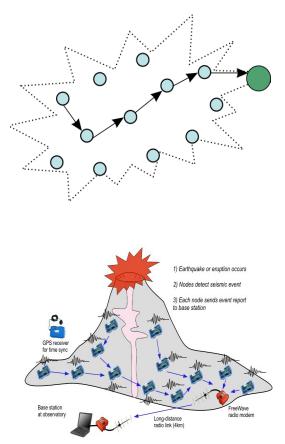
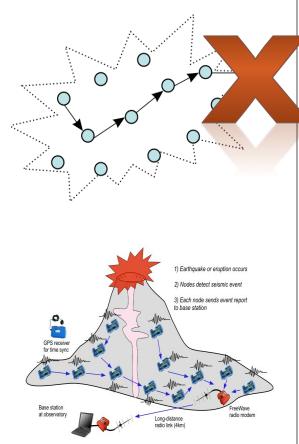
DATA PRESERVATION IN INTERMITTENTLY CONNECTTED SENSOR NETWORK WITH DATA PRIORITY

Xinyu Xue¹, Xiang Hou¹, Bin Tang², and Rajiv Bagai¹


¹Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS

²Department of Computer Science, Azusa Pacific University, Azusa, CA

Intermittently Connected Sensor Networks

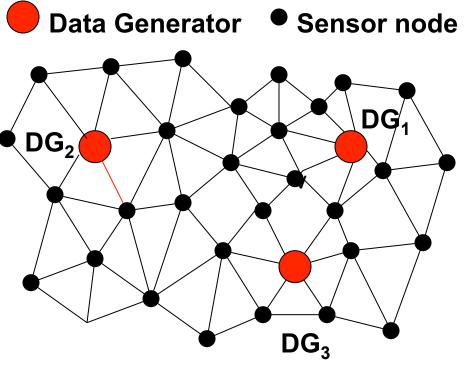

- Underwater/ocean seismic sensor networks, volcano eruption/glacial melting monitoring
- Not feasible to install base station in field
- Data generated and stored in the network, periodically uploaded via data mules or satellite links
- Data Priority: data generated may have different importance (seismic, infrasonic, temperature)

Source: http://fiji.eecs.harvard.edu/Volcano

Intermittently Connected Sensor Networks

- Underwater/ocean seismic sensor networks, volcano eruption/glacial melting monitoring
- Not feasible to install base station in field
- Data generated and stored in the network, periodically uploaded via data mules or satellite links
- Data Priority: data generated may have different importance (seismic, infrasonic, temperature)

Source: http://fiji.eecs.harvard.edu/Volcano

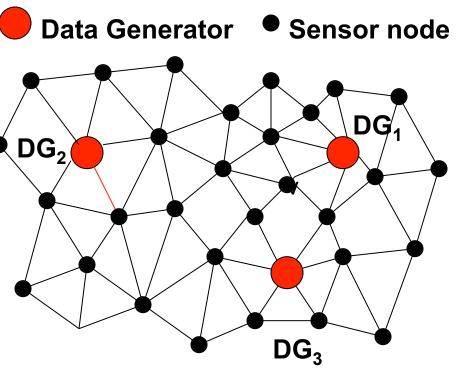

3

Data Preservation In Intermittently Connected Sensor Networks

 Non-uniform data generation and limited storage capacity

- Data generators (DGs): storage-depleted
- Data preservation: offload overflow data from DGs to nodes with available storage
- Data from different DGs are of different importance

SECON 2013

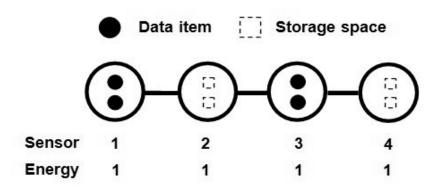


priority of $DG_1 \ge$ priority of $DG_2 >$ priority of DG_3

Challenge in Data Preservation

- Limited battery power
- Data preservation consumes battery power

When not all the data can be preserved inside the network, how to ensure data preservation with maximum total priorities – data preservation with data priorities (DPP) SECON 2013

