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We aim to preserve a large amount of data generated inside base station-less sensor networks (BSNs) while considering that sensor

nodes are selfish. BSNs refer to emerging sensing applications deployed in challenging and inhospitable environments (e.g.,

underwater exploration); as such, there do not exist data-collecting base stations in the BSN to collect the data. Consequently, the

generated data has to be stored inside the BSN before uploading opportunities become available. Our goal is to preserve the data

inside the BSN with minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the

data preservation process. We refer to the problem as DPP: data preservation problem in the BSN. Previous research assumes that

all the sensor nodes are cooperative and that sensors have infinite battery power and design a minimum-cost flow-based data

preservation solution. However, in a distributed setting and under different control, the resource-constrained sensor nodes could

behave selfishly only to conserve their resources and maximize their benefit.

In this paper, we first solve DPP by designing an integer linear programming (ILP)-based optimal solution without considering

selfishness. We then establish a game-theoretical framework that achieves provably truthful and optimal data preservation in BSNs.

For a special case of DPP wherein nodes are not energy-constrained, referred to as DPP-W, we design a data preservation game

DPG-1 that integrates algorithmic mechanism design (AMD) and a more efficient minimum cost flow-based data preservation

solution. We show that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation.

For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful and optimal data

preservation. Utilizing packet-level flow observation of sensor node behaviors computed by minimum cost flow and ILP, we

uncover the cause of the failure of the DPG-1. It is due to the packet dropping by the selfish nodes that manipulate the AMD

technique. We then design a data preservation game DPG-2 for DPP that traces and punishes manipulative nodes in the BSN.

We show that DPG-2 delivers dominant strategies for truth-telling nodes and achieves provably optimal data preservation with

cheat-proof guarantees. Via extensive simulations under different network parameters and dynamics, we show that our games

achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of sensor nodes about

their private cost types. One salient feature of our work is its integrated game theory and network flows approach. With the

observation of flow level sensor node behaviors provided by the network flows, our proposed games can synthesize “microscopic”

(i.e., selfish and local) behaviors of sensor nodes and yield targeted “macroscopic” (i.e., optimal and global) network performance

of data preservation in the BSN.
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1 INTRODUCTION

Base Station-less Sensor Networks.Wireless sensor networks are formed by a large number of small-size, battery-

powered and resource-constrained, and spatially dispersed nodes with sensing, computing, and communication
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capabilities [99]. Since their inception more than two decades ago, they have continuously evolved into various new

forms on a global scale, such as the Internet of Things [91] and mobile crowdsensing (MCS) [49, 97] and permeate

many parts of our lives including healthcare monitoring [65], smart home and cities [71], and smart farming [32].

In this paper, we focus on some emerging sensing applications deployed in challenging environments, such as

inaccessible or inhospitable regions or under extreme weather. Such applications include underwater or ocean sensor

exploration [10, 30, 45, 56, 70, 103], wind and solar harvesting [53, 60], seismic sensor networks [68, 78], and volcano

eruption and glacial melting monitoring [23, 79]. These sensing systems are designed to tackle some of the most

fundamental problems facing human beings, including scientific exploration, disaster warnings, and climate change.

As they are all deployed in challenging environments, it is not feasible to deploy high-power and high-storage

data-collecting base stations in or near the sensing field. We refer to emerging sensor network applications without

base stations as base station-less sensor networks (BSNs). BSNs are in sharp contrast to the traditional sensor networks

and the current IoT applications wherein base stations are always available in the field to collect sensory data.

Due to the base station-less nature of a BSN, one of its essential functions is to preserve large volumes of generated

data inside the BSN. Later they can be collected by the periodic visits of uploading opportunities, including autonomous

underwater vehicles (AUVs) [10, 31] and robots [44, 92, 98]. Fig. 1 illustrates our BSN network model. In a BSN, some

sensor nodes are close to the events of interest and are constantly generating sensory data, thus depleting their

storage spaces. We refer to the sensor nodes with depleted storage spaces while still generating data as data nodes
and the sensor nodes with available storage as storage nodes.1 The newly generated data that can no longer be stored

at storage-depleted data nodes is called overflow data. To avoid data loss, overflow data must be offloaded to storage

nodes to be preserved and to wait for the arrival of the uploading opportunities. The goal is to select storage nodes

and offload the overflow data to them while minimizing the total energy consumption in this process. Those storage

nodes selected to store overflow data are called destination nodes. We refer to the process of finding the destination

nodes and offloading overflow sensory data from data nodes to these destination nodes as data preservation in the
BSN.

Data nodes:

Storage nodes:

Destination nodes:

Data preservation: Robots or AUVs

Fig. 1. The BSN Model.

Network Flows-Based Solutions. Existing research has proposed a suite of network flows-based algorithms to

achieve different objectives in data preservation in the BSN [5, 19, 41, 42, 80, 82, 96]. Network flow problems [4, 34]

(e.g., maximum flow, minimum cost flow, and multi-commodity flow) are a class of computational problems that study

how to move objects (e.g., goods, vehicles, and network packets) within a flow network efficiently and cost-effectively.

For example, when all the data packets can be preserved, Tang et al. [82] designed a minimum cost flow-based optimal

algorithm to minimize the total energy consumption in data preservation. When not all the packets can be preserved

due to the insufficiency of energy power of sensor nodes, Xue et al. [96] designed a maximum weighted flow-based
optimal algorithm to maximize the total values of preserved data packets. When not all the packets can be preserved

due to the insufficiency of storage spaces of sensor nodes, Tang et al. [80] proposed aggregating the data packets to

reduce their sizes before offloading them to destination nodes. They modeled the energy-efficient data aggregation

in BSNs as a new graph-theoretical problem called multiple traveling salesmen placement problem and designed a

constant-factor approximation algorithm. Recently, Hsu et al. [42] proposed a quadratic programming-based algorithm

to maximize data resilience in BSNs by preserving the overflow data for the maximum time.

Motivation. All the above network flows-based solutions for data preservation in BSNs assume that the sensor

nodes are cooperative and willing to contribute their resources, including battery power and storage spaces, to the

data preservation process. With the strides made in sensor network development and IoT applications over the

past decade, these assumptions are no longer invalid [16]. First, in a global-scale and distributed decision-making

environment, sensor nodes could be under the control of different users, each aiming to pursue its own self-interest

1
Sensor nodes that generate data but whose storage spaces are not full are considered storage nodes as their storage can be used to store data from

other sensor nods. Besides, a data node can relay overflow data packets from another data node.
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and maximize its own benefit. For example, in the oil and gas industry, the IoT sensors that detect possible oil and gas

leaks could belong to different companies with different business incentives [95]. Second, the technologically advanced

sensor nodes could become more intelligent [25]. Unlike the traditional sensors that can only sense, compute, and

communicate signals to an external system, the intelligent sensor can also perceive, reason, and learn. As such, the

resource-constrained sensor nodes in the BSN can behave selfishly, only to conserve their own resources and have

little incentive to participate in the data preservation. Finally, being selfish, sensor nodes can not only hold their

critical information (e.g., storage capacities and energy costs of preserving the data packets) as private information
and not report them, but also, in the worst case, misreport them to gain more utilities and maximize their own benefit

in the data preservation process. The tension between node-centric selfishness and data-centric data preservation

in the BSN, if not dealt with well, could impede the data preservation process and compromise the functions and

missions of the aforesaid emerging sensing applications.

Our Contributions. In this paper, we mitigate the above tension by carefully creating a truthful and optimal game

theory framework for data preservation in the BSN. Focusing on strategic interaction among rational and selfish

decision-makers, game theory is an ideal tool for analyzing decentralized and self-organizing networks like BSNs. We

make the following contributions to the paper.

First, we formulate and solve a general data preservation problem in the BSN referred to as DPP: data preservation

problem. The goal of DPP is to minimize the total energy consumption in data preservation while considering that

sensor nodes have limited storage capacity and energy power. We design an integer linear program (ILP) to solve

DPP optimally. In addition, we design another ILP to solve a relevant DPP feasibility problem referred to as DPP-F.

Given any instance of DPP with the energy-constrained sensor nodes, DPP-F checks if all the overflow data packets

can be successfully preserved inside the BSN or not; that is, if the data preservation is feasible for this DPP instance.

In contrast, existing work only solved a special case of DPP wherein nodes have infinite energy power [82, 83]. We

refer to this special case as DPP-W in the paper.

Second, we consider the selfishness of sensor nodes and design a non-cooperative game for DPP-W. We refer to

it as DPG-1: data preservation game-1. DPG-1 is based on algorithmic mechanism design (AMD) [61–63], a subfield
of game theory and network optimization. AMD designs computationally efficient games, including strategies and

payoffs, such that individual players, motivated solely by self-interest, achieve a good system-wide solution. Therefore

AMD techniques are suitable for achieving truthful and optimal data preservation. In particular, we consider Vickrey-

Clark-Groves (VCG) mechanism [17, 39, 84]. We identify the challenges of directly applying VCG techniques in

our BSN model. We prove that with these challenges, DPG-1 can still a) guarantee that truth-telling its private cost

information (i.e., energy costs of receiving, saving, and transmitting packets) is a node’s dominant strategy and b)

sufficiently motivate each node to participate in optimal data preservation. Thus DPG-1 achieves a truthful and

optimal system-wide data preservation solution with self-interested sensor nodes.

Third, we show that in DPP, wherein nodes have a finite amount of energy, DPG-1 can no longer provide truth-

telling and optimal data preservation. We find that, unlike DPP-W, a sensor node can manipulate the VCG model and

lie about its costs to receive more utilities in DPP. In doing so, a lying node can receive more data packets than it can

possibly process, resulting in data loss and sub-optimal data preservation in the BSN. We thus design another data

preservation game viz. DPG-2 to fix the flawed VCG model used in DPG-1. We show via proof and simulations that

DPG-2 delivers truth-telling as a node’s dominant strategy and achieves optimal data preservation in the BSN while

accommodating the selfish behavior of energy-constrained sensor nodes.

