaces can
alleviate the NE efficiency loss. In an extreme case wherein
each storage node has infinite storage capacity, Greedy-N and
Greedy-D would achieve the same minimum total preservation
cost as MCF; in this case, there is no efficiency loss for any
NEs. In general economic terms, when there are infinite social
resources, strategic interactions among selfish players will be
released; as such, NEs will perform as well as the optimal
resource allocation schemes.

Investigating the PoAs of Greedy-N and Greedy-D. Next,
we validate our theoretical findings that the PoA of Greedy-N
is H(d), where H(d) ≡ 2d−1+2d−2+...+20 (Theorem 2), and
the PoA of Greedy-D is less than 3 (Theorem 3). As PoA is
the upper bound of the RELs defined in this paper, we generate
100 random BSN instances and find the REL of each resultant
NE. Fig. 6(a) and (b) show the RELN with di = mj = 1 and
di = mj = 100, respectively. It shows the RELN values fall
between 1.08 and 1.52 for di = mj = 1 while between 1.08
and 1.39 for di = mj = 100. Our empirical results are much
better than our theoretical result of PoA < 2d−1. Fig. 7(a)
and (b) study PoAs for Greedy-D. Compared to Fig. 6, the
range of RELD values is narrowed between 1.05 to 1.25. This
corresponds well to our Theorem 3, which says PoA < 3 for
Greedy-D. Note that Fig. 6 (a) and (b) give the same set of
RELD values. This is because we randomly generate 100 BSN
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Fig. 6. Investigating the PoAs of Greedy-N.

instances for this set of simulations and then apply both sets
of parameters (i.e., di = mj = 1 and di = mj = 100) on
the same instance. As a result, the total preservation costs for
both Greedy-D and MCF are increased 100 times in Fig. 6 (b)
of those in (a), resulting in the same RELD values.

Comparing Total Preservation Costs. Finally, we look
closely at the total preservation costs of all the NEs achieved
by the proposed algorithms, as shown in Fig. 8. We have two
general observations. First, the costs of all three algorithms
increase with the increase of di and decrease with the rise
of mj . Second, MCF is the most energy-efficient way to
achieve NEs, followed by Greedy-D, while Greedy-N is the
least energy-efficient. We also observe that the performance
differences among these three algorithms diminish when the
data preservation gets less challenging (i.e., when di is small
and mj is large). This also has an economic interpretation:
When strategic competition among selfish players lessens, NE
outcome tends to be closer to the social optimal of resource
allocations. In other words, the effects of selfishness in NEs
upon performance degradation decrease.

VI. Conclusion and Future Work

We studied the Nash Equilibrium (NE) for data preservation
in emerging base station-less sensor networks (BSNs). We
design a suite of data preservation algorithms that achieve
NEs and define our own metric (besides commonly used PoA
and PoS) to quantify the performance efficiency of any NEs
achieved by our algorithms. We show that our minimum cost
flow-based algorithm achieves not only NEs but also minimum
preservation cost, thus suffering no efficiency loss common for
selfish players. We also prove that the PoA is no more than
3 for one of our greedy algorithms, and a greedy algorithm
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Fig. 8. Total preservation costs of different algorithms.

always exists that gives a PoS = 1. Finally, we conduct exten-
sive simulations to investigate and compare the efficiency loss
of various NEs and validate our theoretical results. Studying
the performance of NEs is essential to our data preserva-
tion problem and critical to any multi-agent reinforcement
learning systems (e.g., autonomous driving) wherein NE is
an indispensable solution concept. For future works, first, we
will attempt to reduce the efficiency loss of NEs through a
marginal cost pricing mechanism called Shapley pricing [31].
Second, we will consider that data packets have different
values. In this case, when the value of a data packet is less
than its preservation cost, the selfish source node would choose
not to offload it. How to incentivize them to participate in
data preservation while achieving performance-optimal NEs
remains a challenging problem.
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