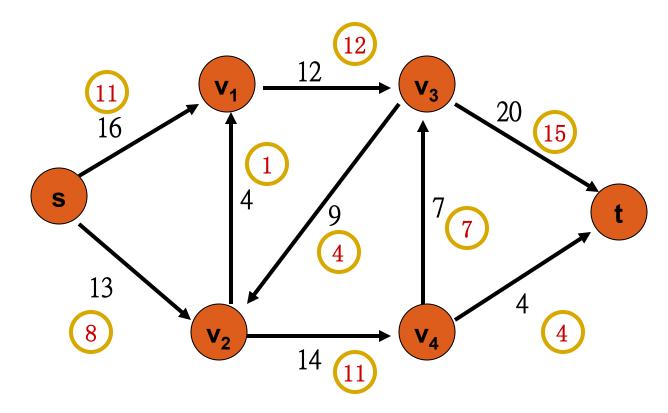

priority of $DG_1 \ge$ priority of $DG_2 >$ priority of DG_3

Data Preservation With Priority (DPP)

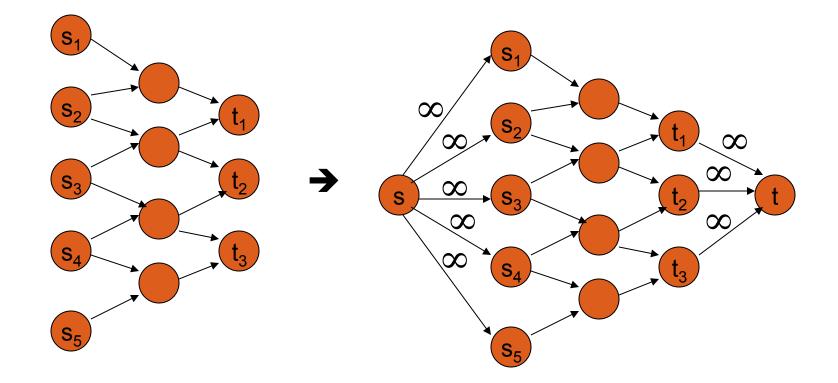
- \ast Sensor network graph G(V, E)
 - Data generators: $DG_1, DG_2, ..., DG_k$
 - * v_i DG_i' priority
 - * d_i number of overflow data DG_i needs to offload
 - m_i initial available free storage space of node i
 - E_i initial energy level of node i
 - Sending/relaying/receiving a data item each costs 1 unit of energy

Objective of DPP

 Select a subset of data items to offload to maximize their total priorities


Priority of node 1: 2 Priority of node 3: 1

Total preserved priorities: 3


Fig.1. Illustration of the DPP problem. SECON 2013

Maximum Flow Problem

Given a flow network G with source s and sink t, find maximum amount of flow from s to t

Multiple Sources and/or Sinks

Maximum Weighted Flow (MWF)

S,

S₂

Sa

S₄

S₅

• v_i : weight of one net flow out of $s_i \in S$

 ∞

S

$$v_1 \ge v_2 \ge \dots \ge v_5$$

Find a flow with maximum total weight from *s* to *t*

 ∞

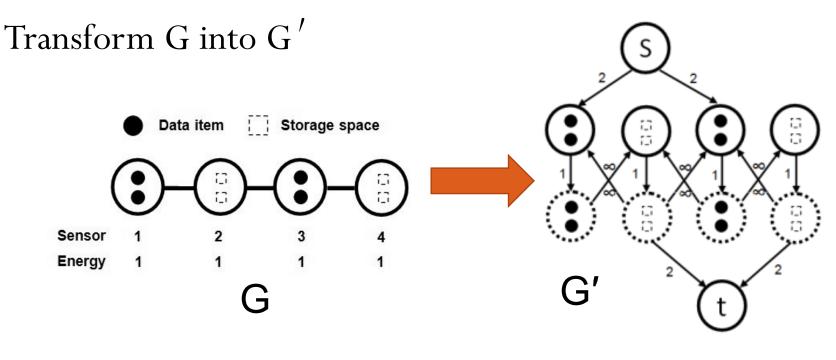
 ∞

 ∞

 t_2

10

Priority-based Algorithm (PBA) for MWF


Find maximum flow (using Edmonds-Karp) in nonascending order of source node's priority

Optimality proof of PBA (omitted)

Maximum weighted flow is a maximum flow, but not vice versa

Time complexity: O(knm²)
SECON 2013

Optimal Algorithm for DPP

Priority of node 1: 2 Priority of node 3: 1

Total preserved priorities: 3

PBA on G' is an optimal algorithm for DPP on G.