Finally, in contrast to many existing works that applied game theory and related techniques to solve sensor

networking problems, our work takes a network flow approach to facilitate the game design and game-theoretical

analysis. Utilizing data preservation flows computed by push-relabel-based and ILP-based minimum cost flow

algorithms, our designed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and

transform them into targeted “macroscopic” (i.e., optimal, global, and fault-tolerant) network performance of data

preservation in the BSN. This integrated game theory and network flow approach helps us to understand the selfish

behaviors of sensor nodes quantitatively to achieve truthful and optimal data preservation of the BSN. Consequently,

all our game-theoretical findings can be validated by our progressive experiments. Table 1 summarizes our data

preservation games, corresponding data preservation problems, and network flow techniques.

Paper Organization. The rest of the paper is organized as follows. Section 2 reviews all the related work and sets

the stage for the contributions of our work. Section 3 formulates the DPP and introduces its energy model and

the cost parameters of sensor nodes. Section 4 proposes the centralized network flow-based algorithmic solutions:

push-relabel-based MCF for DPP-W and ILP-based MCF for DPP, respectively. Section 5 considers selfish sensor nodes

in DPP-W and designs data preservation game DPG-1 that provably provides optimal and truthful data preservation
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Table 1. Summary of data preservation games (DPGs) and their corresponding data preservation problemswith underlying network
flow techniques. ILP: integer linear programming; MF: maximum flow; MCF: minimum cost flow; PR-MCF: push-relabel-based
MCF.

Data preservation games Data preservation problems Network flow techniques

DPG-1 (Section 5) DPP-W (Section 3) Push-Relabel-based MCF viz. PR-MCF (Section 4.1)

DPG-2 (Section 6) DPP and DPP-F (Section 3) ILP-based MF and MCF viz. ILP (A) and (B) (Section 4.2)

solutions. Section 6 shows that DPG-1 does not work for the general case of DPP, finds the cause of such, and designs

a game named DPG-2 that provably provides an optimal and truthful solution to DPP. Section 7 validates our game

designs via progressive simulation results, starting from the macroscopic network characteristics of data preservation,

progressing deeper into microscopic views of data packet flows, and finally pinpointing the game-theoretical behaviors

of the selfish sensor nodes. Section 8 concludes the paper with a discussion of future work.

2 RELATEDWORK
Game theory techniques have been extensively applied to solve research problems in computer networks in general,

and wireless ad hoc and sensor networks in particular [6, 11, 66, 75]. There are four main classes of game theoretical

techniques that have been employed in the existing research. Non-cooperative game theory studies strategies between

interactions among individual competing players, with Nash Equilibrium (NE) being its solution concept that describes

a steady-state condition for the players. Cooperative game theory models situations where players form groups (i.e.,

coalitions) rather than acting individually. One of its central notations is the core, which is the payoff allocation that no

group of players has the incentive to leave its coalition to form another coalition. The third one is called cooperation
enforcement games, wherein selfish players are incentivized to cooperate to maximize the social optimal of the system.

The fourth is mechanism design, also called reverse game theory, which takes an objectives-first approach to design

economic mechanisms or incentives to motivate rational and selfish players toward desired objectives. In this paper,

we mainly take a mechanism design approach as it suits our goal of motivating selfish nodes to achieve optimal

total data preservation cost in the BSN. Below we review the mechanism design work in both general networks and

wireless ad hoc networks, the game-theoretical techniques in sensor networks, including mobile crowdsensing, and

the existing data preservation research in BSNs.

Mechanism Design in General Networks. The seminal work by Nisan and Rosen [61–63] introduced the frame-

work of applying mechanism design to solve algorithmic problems where participants are selfish. In particular, they

showed that the classic VGC mechanism provides a truthful solution for utilitarian problems where the objective
function is the sum of all agents’ valuations (i.e., costs). They studied shortest path routing between one pair of

source and destination nodes where the edges are strategic players. Feigenbaum et al. [26] treated nodes as strategic

players instead and considered multiple source-destination pairs. They designed distributed algorithms to compute the

lowest-cost routes and payments for transit nodes on all routes. In their follow-up work [27], they studied cost-sharing

multicast wherein a source communicates with multiple receivers along a multicast tree. They assumed the link cost

is publicly known and analyzed the network complexity of two mechanisms marginal cost and Shapley value. Such
incentives for sharing as well as profit-maximization were also investigated in peer-to-peer networks [35, 76], content

distribution networks [8, 20], and mobile cloud computing [14].

Mechanism Design in Ad Hoc Networks. Zhong et al. [105] was one of the first to apply mechanism design to

the mobile ad hoc network and designed a practical cryptographic model for payment delivery in such networks.

Unlike the previous works where each player must have a private cost type, it assumed the information held by each

player is not totally private (as each player maintains a public-private key pair). It also assumed all the transit nodes

get the same payment amount indifferent from its cost in its payment model. Anderegg and Eidenbenz [7] focused

on the cost-of-energy parameters and the route discovery and recovery in a mobile ad hoc setting and designed a

variation of the VCG mechanism that achieved truthful and cost-efficient ad hoc routing. They assumed that the

source nodes were always truthful. Wang et al. [86, 89] studied multicast and showed that when all the costs are

private information, there is no efficient VCG-based mechanism that guarantees truth-telling due to the NP-hardness

of the problem. Their designed multicast protocols are minimum spanning tree-based approximation algorithms

wherein each agent maximizes its profit when it truthfully reports its cost. However, their mechanism only worked

on tree-based structures. Chen et al. [12] considered the multicast under unreliable wireless links and proposed a

distributed game-based algorithm that achieves Nash Equilibrium. Recently, some research [69, 93, 94] deviated from
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traditional ad hoc routing and considered opportunistic routing wherein nodes overhear the packets to participate in

packet forwarding. They designed games that achieved social efficiency and Pareto-efficient Nash equilibrium with

faithfulness as a given property. Felegyhazi et al. [28] studied the Nash equilibria of packet forwarding strategies in

wireless ad hoc networks. They showed the equilibrium conditions for cooperative and noncooperative strategies

using the theory of iterative games.

Different from the above payment (or price) based incentive mechanism, other works in ad hoc networks proposed

to use reputation or acknowledgment systems to detect routing misbehavior and to motivate cooperation among

selfish players [46, 52, 55, 58]. In particular, Li and Shen [52] studied the incentive strategies in both reputation and

price-based systems and observed that combining a reputation and price-based system is a promising method to

provide strong incentives.

Game-theoretical Techniques in Sensor Networks. In contrast to ad hoc network research that mainly focuses

on routing between source and destination communication pairs (i.e., one-to-one model), sensor networks sense the

environment and send the sensory data at multiple nodes back to the base station (i.e.,many-to-onemodel) for storage,

viewing, and analysis. Existing research works applying game theory to solve various sensor network problems

include topology (and power) control, connectivity, and coverage [43, 73, 74], duty cycling and media access control

(MAC) protocols [2, 13, 21, 100], data routing (i.e., packet forwarding) and aggregation [9, 48, 59, 64, 85], security

and threats prevention [3, 54, 101], and task allocation [6, 75]. As data preservation in BSNs is essentially a packet

forwarding mechanism, below, we review all the existing works that apply game theory to study data routing in

sensor networks.

Attiah et al. [9] proposed an evolutionary routing game for energy balance in wireless sensor networks. The goal

was to reduce the load and avoid collisions on the most used routes in a distributed manner. They derived a mixed

strategy Nash Equilibrium and showed that it also achieves fairness. Voulkidis et al. [85] proposed a coalitional

game-theoretic scheme that maximizes the network lifetime. It employed the spatial correlation among sensory data

to reduce the transmitted data packets. Kannan et al. [48] focused on length and energy-constrained information

routing in sensor networks and proposed several payoff models and utility functions. They showed that for each

utility function, there exists a Nash equilibrium. Niyato et al. [64] studied the solar-powered sensor network that

uses a sleep and wakeup strategy for energy conservation. They modeled nodes’ sleep and wake-up strategies as a

bargaining game and derived the Nash equilibrium as the game’s solution.

A careful study reveals that no existing work addressed data preservation in BSNs. Besides, they mainly focused on

incentivizing the nodes on the shortest path between the source and well-known destination (e.g., base stations) or

minimum spanning tree covering them. As shown in all the above literature, such paths are one-to-one, many-to-one,

or one-to-many (i.e., multicast) communication models. Different from all existing work, our BSN model is indeed an

any-to-any model where data from any data nodes can be offloaded to any storage nodes in the BSN. As such, it needs

to decide the destination for each data packet and the routing from its data node to the destination, which prompts a

new challenge that has yet to be tackled by any previous game theory research. To tackle this challenge, we convert

the data preservation problem into a minimum-cost network flow problem [4]. Minimum cost flow generalizes the

shortest path and minimum spanning tree and can find destinations and the routing to the destinations for the data

packets in the BSN. Compared to the existing approach, network flow techniques are better suited for BSNs to achieve

more robust data preservation. However, how game theory plays a role in nodes’ behaviors in network flow-based

problems remains largely unexplored.

Incentive Mechanisms in Crowdsensing. In recent years, incentive mechanisms have been applied in mobile crowd-

sensing to exploit the "wisdom" of many mobile users [102]. They mainly focused on designing economic mechanisms

to stimulate user participation and to incentivize users to provide more accurate sensing data [22, 36, 37, 47, 50, 67,

97, 104]. Our data preservation incentive model is similar to the crowdsensing model in that both motivate nodes or

users to contribute their resources (i.e., storage, computations, and energy); however, with different network models

and application goals. In mobile crowdsensing, the main task is enlisting users to sense the surrounding environment

for monitoring traffic, health, or social behavior. It mainly used the Stackelberg game [29] where the leader moves

first, and then the followers move. However, a base station (i.e., a centralized server) still collects all the sensed data

and executes the tasks. In data preservation in BSNs, the main task is to enlist the nodes to preserve the sensed data,

as no base station is available to collect and store the data. Besides, our model has no clear distinction between leaders

and followers, as a data node can be either a leader (to offload its overflow data) or a follower (to relay data for other

data nodes). As a result, Stackelberg games are unsuitable for solving our data preservation problem.

Data Preservation in the BSN.With its theoretical rigor and powerful applicability, network flows and their related

algorithms have been widely used in computer science, operations research, and engineering [4, 34, 77]. Our previous

, Vol. 1, No. 1, Article . Publication date: June 2020.



6 • Yuning Yu, Shanglin Hsu, Andre Chen, Yutian Chen, and Bin Tang

data preservation research in BSNs has indeed used the minimum cost flow to model the energy optimization [19, 82]

and to achieve fault-tolerance [81], designed a maximum weighted flow algorithm to preserve data packets of different

values [96], uncovered a suite of new multiple traveling salesman placement problems for data aggregation [80, 83],

and designed a quadratic programming solution to maximize survival time of preserved data packets [42]. Our BSN

model, with its theoretical roots in network flows and its simplicity, may inspire new architectures for future network

infrastructures and applications. It is a very general information producer and consumer model that has not been

adequately explored in any other context.

Chen et al. [15] designed a computationally efficient and truthful VCG-based data preservation game for BSNs

assuming that storage nodes are selfish and all sensor nodes have infinite energy. We show that when storage nodes

have a limited energy power, the VCG mechanism proposed in [15] is no longer truthful. They further considered data

packets to have different values, and that both data and storage nodes are selfish [15]. They designed a voluntary data

preservation game for all the nodes in the BSN. Recently, Ly et al. [57] gave an analytical analysis of the performance

guarantee of this game, showing that under certain conditions, its worst-case budget imbalance is at most n3 times

the efficiency gain, where n is the number of sensor nodes in the network. Rivera [72] designed a suite of data

preservation games that achieve NEs, and analyze their efficiency loss in terms of the price of anarchy and the price

of stability [51].

3 PROBLEM FORMULATION OF DPP
Network Model. We represent the BSN as an undirected connected graph G(V ,E), where V = {1, 2, ...,n} is the set
of n sensor nodes and E is the set ofm edges. In the BSN, some sensor nodes are close to the event of interest and

generate many data packets, thus having already depleted their storage spaces; they are referred to as data nodes.
Their newly generated data packets that cannot be stored locally are overflow data packets. WLOG there are k data

nodes Vs = {1, 2, ...,k}, where data node i currently has di overflow data packets, each is a bits. Let d =
∑k

i=1 di
and D = {D1,D2, ...,Dd } be this set of d overflow data packets. Let s(j) ∈ Vs , 1 ≤ j ≤ d , denote D j ’s data node. The

rest sensor nodes in V −Vs = {k + 1,k + 2, ...,n} are referred to as storage nodes, as they have local storage spaces

available. Letmi be the available free storage space (in bits) at storage node i ∈ V −Vs . Note that sensor nodes that
have generated some sensory data locally but have not depleted their storage spaces are considered storage nodes.

We assume there is a central authority existing in the system to compute the data preservation solution and design

the corresponding mechanism, as well as to pay the rewards to the sensor nodes.

Because of the storage depletion of the data nodes, their generated overflow data packets must be offloaded to

some storage nodes to be preserved and to wait for the arrival of uploading opportunities. The process of offloading

packets from data nodes to storage nodes is referred to as data preservation in a BSN. Fig. 2 shows a BSN G(V ,E)
with two data nodes 1 and 2, each having one overflow data packet to offload, and two storage nodes 3 and 4, each

having two storage spaces available. When the sensor nodes are selfish, offloading data packages from data nodes to

storage nodes may cause data privacy problems, which can solve by privacy-preserving incentive mechanisms such

as PrivAim [87].

Data Packets

Storage Spaces

1

2

4

G(V,E)

3

Fig. 2. A BSN G(V ,E) with two data nodes 1 and 2, each having one data packet to offload, and two storage nodes 3 and 4, each
having two storage spaces.

Energy Model. Each sensor node i ∈ V has an initial energy level Ei . We augment the first-order radio model [40]

and consider three different kinds of energy consumption incurred in data preservation.

• Receiving Energy Eri . When node i receives an a-bit data packet from one of its one-hop neighbors, the amount

of receiving energy it spends is Eri = a · ϵei . Here, ϵ
e
i = 100nJ/bit is the energy consumption per bit on the

receiver or transmit circuit of node i . We refer to it as receiving parameter. Note that Eri only depends on the

size of the data i receives, not the distance between it and the sender.
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• Transmission Energy Eti (j). When node i sends a data packet of a bits to its one-hop neighbor j over their
distance li, j , the amount of transmission energy spent by i is Eti (j) = a · ϵai · l2i, j + a · ϵ

e
i . Here, ϵ

a
i = 100pJ/bit/m2

is called transmission parameter, which is the energy consumption of sending one bit on transmit amplifier of

node i . Note that Eti (j) includes the energy consumption on both i’s transmit amplifier and transmit circuit and

depends on the distance between nodes i and j and the data size.

• Storing Energy Esi . When node i stores a-bit data into its local storage, the amount of storing energy it consumes

is Esi = a · ϵsi . Here ϵ
s
i is referred to as the storing parameter and is the energy consumption of storing one bit at

node i; its default value is 100nJ/bit . Note Es only depends on the size of the data it stores.

When a node relays (i.e., receives then transmits) a data packet, it still needs to buffer it in its local memory before

transmitting it to the next node. However, we assume the energy cost of storing on the memory is much smaller than

the energy cost of storing on the storage, thus is negligible.

Cost Parameters of Sensor Nodes. We refer to {ϵai , ϵ
e
i , ϵ

s
i } in the energy model as node i’s cost parameters. Our energy

model differs from the well-known first-order wireless radio model [40] and most existing research in two aspects.

First, the first-order model does not consider storing energy parameterized by ϵsi , as storing energy of a sensor node

is usually considered negligible compared to transmission and receiving energy. However, Mathur et al. [1] examined

the energy consumption of different currently available flash memory, a viable storage technology for low-power,

energy-constrained wireless sensor networks. They found that read, write, and erase energy consumption per byte

for Hitachi MultiMedia Cards (MMC) and NAND flash memory are 1.108 µJ and 0.062 µJ , respectively (which are

equivalent to 139 nJ/bit and 8 nJ/bit , respectively). Therefore, the energy consumption of storing data packets on

sensor nodes can not be neglected, especially considering that large amounts of data are generated and stored at

sensor nodes in a BSN. Second, existing research (e.g., [48]) assumes the energy cost of transmission only depends on

distances between sensors, which implies that ϵai and ϵei have the same values for different sensor nodes i . However,
Wang and Yang [88] pointed out that energy consumption is a function of the features of devices. Specifically, they

found that the energy consumption on circuits varies significantly from state to state of a sensor device and among

different types of sensor devices. Following this spirit, we assume that different sensor nodes could have different

values of the same parameter. All three cost parameters ϵai , ϵ
e
i , and ϵsi are node dependent. Table 2 shows all the

notations.

Problem Formulation of DPP. Define a preservation function as p : D → V − Vs , indicating that a data packet

D j ∈ D is offloaded from its data node s(j) ∈ Vs to a storage node p(j) ∈ V −Vs to be preserved. Let Pj = {s(j), ...,p(j)}
be the preservation path along which D j is offloaded. Let ci, j denote node i’s energy consumption in preserving D j

and ci =
∑d

j=1 ci, j be the total energy consumption of node i in preserving all the data packets. ci, j can be represented

as Equation (1) below, with σ (i, j) being the successor node of i on Pj .

ci, j =


Eti (σ (i, j)) i = s(j),
Eri + E

s
i i = p(j),

Eri + E
t
i (σ (i, j)) i ∈ Pj − {s(j),p(j)},

0 otherwise.

(1)

The objective of DPP is to find a preservation function p and Pj (1 ≤ j ≤ d) to minimize the total preservation cost c in
the BSN, where

c = minp

n∑
i=1

ci = minp

n∑
i=1

d∑
j=1

ci, j , (2)

under the storage constraint of storage nodes: |{j |1 ≤ j ≤ d,p(j) = i}| ·a ≤ mi , ∀i ∈ V −Vs , and the energy constraint

of all sensor nodes:

∑d
j=1 ci, j ≤ Ei , i ∈ V .

4 ALGORITHMIC SOLUTIONS OF DPP
We first consider a special case that sensor nodes are not energy-constrained (i.e., Ei = +∞, 1 ≤ i ≤ n) and refer to it

as DPP-W. Tang et al. [82] have solved DPP-W as a minimum cost flow (MCF) problem, which is presented below for

completeness. We then consider general DPP and solve it with an MCF-based ILP optimal solution.

4.1 Solving DPP-W
Minimum Cost Flow (MCF) Solution.We formally introduce MCF as follows. Given a directed graphG ′ = (V ′,E ′)

with a source node s and a sink node t , each edge (u,v) ∈ E ′
has a capacity a(u,v) as well as a cost d(u,v).
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Table 2. Notation Summary

Notation Description

V V = {1, 2, ...,n} is the set of n sensor nodes

Vs Vs = {1, ...,k} is the set of k data nodes, and

V −Vs V −Vs = {k + 1, l + 2, ...,n} is the set of n − k storage nodes

di Number of overflow data packets from data node i ∈ Vs
mi Storage capacity of storage node i ∈ V −Vs
D D = {D1,D2, ...,Dd } is the set of d overflow data packets

s(j) The data node of D j ∈ D
Ei Initial energy level of sensor node i
E

′

i Remaining energy level of sensor node i after data offloading

Eti (j) Transmission energy spent by i to transmit one packet to j
Eri Receiving energy spent by i to receive one data packet

Esi Storing energy spent by i to store one data packet

ϵai transmission parameter of node i
ϵei receiving parameter of node i
ϵsi storing parameter of node i
p Data offloading function p : D → V −Vs
Pj The offloading path of data packet D j ∈ D
σ (i, j) Node i’s successor node in Pj
ci, j Node i’s energy cost of offloading data packet D j
ti ti = {ϵei , ϵ

a
i , ϵ

s
i } is the true private type of node i

t̃i reported private type by node i
xi, j The amount of flows on edge (i, j) in flow networks for ILP

ci The true cost of node i
c̃V The minimum total preservation cost of the network when i reports its cost c̃i
cV−{i } The minimum total preservation cost of the network when i is removed

pi (t̃i , t−i ) The payment received by node i when it reports t̃i in DPG-1

πi (t̃i , t−i ) Node i’s utility when it reports t̃i in DPG-1

pxi (t̃i , t−i ) The payment received by node i when it reports t̃i in DPG-2

πx
i (t̃i , t−i ) Node i’s utility when it reports t̃i in DPG-2

G ′(V ′,E ′) The flow network used to solve DPP-W, where Ei = ∞

G ′′(V ′′,E ′′) The flow network used to check if a DPP instance with Ei being finite is feasible (i.e., DPP-F)

G ′′′(V ′′′,E ′′′) The flow network used to compute the minimum total data preservation cost when feasible

Let f (u,v) be the flow on edge (u,v) ∈ E ′
. The goal of MCF is to find a flow function f to minimize the total

cost of transmitting y amount of flow from s to t , i.e. Σ(u,v)∈E′

(
d(u,v) · f (u,v)

)
, subject to (a) capacity constraint:

f (u,v) ≤ a(u,v),∀(u,v) ∈ E ′
, (b) flow conservation constraint:

∑
u ∈V ′ f (u,v) =

∑
u ∈V ′ f (v,u), for eachv ∈ V ′−{s, t},

and (c) the net flow out of s and the net flow into t are both y.
Tang. et al. [82] has proved that the DPP-W in BSN graph G(V ,E) is equivalent to the MCF problem in a flow

network G ′(V ′,E ′), shown in Fig. 3(a), that is properly transformed from the G(V ,E). We refer to this transformation

that constructs Fig. 3(a) as Transformation I, which includes the following five steps.