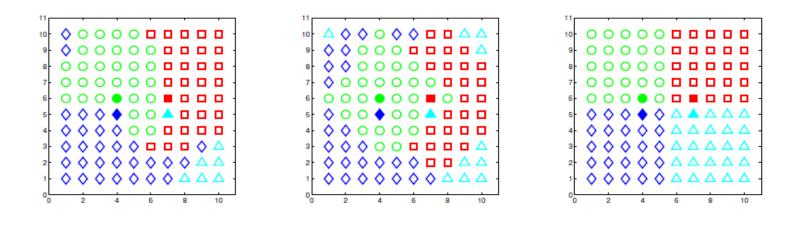
A Heuristic Algorithm of DPP

Offload data in non-ascending order of DG's priority:
for each DG

while (It can still off a data item from it to a non-DG node)Offload it to the closest non-DG node

Time complexity: O(km + kdn), d is average number of data items of each DG

Performance Evaluation


Visual Performance Comparison

- Grid network: 10×10 , 20×20
- Initial energy level: 30 units

	Shape	Coordinate	Priority
DG ₁		(4, 6)	8
DG ₂	-	(7, 6)	6
DG ₃	•	(4, 5)	4
DG ₄	_	(7, 5)	2

Each DG has 30 data items to offload (50 data items in 20 × 20 grid)

Data Preservation Blocked by Storage Constraint

(a) Optimal.

(b) Heuristic.

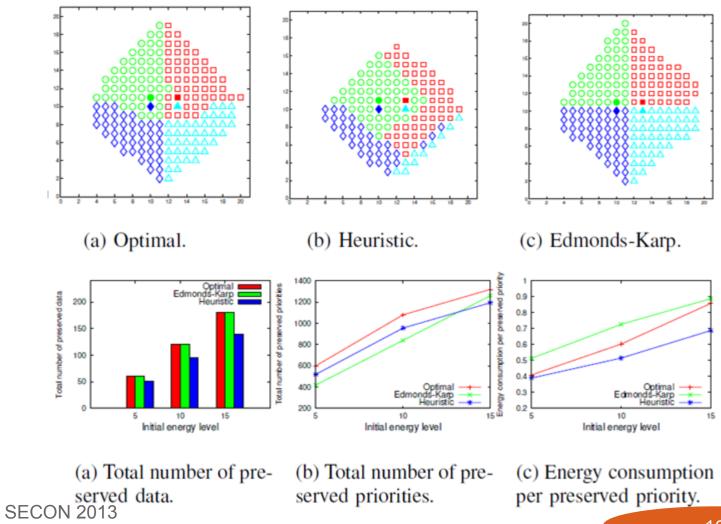

(c) Edmonds-Karp.

Fig. 4. Data Preservation Blocked by Storage Constraint.

TABLE II Results of Visual Comparison in Fig. 4.

		Optimal	Heuristic	Edmonds-Karp
	Number of Preserved Data	96	96	96
SECON 201	3 Total Preserved Priority	552	540	480

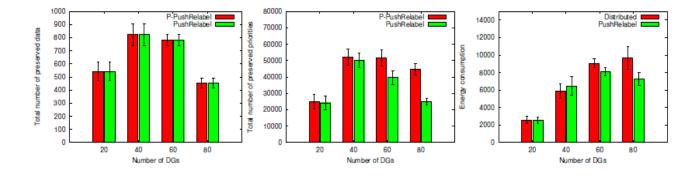
Data Preservation Blocked by Energy Constraint

Push-Relabel Algorithm

* "active" node - a node with "excess flow"

* "Relabel": increase the height of the "active" node to push excess flow

"Push": send the excess flow to the neighbors


Terminates when no "active" nodes left SECON 2013

Distributed Data Preservation with Data Priority

- 1. Each DG broadcasts its priority to the network;
- 2. for each DG in the non-ascending order of its priority
- 3. s pushes maximum allowable data to this DG;
- 4. **while** (there exists a node u with positive excess)
- 5. Push-Relabel(*u*);
- 6. end while;
- 7. end for

The distributed algorithm preserves maximum total priority. It runs in $O(kn^2)$ time and uses $O(n^2m)$ messages.

Distributed Algorithm Comparison

(a) Total number of pre- (b) Total number of pre- (c) Total energy conserved data. served priorities. sumption.

Fig. 8. Comparing Distributed and PushRelabel.

Conclusions

Data preservation in sensor networks by considering data priorities (DPP)

Maximum weighted flow (MWF), generalizing maximum flow problem

Distributed algorithm

Future Works

- DGs of low priority discard their locally generated data
- General energy model
- Combining data preservation and data retrieving

20

THANKS! btang@apu.edu

21