Transformation I

1). V ′ = {s} ∪ {t} ∪V , where s is the source node and t is the sink node in the flow network.

2). E ′ = {(s, i)} ∪ {(i, j)} ∪ {(j, t)}, where i ∈ Vs and j ∈ V −Vs . Note that it is a complete bipartite graph between

Vs and V −Vs .
3). For each edge (s, i), set its capacity as di , the number of data packets at i ∈ Vs , and cost as 0. For each edge (j, t),

set its capacity asmj , the storage capacity of j, and the cost as 0.

4). For each edge (i, j), set its capacity as di and cost as c(i, j). Here c(i, j) is the minimum energy consumption

sending one data packet from data node i to storage node j.

5). Set the supply at s and the demand at t as d =
∑k

i=1 di , the total number of overflow data packets.
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(a) G’(V’,E’) (b) G’(V’,E’) for the BSN in Fig. 2

Fig. 3. (a) shows the flow network G ′(V ′,E ′) transformed from BSN graph G(V ,E). (b) shows the flow network G ′(V ′,E ′)
transformed from the BSN graph G(V ,E) in Fig. 2.

We have |V ′ | = |V ′ | + 2, |E ′ | = |V | + |Vs | · |V −Vs |. The time complexity of Transformation I is O(|V |3), as we can

use Floyd-Warshall all-pair shortest path algorithm [18] to compute c(i, j) between any data node i and any storage

node j . As an example, with this transformation, the BSN graph shown in Fig. 2 is now converted to the flow network

shown in Fig. 3(b).

Next, we apply MCF algorithms on G ′(V ′,E ′) to find the minimum total data preservation cost. There are many

optimal and efficient combinatorial MCF algorithms, including cycle canceling, successive shortest path and capacity

scaling, and network simplex [4]. We indeed adopt the scaling push-relabel algorithm proposed in [33]. We refer to

this scaling push-relabel-based MCF algorithm as PR-MCF. PR-MCF has the highest performance codes available for

network optimization and has worked well over many problem classes. It has the time complexity of O(|V ′ |2 · |E ′ | ·

log(|V ′ | ·C)), whereC is the maximum capacity of an edge inG ′(V ′,E ′) [33]. As |V ′ | = |V ′ |+2, |E ′ | = |V |+ |Vs | · |V −Vs |
following Transformation I, PR-MCF takes O

(
|V |4 · log(|V | ·max{di ,mj })

)
to solve DPP-W.

4.2 Solving DPP
In the general case of DPP, where sensor nodes have limited battery power, some sensors may exhaust their energy

power during data preservation. This can cause network partition between data nodes and storage nodes and obstruct

the data preservation process. Consequently, some data packets may not be offloaded successfully from their data

nodes to some storage nodes to be preserved. When all the d overflow data packets can be offloaded, we say the data

preservation is feasible; otherwise, it is not feasible. Therefore, before solving DPP, we first study data preservation
feasibility problem: Given any DPP instance, can all its d overflow data packets be offloaded from their data nodes

into the BSN for data preservation due to energy constraints of sensor nodes? We refer to this problem as DPP-F and

propose a maximum flow-based ILP solution below.

Note that infeasible data preservation could be attributed to either insufficient storage spaces or insufficient energy

power of sensor nodes. In this paper, we assume there are enough storage spaces in the BSN (i.e.,

∑n
i=k+1mi ≥ d · a)

thus, infeasible data preservation is attributed only to insufficient energy.
2

4.2.1 Solving DPP-F. To solve DPP-F, we transform the BSN graph G(V ,E) to another flow network G ′′(V ′′,E ′′).

This transformation strives to represent the initial battery power Ei of sensor node i as an edge capacity so that

the energy constraint of sensor nodes can play a role in the data preservation process. When a sensor’s energy is

depleted, it can no longer participate in data preservation. This transformation, which constructs G ′′(V ′′,E ′′) from

G(V ,E) and is referred to as Transformation II, takes below four steps.

Transformation II

1). In G(V ,E), replace each undirected edge (i, j) ∈ E with two directed edges (i, j) and (j, i). Set the capacities of
all the directed edges as +∞.

2
We refer to infeasible data preservation due to insufficient storage spaces (i.e.,

∑n
i=k+1mi < d · a) as overall storage overflow. Overall storage

overflow can be solved by aggregating the overflow data packets following their spatial correlation pattern [80]. We leave the design of a data

aggregation game under overall storage overflow as future work.
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Fig. 4. (a): the flow network G ′′(V ′′,E ′′) that solves DPP-F for the BSN in Fig. 2. (b): the flow network G ′′′(V ′′′,E ′′′) that finds
the minimum preservation cost for the BSN in Fig. 2, given that it is feasible.

2). Split node i ∈ V into two nodes: in-node i ′ and out-node i ′′. Add a directed edge (i ′, i ′′) with a capacity of Ei , the
initial energy level of node i . All the incoming directed edges of node i are incident on i ′, and all the outgoing

directed edges of node i emanate from i ′′. Therefore the two directed edges (i, j) and (j, i) in Step 1) are now

changed to (i ′′, j ′) and (j ′′, i ′).
3). Add a source node s , and connect s to the in-node i ′ of the data node i ∈ Vs with an edge. Set the capacity of

this edge as di , the number of data packets at data node i .
4). Add a sink node t , and connect out-node j ′′ of the storage node j ∈ V −Vs to t . Set its edge capacity as

mj
a , the

storage capacity of storage node j in terms of the number of data packets. Recall thatmj is node j’s storage
capacity, and a is the size of a data packet in bits.

Therefore,V ′′ = {s}∪{t}∪{i ′ : i ∈ V }∪{i ′′ : i ∈ V } and E ′′ = {(i ′′, j ′) : (i, j) ∈ E}∪{(j ′′, i ′) : (i, j) ∈ E}∪{(i ′, i ′′) :
i ∈ V } ∪ {(s, i ′) : i ∈ Vs } ∪ {(j ′′, t) : j ∈ V −Vs }. With Transformation II, the BSN graphG(V ,E) in Fig. 2 is converted

to flow network G ′′(V ′′,E ′′) in Fig. 4(a). Next, we formulate and solve ILP program (A) below on the obtained flow

networkG ′′(V ′′,E ′′) to find the maximum amount of data packets that can be offloaded under energy constraint. In

ILP (A), xi j is the number of flows on edge (i, j) ∈ E ′′
.

(A) maximize

∑
i ∈Vs

xsi′ (3)

s.t. xsi′ ≤ di , i ∈ Vs (4)

xi′′t ≤
mi

a
, i ∈ V −Vs (5)

xsi′ +
∑

j :(i, j)∈E

x j′′i′ =
∑

j :(i, j)∈E

xi′′j′, i ∈ Vs (6)∑
j :(i, j)∈E

x j′′i′ =
∑

j :(i, j)∈E

xi′′j′ + xi′′t , i ∈ V −Vs (7)

Eri ×
∑

j :(i, j)∈E

x j′′i′ +
∑

j :(i, j)∈E

(Eti (j) × xi′′j′) ≤ Ei , i ∈ Vs (8)

Eri ×
∑

j :(i, j)∈E

x j′′i′ +
∑

j :(i, j)∈E

Eti (j) × xi′′j′ + E
s
i × xi′′T ≤ Ei , i ∈ V −Vs (9)

In ILP (A), Objective (3) is to find the maximum amount of packets that can be offloaded in the entire network.

Inequality (4) indicates the maximum number of packets data node i can offload is di , the initial number of data

packets data node i has. Inequality (5) indicates the maximum number of packets storage node i can store is
mi
a , where

mi is the storage capacity of storage node i , and a is the size of each packet. Equation (6) shows the flow conservation

for data nodes, where the number of its own data packets offloaded plus the number of data packets it relays for other

data nodes equals the number of data packets it transmits. Equation (7) is the flow conservation for storage nodes,

which says that data packets a storage node i receives are either relayed to other nodes or stored by i . Inequalities (8)
and (9) represent the energy constraints for data and storage nodes, respectively.
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Theorem 1. Given any DPP instance G(V ,E), if
∑
i ∈Vs

xsi′ = d when applying ILP (A) on G ′′(V ′′,E ′′), then this DPP

instance is feasible.

Proof: First, when
∑
i ∈Vs

xsi′ = d , there are d amount of flows going from s to t in G ′′(V ′′,E ′′). As the edge capacity

between s and i ′ is di , it must be that di amount of flows going from s into i ′. Due to flow conservation in all nodes

V ′′ − {s, t}, it must be that di amount of flows going out of i ′′.
Second, with the node-splitting technique in Step 2) in Transformation II, the initial energy level of node i (i.e., Ei )

is now the capacity of edge (i ′, i ′′) ∈ E ′′
. As the energy consumption of any node i , which is represented by the l.h.s

of Inequality (8) and (9) in ILP (A), is less than Ei , it guarantees that node i does not exceed its energy capacity during

data preservation in G(V ,E).
Therefore, all the d packets in BSNG(V ,E) can be offloaded from their data nodes to storage nodes while satisfying

the energy constraints of sensor nodes, yielding feasible data preservation.

For a feasible DPP instance, we next compute its minimum total energy consumption (i.e., total preservation cost)

in Section 4.2.2.
3

4.2.2 Solving DPP. To compute the minimum total data preservation cost for a feasible DPP instance, we again

transform the BSN graph G(V ,E) to another different flow network G ′′′(V ′′′,E ′′′) following below four steps. We

refer to it as Transformation III.

Transformation III

1). In G(V ,E), replace each undirected edge (i, j) ∈ E with two directed edges (i, j) and (j, i). Split node i ∈ V into

two nodes: in-node i ′ and out-node i ′′ and add a directed edge (i ′, i ′′) with a capacity of Ei , the initial energy
level of node i , and cost of zero. All the incoming directed edges of node i are incident on i ′, and all the outgoing
directed edges of node i emanate from i ′′.

2). Add a source node s and connect it to the in-node i ′ of the data node i ∈ Vs , set its capacity as di , the number of

data packets at data node i , and set its cost as zero.

3). For directed edge (i ′′, j ′), set its capacity as infinity and cost as Eti (j) + E
r
j , the sum of node i’s transmission

energy and node j’s receiving energy. For directed edge (j ′′, i ′), set its capacity as +∞ and cost as Etj (i) + E
r
i ,

the sum of node j’s transmission energy and node i’s receiving energy.

4). Add a sink node t and connecting the out-node i ′′ of the storage node j ∈ V −Vs to t , set the capacity of the

edge as
mi
a , the storage capacity of i , and the cost of the edge as Esi , the energy consumption of storing one data

packet at node i .

Similar as G ′′(V ′′,E ′′) in Fig. 4(a), now V ′′′ = {s} ∪ {t} ∪ {i ′ : i ∈ V } ∪ {i ′′ : i ∈ V } and E ′′′ = {(i ′′, j ′) : (i, j) ∈
E} ∪ {(j ′′, i ′) : (i, j) ∈ E} ∪ {(i ′, i ′′) : i ∈ V } ∪ {(s, i ′) : i ∈ Vs } ∪ {(j ′′, t) : j ∈ V − Vs }. However, G

′′′(V ′′′,E ′′′) is

different from G ′′(V ′′,E ′′) as each edge in E ′′
only has a capacity, whereas each edge in E ′′′

has a capacity as well

as a cost. With Transformation III, the BSN graph G(V ,E) shown in Fig. 2 is now converted to the flow network

G ′′′(V ′′′,E ′′′) shown in Fig. 4(b).

Next, we formulate below ILP (B) and apply it uponG ′′′(V ′′′,E ′′′) to solve DPP. Here, xi j and ci j are the flow and

cost on edge (i, j) ∈ E ′′′
, respectively.

3
For an infeasible instance due to insufficient energy of sensor nodes, our previous work [96] proposed a maximum weighted flow-based data

preservation technique to maximize the total values preserved, assuming that data packets have different values. We leave designing a data

preservation game under insufficient energy power of sensor nodes as future work.
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(B) minimize

∑
(i, j)∈E′′′

xi j × ci j (10)

s.t. xsi′ = di , i ∈ Vs (11)

xi′′t ≤
mi

a
, i ∈ V −Vs (12)

xsi′ +
∑

j :(i, j)∈E

x j′′i′ =
∑

j :(i, j)∈E

xi′′j′, i ∈ Vs (13)∑
j :(i, j)∈E

x j′′i′ =
∑

j :(i, j)∈E

xi′′j′ + xi′′t , i ∈ V −Vs (14)

Eri ×
∑

j :(i, j)∈E

x j′′i′ +
∑

j :(i, j)∈E

(Eti (j) × xi′′j′) ≤ Ei , i ∈ Vs (15)

Eri ×
∑

j :(i, j)∈E

x j′′i′ +
∑

j :(i, j)∈E

Eti (j) × xi′′j′ + E
s
i × xi′′t ≤ Ei , i ∈ V −Vs (16)

Objective (10) is to minimize

∑
(i, j)∈E′′

xi j × ci j , the total energy cost of all the flows in the flow network (i.e., total

preservation cost). Note that Constraints (11)-(16) are similar to Constraints (4)-(9) in ILP (A), except that Constraint

(11) is now xsi′ = di , as all the di data packets at data node i can be offloaded in a feasible case. Theorem 2 below

shows ILP (B) finds the minimum total preservation cost for any feasible DPP graph G(V ,E).

Theorem 2. Given any feasible DPP instance in G(V ,E) and its transformed flow network G ′′′(V ′′′,E ′′′), applying
ILP (B) on G ′′′ gives the minimum total data preservation cost in G(V ,E).

Proof: We need to show that the energy consumptions of sensor nodes in data preservation are accurately

represented in Transformation III, and ILP (B) results in minimum total data preservation cost while satisfying the

storage and energy constraints of all sensor nodes.

First, recall that in Transformation III, an edge (i, j) ∈ E changes to two directed edges (i ′′, j ′) and (j ′′, i ′) ∈ E ′′′
,

with their costs being Eti (j) + E
r
j and E

t
j (i) + E

r
i , respectively. Consider any data packet inG offloaded from data node

i ∈ Vs , goes through a sequence of intermediate nodes (if any), and gets stored at a storage node j ∈ V −Vs . It has a
corresponding flow in G ′′′

that starts at source node s , goes to i ′ and i ′′, the in-node and out-node of data node i ,
and then goes through a sequence of in-node and out-node of intermediate nodes (if there are any), then goes to j ′

and j ′′, the in-node and out-node of storage node j, and finally ends at sink node t . Along the way, due to the cost
setup of edges (i ′′, j ′) and (j ′′, i ′), the transmission energy of i , and receiving and transmission energy of all other

intermediate nodes (if there are any), and the receiving and storing energy of storage node j is all accurately captured

in ci j , the cost of edge (i, j) ∈ E ′′′
. Second, because of its Objective (10), ILP (B) computes the minimum total data

preservation cost. Finally, Inequalities (12), (15), and (16) guarantee the storage constraint of storage nodes, the energy

constraint of data nodes, and the energy constraint of storage nodes are satisfied, respectively.

The above graph transformation is similar to the one used in [42] that solved a data resilience maximization problem

in the BSN. However, The objectives and the techniques in both works are different. In [42], the data resilience is

defined as the sum of the remaining energy of the destination nodes of all the preserved data packets. It is formulated

as a quadratic programming problem. For the DPP studied in this paper, the goal is to minimize the total energy

consumption in data preservation, formulated as an ILP problem. Note that so far, we have introduced two optimal

centralized data preservation solutions: ILP (B) for the DPP and PR-MCF for DPP-W. Although both solutions minimize

the total preservation cost in the BSN, they have different time complexity. PR-MCF is efficient with polynomial time

complexity as discussed in Section 4.1 while ILP (B) is time-consuming as the general class of ILP is NP-hard. However,

both solutions assume that all the sensor nodes are fully cooperative and will follow the algorithmic computation

to participate in the data preservation. This assumption is invalid for selfish nodes, which have zero incentive to

participate in data preservation. Or even if they are incentivized to participate, they tend to lie about their costs to gain

more utilities. We thus design suitable data preservation games to not only incentivize sensor nodes to participate

in data preservation but also to guarantee that reporting their true cost parameters is their dominant strategy. Our

games seamlessly integrate algorithmic mechanism design and its variations with network flow computations of

PR-MCF and ILP (B). In the below two sections, we design data preservation games for DPP-W and DPP, respectively.
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5 DPG-1: DATA PRESERVATION GAME FOR DPP-W
In this section, we design a data preservation game for DPP-W and refer to it as DPG-1: data preservation game-1.

We first present the DPG-1 in Section 5.1 and then prove in Section 5.2 that truthfulness is achieved in DGP-1. In

DPG-1, it is a dominant strategy for every storage node to truthfully report its private cost type.

5.1 Data Preservation Game DPG-1
We make two assumptions for the DPG-1 and the DPP-W instance it is applied upon. First, the BSN graph must

remain connected, and its represented DPP-W instance must be feasible for data preservation even if any one of the

sensor nodes is removed from the BSN. This is required by the payment model used in DPG-1. For example, for the

BSN instance shown in Fig. 2, after removing any node, the BSN is still connected, and its data preservation is still

feasible. Second, the data nodes must offload their overflow data packets to other storage nodes and thus need not be

motivated. That is, we assume that data nodes are always truthful and only the storage nodes are players in DPG-1.

How to motivate data nodes has been addressed in [24]. As DPG-1 is based on the classic Vickrey-Clark-Groves (VCG)

mechanism [17, 39, 84], we first introduce the VCG mechanism.

VCG Mechanism. There are n players or agents in the network - player i has some private information ti , called its

private cost type. Each player i has a set of strategies Ai . When i plays strategy ai ∈ Ai , the mechanism computes an

output o = o(a1, ...,an) and a payment vector p = (p1, ...,pn), where pi = pi (a1, ...,an) is the payment to player i . Player
i’s cost is given by cost function vi (ti ,o), which depends on ti and o. Player i wants to maximize its utility function
πi (a1, ..,an) = vi (ti ,o) + pi . Classic VGC mechanism provides a truthful solution for utilitarian problems where the

objective function is the sum of all agents’ valuations (i.e., costs) [61]. This suits our data preservation problem

well, wherein the total preservation cost is the sum of each node’s cost in data preservation. Next, we introduce the

corresponding private cost type, cost function, and strategy set used in DPG-1.

Private Cost Type, Cost Function, and Strategy Set in DPG-1. In DPG-1, storage node i’s private cost type
ti = {ϵei , ϵ

a
i , ϵ

s
i } consists of three cost parameters viz. transmission parameters ϵai , receiving parameter ϵei , and storing

parameter ϵsi .
4
Node i’s cost function is vi (ti ,o) = −

∑d
j=1 ci, j , wherein ci, j is node i’s energy cost in preserving data

packet D j and is given by Equation 1. Node i has three possible actions for each data packet: either it does not

participate in its data preservation, or when it participates, it may either relay (i.e., receive and then transmit) or store

(i.e., receive and then store) the data packet. The output of the DPG-1 is the data preservation process computed by

the minimum cost flow algorithm PR-MCF [33], which indicates how each data packet should be relayed or stored

by each storage node to achieve the minimum total preservation cost. Therefore node i’s strategy set Ai includes its

different ways to report ti as well as its actions for each data packet following the PR-MCF computation.

As both the data node and storage node can relay data packets while only the storage node can store data packets,

following the energy model defined in Section 3, we define the relaying cost of data node and storage node i and
storing cost of storage node i:

• Relaying Cost cri (j). When a data node or a storage node i receives a data packet from one of its neighbors and

then sends it to another neighbor j , its relaying cost, denoted as cri (j), is the sum of its receiving energy cost and

transmission energy cost. That is cri (j) = Eri + E
t
i (j) = 2 · a · ϵei + a · ϵai · l2i, j . Here, li, j is the distance between

node i and node j.
• Storing Cost csi .When storage node i receives a data packet from one of its neighbors and then stores it in its

local storage, its storing cost, denoted as csi , is the sum of its receiving energy and its storing energy. That is,

csi = a · ϵei + a · ϵsi .

We assume that the amount of data a data node generates during sensing is public knowledge. As a data node wish

to offload its overflow data packets into the BSN for preservation, it has no incentive to lie about how many data

packets it has.

Challenges of Applying VCG. We observe that there are two features of ti = {ϵei , ϵ
a
i , ϵ

s
i } that make directly applying

classic VCG to solve DPG-1 challenging.

1). In contrast to the scalar private cost type defined in classic VCG and used by existing works (e.g., the channel

gain in a wireless channel [90] and the emission signal strength used in [7]), ti in DPG-1 is a composite type
consisting of three cost parameters. Therefore there are 2

3 = 8 different combinations of the cost parameters

that a node can lie about ti . Whether choosing different combinations of the components of a composite private

cost type affects the truthfulness of classic VCG has yet to be explored.

4
As the goal of data nodes is to offload their overflow data packets, we assume they do not lie about their cost parameters and they are public

knowledge in the BSN.
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2). Consequently, many existing works assumed that an agent has a scalar private cost type, which only induces

its binary action of either doing it or not doing it.
5
In contrast, in DPG-1, the relationship between node i’s

cost parameters in ti and its incurred costs is more complicated: ϵei is involved in both receiving cost cri (j) and
storing cost csi , while ϵ

a
i is involved only in cri (j) and ϵ

s
i is involved only in csi . By lying about different cost

parameters to different extents, a node might manipulate its cost and switch from one action to another.

For 1), we prove rigorously that the truthfulness of classic VCG still holds for composite private cost types and

then validate it by our simulation results. For 2), as there is a need to study which cost parameters are more impactful

in the truthfulness of DPG-1, we conduct extensive simulations to investigate and give some insights into how they

play a role in the truthfulness of DPG-1.

Payment and Utility Model in DPG-1. Next, we derive the payment and utility functions used in the DPG-1.

Let ci =
∑d

j=1 ci, j be the total data preservation cost of node i computed by the PR-MCF proposed in Section 4.1,

and t−i = {t1, ....., ti−1, ti+1, ..., tn} be the vector of cost types of all other nodes except node i . We give the below

definitions.

Definition 1. (Payment and Utility in DPG-1.) Based on Green and Laffont [38], given any cost t̃i reported by

node i , the amount of payment given to node i depends on whether node i is chosen to participate in data preservation

or not according to the PR-MCF computation. Its payment is 0 if it is not chosen; when it is chosen, its payment is:

pi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ). (17)

Here, c̃V is the minimum total preservation cost of the network when i reports its cost c̃i , and cV−{i } is the minimum

total preservation cost of the network when i is removed. Both can be computed using the PR-MCF algorithm. i’s
utility is 0 when it is not chosen; and when i is chosen, its utility is

πi (t̃i , t−i ) = pi (t̃i , t−i ) − ci = cV−{i } − (c̃V − c̃i ) − ci , (18)

where ci is node i’s true cost (i.e., its energy cost based on the true values of its cost parameters). Moreover, we define

cV as the minimum total preservation cost in the BSN when i truthfully reports its cost (i.e., t̃i = ti ).

The above payment and utility models are common knowledge to each node. That is, each node knows that based

on their reported cost types, their payment and utility are computed by (17) and (18), respectively. For example, for

the BSN instance in Fig. 2, suppose the total preservation cost when node 3 is removed (i.e., cV−{3}) is 10, and suppose

that when node 3 participates by truth-telling its private cost type, its cost is 2 and the total preservation cost is 8.

Then according to Equations (17) and (18), 3’s payment is 10 − 8 + 2 = 4 and its utility is 4 − 2 = 2 when truth-telling.

Discussions. The amount of payment given to a specific node i equals the total preservation cost when i is removed

from the network minus all other participating nodes’ costs when i participates. That is, i’s payment is the energy

cost that node i helps to reduce for the entire network when it participates in data preservation. i’s utility is its

payment minus its true cost, which is i’s marginal contribution to the network in preserving data packets. As node i is
compensated with its share of contribution in the payment amount, it is thus motivated to participate if its received

utility is greater than 0. The time taken to compute the payment is the time taken for the PR-MCF algorithm.

Data Preservation Game DPG-1. With the above preparations, we present the DPG-1. It has three stages.

1). Each storage node reports its private cost type ti .
2). Based on the reported cost types, the PR-MCF algorithm computes the data preservation process and its incurred

minimum total preservation cost.

3). Each storage node follows the computed data preservation to either participate or not. If it participates, it

receives the payment given by Equation (17) and gets the utility given by Equation (18).

Note that each storage node takes strategic moves in Stages 1 and 3, while Stage 2 is non-strategic, with only the

PR-MCF algorithm being executed. In Stage 1, a storage node reports its (either truth-telling or lied) private cost

type. In Stage 3, it decides whether to participate in data preservation based on its received utility. It will participate

if its utility is greater than zero; otherwise, it will not. Since there is a time sequence between the two decisions

in Stage 1 and Stage 3, the solution concept of the game is subgame perfect Nash equilibrium (SPNE). SPNE is a

Nash equilibrium (NE) in which players achieve NE in every subgame of the whole game tree. Next, we prove the

truthfulness of the DPG-1.

5
For example, Ad hoc-VCG [7], a VCG-based routing protocol for ad hoc networks, assumed that each ad hoc node has only one cost parameter

called cost-of-energy and has binary action of forwarding the packet or not. In COMMIT [24], a sender-centric truthful ad hoc routing protocol, the

only private information of a sender is its willingness to pay to establish the connection with the destination, and the sender’s action is to establish

this connection or not.
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5.2 Truthfulness of the DPG-1
The truthfulness is achieved if the resulting equilibrium of DPG-1 satisfies the following two properties.

(1) Individual-rationality (IR). It is the participation constraint that makes sure that each node, when truthfully

reporting its private cost type and is chosen by the PR-MCF, will receive positive utility and participate in the

data preservation. That is,

πi (ti , t−i ) ≥ 0 ∀t−i and ∀i ∈ V −Vs .

(2) Incentive-compatibility (IC). It requires that truthfully reporting private cost type is the dominant strategy of

each node. Namely, each node gets the highest utility under truth-telling regardless of reported types of other

nodes:

πi (ti , t−i ) ≥ πi (t̃i , t−i ) ∀t−i , ∀t̃i , ti and ∀i ∈ V −Vs .

Note that when IR and IC are satisfied, it is a dominant strategy solution to the DPG-1 that each node truthfully

reports its private type and participates in the game whenever chosen by the centralized algorithm PR-MCF.
6

Next, we present Lemma 1, which shows that for any node, even if it reports its private cost type differently, as

long as it is assigned the same data preservation tasks, the total preservation cost of the network does not change.

Lemma 1. For given t−i , consider two different types of node i denoted as t̂i , t̃i . If node i performs the same tasks
following the centralized algorithm PR-MCF under t̂i and t̃i , it must be that the real total minimized data preservation
costs remain the same under t̂i and t̃i .

Proof: We use contradiction to prove that when node i are performing the same tasks under t̂i and t̃i , the total
data preservation costs for all nodes other than i are the same under t̂i and t̃i . Recall that the minimized total data

preservation cost cV is the sum of ci and c−i . Denote ĉV = ĉi + ĉ−i the total minimized cost under (t̂i , t−i ) and
c̃V = c̃i + c̃−i the total minimized cost under (t̃i , t−i ). By way of contradiction, suppose ĉ−i , c̃−i . W.L.O.G., let

ĉ−i < c̃−i . Since node i takes the same tasks under t̂i and t̃i , it holds that all nodes other than i can use the data

preservation solution under (t̂i , t−i ) to offload data packets under (t̃i , t−i ). Thus under (t̃i , t−i ), switching to the same

data preservation solution used under (t̂i , t−i ) gives a total cost ĉi + c̃−i < c̃i + c̃−i = c̃V , a contradiction to cost

minimization of the centralized algorithm under (t̃i , t−i ).

Theorem 3. In the DPG-1, it is a dominant strategy of every storage node i to truthfully report its private cost type in
stage 1; then to participate in data preservation in stage 3 following PR-MCF. IR and IC are satisfied under the payment
given by (17).

Proof: Node i can either report truthfully or tell a lie about its cost type ti = {ϵai , ϵ
s
i , ϵ

e
i }. There are four cases for

the outcome of i under truthfulness and lying. Below we show that IR and IC are satisfied in all four cases.

Case I: Node i is not in the preservation path of a data packet when reporting either ti or t̃i . In this case πi (ti , t−i ) =
πi (t̃i , t−i ) = 0.

Case II: Node i is in the preservation path of a packet when reporting ti , which implies that cV−{i } ≥ cV ; and it is

not in the preservation path of the packet when reporting t̃i , which gives payoff πi (t̃i , t−i ) = 0. Thus its payoff under

truth-telling is πi (ti , t−i ) = cV−{i } − cV ≥ 0. In this case πi (ti , t−i ) ≥ πi (t̃i , t−i ).
Case III: Node i is not in the preservation path of a packet when reporting ti ; however, it is in the preservation path

of the packet when reporting t̃i . Thus πi (ti , t−i ) = 0. Denote c̃tiV as the true data preservation cost (based on (ti , t−i ))

when the data preservation route is determined under (t̃i , t−i ). We have cV−{i } ≤ c̃tiV due to cost minimization under

ti . Node i’s payoff under t̃i is πi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ) − ci = cV−{i } − (c̃V − c̃i + ci ) = cV−{i } − c̃tiV ≤ 0. Thus

πi (ti , t−i ) ≥ πi (t̃i , t−i ).
Case IV: Node i is in the preservation path when reporting either ti or t̃i . There are different subcases according to

the tasks assigned to node i . We discuss each subcase below:

Subcase IVa. Node i is assigned exactly the same tasks when reporting either ti or t̃i . By Lemma 1, node i is getting
the same payoff since πi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ) − ci = cV−{i } − cV = πi (ti , t−i ) ≥ 0.

Subcase IVb. The tasks assigned to node i are different under ti and t̃i . Note that all data packets are preserved
in either case since storage nodes are not energy-constrained. The payment of i when it reports truthfully is

πi (ti , t−i ) = cV−{i } − (cV − ci ) − ci = cV−{i } − cV ≥ 0. Instead when it lies by reporting t̃i , its payoff is πi (t̃i , t−i ) =

cV−{i } − (c̃V − c̃i ) − ci = cV−{i } − (c̃V − c̃i + ci ). Here c̃V − c̃i + ci ≡ c̃tiV , the total preservation cost calculated according

6
Note that we do not argue that truthfulness is the unique equilibrium since IR and IC only impose weakly dominance of truthfulness to each node.

There could be cases when a node is indifferent between lying and truth-telling. Therefore, other Nash equilibria involving one or multiple nodes

lying could exist. However, the dominant strategy solution is a strong solution concept since, to each node, truthfulness is never worse than lying,

no matter what other nodes choose to do. In some scenarios, truthfulness is strictly better than lying.

, Vol. 1, No. 1, Article . Publication date: June 2020.



16 • Yuning Yu, Shanglin Hsu, Andre Chen, Yutian Chen, and Bin Tang

to (ti , t−i ) using the route found by the centralized algorithm under (t̃i , t−i ). Since there is no data loss, by cost

minimization of the centralized algorithm under (ti , t−i ), c̃
ti
V ≥ cV . Thus πi (t̃i , t−i ) ≤ cV−{i } − cV = πi (ti , t−i ).

Thus IC is satisfied in all cases. Note that IR, the participation constraint under truth-telling, is also satisfied in all

cases since πi (ti , t−i ) ≥ 0 holds everywhere, as indicated in the above proof. Therefore, each node has truth-telling as

the dominant strategy and will willingly participate in data preservation.

Discussions. Let’s understand the intuition of Theorem 3 and its proof from the economic point of view. The idea

of the VCG mechanism is to give each storage node a net payoff (i.e., utility) according to its marginal contribution

to data preservation. Let’s consider the scenario wherein lying by storage node i leads to data preservation routes

different from those found under truth-telling. We can replace the preservation routes under node i’s truth-telling
with those found under its lying (this is always possible because nodes are not energy-constrained in DPG-1 thus no

data loss occurs). Now, since such replacement will only increase the total data preservation cost in the network, it

reduces node i’s marginal contribution to the network, implying a lower utility to node i . As such, the VCGmechanism

provides incentives for node i , to tell the truth and to participate in data preservation. However, the above argument

will no longer hold when nodes are energy constrained, which is studied in the following section.

6 DPG-2: DATA PRESERVATION GAME FOR DPP
In this section, we design a data preservation game called DPG-2 for the general case of DPP, wherein sensor nodes

have limited battery power. DPG-2 is based on our key finding Theorem 4 below. Theorem 4 states that if a storage

node has limited energy power, lying about its private cost type can possibly increase the node’s utility compared to

truth-telling. This observation invalidates the truthfulness of the DPG-1.

Theorem 4. When nodes are energy-constrained, the classic VCG mechanism proposed in DPG-1 cannot guarantee
that truthfulness is the dominant strategy for each storage node.

Fig. 5. An example shows the invalidity of standard VCG. Initial energy E2 = E3 = 2. As data nodes are always truthful, data
node 1’s cost parameters are not specified, and we assume E1 is large enough to offload node 1’s two data packets.

Proof:We design an example to demonstrate this. Consider a BSN instance in Fig. 5, where node 1 is the data node

with 2 data packets, and node 2 and node 3 are the storage nodes, each having a storage capacity of 2 and each having

a distance of 1 to node 1. Nodes 2 and 3 each have 2 units of initial energy. For ti = {ϵai , ϵ
s
i , ϵ

e
i }, suppose ϵ

a
i = ϵei = 0

for i = 2, 3, and ϵs
2
= 1, ϵs

3
= 1.5. Nodes 2 and 3 have zero relaying cost, but their storing costs for one data packet are

1 and 1.5, respectively. Therefore, with their energy capacity, node 2 can store two data packets from node 1, and

node 3 can store one data packet from node 1.

First, consider truth-telling by nodes 2 and 3. Following the optimal ILP (B) proposed in Section 4.2.2, it will offload

node 1’s two data packets to node 2, and node 3 does not store any data packet. The total data preservation cost is 2

and node 3’s utility is π2(t2, t3) = 0.

Next, consider that node 3 lies by downsizing its private cost type t̃3 = ϵs
3
as 0.8 (as ϵa

3
= ϵe

3
= 0) while node

2 is telling the truth. In this case, the ILP (B) will choose node 3 to store node 1’s two data packets, and the

ILP (B) computes the total data preservation cost as 2 ∗ 0.8 = 1.6 according to node 3’s reported private cost

type. With only 2 units of energy, however, node 3 can only store one data packet and has to drop the other; its

true cost is thus c3 = 1.5. Under the VCG mechanism in DPG-1 and following Equation (18), node 3’s utility is

π3(t2, t̃3) = cV−{3} − c̃V + c̃3 − c3 = 2 − 1.6 + 1.6 − 1.5 = 0.5 > 0. Unlike its truth-telling case, in which node 3’s utility

is π2(t2, t3) = 0, node 3 is incentivized to lie about its private cost type to gain a positive utility of 0.5. We conclude

that in DPP, the classic VCG mechanism can fail to satisfy IC or/and IR and no longer guarantee the truthfulness of

storage nodes.
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Discussions. Note that a node has no incentive to upsize its private cost type (i.e., by exaggerating that it takes more

energy than needed to participate in the data preservation). With such a claim and to minimize the total preservation

cost, the MCF-based ILP (B) will not assign a heavier data preservation load to this upsizing node than when it

is truth-telling. An extreme case is that if a node claims infinite cost in any data preservation task, it will then be

excluded from data preservation. Consequently, with less load than truth-telling, the upsizing node will never run

out of its energy; therefore, no data loss will occur. In this upsizing case, the argument in Theorem 3 continues to

hold that a node cannot strictly improve its utility through exaggeration; i.e., truth-telling is its dominant strategy.

Fig. 5 shows two possible consequences when a storage node i downsizes its private cost type. First, the value of c̃V
in Equation (18) decreases. Second, node i can get assigned more data packets than it can possibly store or relay with

its energy capacity. As such, the node must drop some of the received data packets. As the value of cV−{i } does not

change whether i lies or not, i’s utility πi (t̃i , t−i ) increases following Equation (18).
7
Such data loss uniquely arises in

DPP and is not addressed by DPP-W and the classic VCG mechanism in DPG-1. Therefore, unlike the DPP-W wherein

a storage node does not have the incentive to lie about its private cost type (Theorem 3), in DPP, by following the

classic VCG mechanism and downsizing its private cost type, an energy-constrained storage node has the incentive

to lie to gain more utility at the cost of data loss of the system (Theorem 4).

DPG-2. Next, we present DPG-2, which improves DGP-1 and restores the truthfulness of the VCG. It consists of a

data loss-finding mechanism and a data loss-prohibiting mechanism.

Finding Data Loss. Fig. 6 illustrates how the data loss finding mechanism works, which first finds if a lying storage

node i drops packets, and if so, how many packets are dropped. Finding the number of dropped data packets (i.e., data

loss) is made possible by the computation of ILP (B) proposed in Section 4.2.2. Such network flow-level computation

can find out the number of data packets i receives, relays, and stores at a flow level and thus can find if it drops data

packets. Fig. 6 illustrates how this works. We refer to the total number of packets that i is assigned to receive, relay,

and save as assigned load, assigned relay, and assigned save, respectively. Due to flow conservation in ILP (B), assigned

load = assigned relay + assigned save.

Next, using the above information, we calculate how many packets in node i’s assigned load are actually saved
and relayed with its actual energy power available. We denote these two numbers as actual save and actual relay
respectively and compute as follows. First, among all the data packets it receives (i.e., assigned load), i saves as many

packets as its storage capacity allows. If packets are still left from the assigned load after the storage is full, i then
relays those that require the smallest transmission energy (i.e., packets that are relayed to closest neighbors) until its

energy power is depleted. The number of data packets relayed this way is actual relay. In this case, actual save equals

assigned save, as shown in Fig. 6. Otherwise, actual save is less than the assigned save, and the actual relay is zero. In

either case, the sum of actual save and actual relay must equal the actual load, the number of packets the storage

node handles. Finally, we compare the actual load with the assigned load. If they are equal, there is no data packet

dropped. Otherwise, it must be that the actual load is less than the assigned load, and their difference is the number

of data packets dropped by i . We refer to this as data loss in Fig. 6. Algorithm 1 below shows the detailed execution of

how to find the data loss.

Data Loss Inhibiting Mechanism. As the failure of the VCG mechanism in DPG-1 is due to dropping data packets

by energy-constrained storage nodes, we now modify the standard VCG model to inhibit such data loss. Our main

idea is to introduce a data loss inhibiting mechanism into the standard VCG model to punish any node that drops

data packets. We first use Algorithm 1 to find out if a storage node i drops the packets and if so, how many are

dropped. Note that as Algorithm 1 accommodates the reported private cost types of storage nodes, it is still valid

in a game-theoretic context. In a practical operation, as sensor nodes use wireless communication that is broadcast

7
We investigate the effect of downsizing of i ’s private cost upon c̃i and ci via simulations in Section 7.

assigned	and	actual	 save

i

assigned	relay

actual	load

data	loss

assigned	load

actual	load	=		actual	save	+	actual	relay

data	loss =	assigned	load	– actual	load	

:	data	loss	in	data	preservation
:	actual	data	preservation

actual	relay

Fig. 6. Finding data packets dropped by lying storage node i .
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Data: A BSN graph G(V ,E).
Result: Detect if data loss occurs at storage node i .
Transform G(V ,E) to a flow network G ′′′(V ′′′,E ′′′) following Transformation III in Section 4.2.2;

Apply ILP (B) on G ′′′(V ′′′,E ′′′) to compute the assigned load, assigned relay, and assigned save;

if assigned load > ⌊
mi
a ⌋, where ⌊mi

a ⌋ is node i’s storage capacity then
actual save = assigned save = ⌊

mi
a ⌋;

assigned relay = assigned load − ⌊
mi
a ⌋;

actual relay = 0;

Sort the packets in the assigned relay in the non-descending order of their transmission energy;

Let Eicurr be the remaining energy of node i after receiving the assigned load amount of data packets

following ILP (B);

// In the assigned relay, relays those incurring minimum transmission energy until i’s energy power is

depleted;

while Eicurr > 0 do
Eicurr = Eicurr − ⌊

mi
a ⌋ · a · ϵsi ; //compute the remaining energy after saving data packets;

Relay the packet in the assigned reply with minimum transmission energy;

Update Eicurr ;

actual relay = actual relay + 1;

end
else

actual save = assigned load;

actual relay = 0;

end
actual load = actual save + actual relay;

data loss = assigned load - actual load;

Return data loss;

Algorithm 1: Finding data loss at storage node i .

in nature, dropping packets of a node can be observed by its neighbors easily. As the number of received packets

minus the number of stored packets is the number of transmitted packets while each node’s storage capacity is public

knowledge, whether a node drops received data packets or not thus can be easily observed. For any node, we assume

at least one of its neighbors can observe how many data packets it receives and transmits. As the storage capacity

of a storage node is public knowledge, we thus can infer if the node discards any received data packets. Since data

loss can be easily detected by the network, storage nodes cannot secretly drop data packets and collect payment for

pretended data preservation. Therefore, it is not a concern that a storage node may drop data packets to gain any

benefits from the data preservation game. For ease of exposition, we simply assume that a node will not drop data

packets if it has enough energy to save or transmit them.

We propose the modified payment model as follows. Given reported type (t̃i , t−i ), whenever node i is chosen to

participate in data preservation, its payment is given by

pxi (t̃i , t−i ) = cV−{i } − (c̃V − c̃i ) − Ii · [cV−{i } − (c̃V − c̃i )]. (19)

Here, Ii = 1 if node i ever drops any data packet; Ii = 0 if not. Different from Equation (17), when node i drops any
data packet, it is now punished by receiving zero payment. The corresponding utility of node i is thus

πx
i (t̃i , t−i ) = p

x
i (t̃i , t−i ) − ci . (20)

Therefore, if node i drops any data packet, its utility calculated in (20) becomes −ci . In contrast, a node’s utility is at

most zero when it does not participate. Thus this prevents storage nodes from dropping packets.

DPG-2. With above preparations, we present the DPG-2 at below.

1). Each storage node reports its private cost type ti .
2). Based on the reported cost types, the ILP (B) computes the data preservation process and its incurred minimum

total preservation cost.

3). It calls Algorithm 1 to find the data loss if there is any.

4). Each storage node follows the computed data preservation to either participate or not. If it participates, it

receives the payment given by Equation (19) and gets the utility given by Equation (20).
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Theorem 5. In DPG-2, with the payment given by (19) and ti ∈ {ϵai , ϵ
s
i , ϵ

e
i }, both IR and IC are satisfied. Therefore,

DPG-2 guarantees that truthfulness is the dominant strategy for each storage node.

Proof: When there is no data loss of node i through reporting t̃i , the payment is the same as in (17) and the proof

follows the same as in Theorem 3. We consider the case when node i drops at least one data packet under t̃i , implying

that node i must be in the preservation path under t̃i . There can be two cases.

Case I: Node i is not in the preservation path when reporting ti and is in the preservation path when reporting t̃i .
Thus πx

i (t̃i , t−i ) ≤ 0 = πi (ti , t−i ).
Case II: Node i is in the preservation path when reporting either ti or t̃i . The utility of i when it reports truthfully is

πi (ti , t−i ) = cV−{i }−(cV −ci )−ci = cV−{i }−cV ≥ 0. Instead when it lies by reporting t̃i , its utility is π
x
i (t̃i , t−i ) = −ci ≤ 0.

Thus πi (ti , t−i ) ≥ πx
i (t̃i , t−i ).

The results immediately follow.

7 SIMULATION RESULTS AND ANALYSES

Network Topology. Fig. 7 shows the BSN topology used for our simulation experiments. 50 sensor nodes are

randomly placed in a field of 1000 meters by 1000 meters. The transmission range of each sensor node is 250 meters;

that is, two nodes can directly communicate with each other by sending or receiving data packets when they are in

this range. Among the 50 sensors, nodes 0-9 are data nodes and 10-49 are storage nodes. Each data node has 100 data

packets, each of which has a size of 512B. The storage capacitymi of storage node i varies from 26 to 50 data packets

(although 25 is the minimum storage capacity to successfully offload all the 1000 data packets, as we need to take out

one storage node when computing utilities while making the data preservation still feasible, we set the minimum

storage capacity as 26). After all the data packets are offloaded, the network is almost full withmi = 26 and is exactly

half-full withmi = 50. Compared to a half-full, an almost full network represents a more stressful network where a

storage node participates in more data preservation tasks (by either relaying or storing).

Fig. 7. A BSN with 50 nodes. Nodes 0-9 are data nodes and 10-49 are storage nodes.

For the cost parameters ϵei , ϵ
a
i , and ϵ

s
i , we consider both the homogeneous case wherein different storage nodes

have the same values for the same cost parameter (thus simplified as ϵe , ϵa , and ϵs ) and the heterogenous case wherein
different nodes have different values for the same cost parameter. For homogeneous case, the true values of ϵe , ϵa

and ϵs are 100 nJ/bit , 100 pJ/bit/m2
, and 100 nJ/bit , respectively; for heterogeneous case, they are random numbers

in the range of [100,200] nJ/bit , [100,200] pJ/bit/m2
, and [100, 200] nJ/bit , respectively.

We define the scaling factor, denoted as α , as the ratio between the reported and true values of a cost parameter for

a storage node. That is, when a storage node reports (i.e., lies) about a cost parameter of either ϵei , ϵ
a
i or ϵsi with a

scaling factor of α , the reported values become α · ϵei , α · ϵai , or α · ϵsi respectively. When α < 1, we say the node

scales down its cost by claiming it costs less energy than necessary; when α > 1, it scales up its cost by claiming it
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costs more energy than necessary (i.e., it exaggerates its cost); when α = 1, it is truth-telling. When a storage node i
lies about its private cost type ti = {ϵai , ϵ

s
i , ϵ

e
i }, it can choose to lie any combination of the three cost parameters.

7.1 Evaluating DPP-W and DPG-1
In DPP-W and its data preservation game DPG-1, each node has an infinite amount of energy, and the total preservation

cost is computed using the minimum cost flow algorithm, viz. PR-MCF in Section 4.1. We start with the general case

where each storage node lies all three parameters simultaneously. Then we look into the case where the storage node

lies one cost parameter at a time and examine how different cost parameters affect the utility of the storage node.

Lying Three Parameters Simultaneously. We consider the homogeneous cost parameters, and each storage node

lies all three cost parameters by randomly choosing its scaling factor α in the range of [0.1, 10]. The scaling factors of

the storage nodes relevant to our findings are shown in Table 3.

Fig. 8 compares the truth-telling and lying utilities of storage nodes using the utility model introduced in DPG-1. It

shows that for each of the 40 storage nodes, its truth-telling utility is always greater than or equal to its lying utility.

This demonstrates the effectiveness of DPG-1 in achieving minimum total preservation cost while accommodating

the selfishness of storage nodes. Second, however, there are a few nodes whose lying utilities are significantly lower

than their truth-telling utilities, including both scaling-up nodes (e.g., node 32) and nodes that mainly scale down

(e.g., node 33). This indicates that nodes get different data preservation assignments under truth-telling and lying. By

utility equation 18, πi (t̃i , t−i ) = pi (t̃i , t−i ) − ci = cV−{i } − (c̃V − c̃i ) − ci = cV−{i } − c̃V + c̃i − ci . When scaling up, a node

i gets fewer data preservation tasks thus other nodes take more tasks, which increases (c̃V − c̃i ) and thus decreases

utility πi (t̃i , t−i ). When scaling down, a node i gets more data preservation tasks, making its true preservation cost ci
larger and consequently, its utility πi (t̃i , t−i ) becomes less. In an extreme case, a scaling-down node could get assigned

so many preservation tasks that its real cost ci increases to a level that its utility becomes negative, which is shown

for the case of node 45. Finally, we note that node 23’s truth-telling and lying utilities are both zeros. Fig. 7 shows

that as node 23 sits near the top edge of the sensor field and is farthest from all the data nodes, it does not participate

in the data preservation process, incurring zero payment, cost, and utility.
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Fig. 8. Lying all three parameters simultaneously in a homogenous and half-full network.

Lying One Parameter at a Time. Fig. 9(a), (b), and (c) show nodes lying their ϵs , ϵa , and ϵe in a half-full network,

respectively (we only show nodes with non-zero utilities). We set α as 0.1, 1, and 10. We observe that while lying ϵe
and ϵs results in equal truth-telling and lying utilities for most of the storage nodes, lying about ϵa results in some

utilities that are significantly different from the corresponding truth-telling ones (e.g., nodes 25, 39, and 47). Our

Table 3. Scaling Factors of Cost Parameters for Storage Nodes.

Node 11 13 15 17 19 21 23 25 27 29 32 33 35 37 39 41 43 45 47 49

ϵai 8.2 5.7 8.6 6.9 9.5 8.4 6.7 8.8 5.9 0.4 2.4 0.1 4.5 3.9 8.6 9.4 7.1 0.4 4.4 6.1

ϵei 4.9 4.2 6.7 4.1 6 7.6 7 6.4 1.9 4 3.8 4.2 7.2 2 3.6 9 1.5 0.4 0.9 8.9

ϵsi 2 1.4 3.3 2.1 8 3.6 0.6 8 2.8 0.5 4.4 0.1 6.7 1.9 8.3 3.7 3.1 4.4 8.4 5.8
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energy model in Section 3 can explain this: ϵe and ϵs are multiplied by data packet size while ϵa is multiplied by the

size of the packet as well as the square of the distances. As lying ϵa has a more evident effect of changing a node’s

energy cost and thus utility, we focus on ϵa for the rest of the simulations.

Fig. 10 considers the completely full case wherein all the storage nodes are more stressed by data preservation.

Compared to Fig. 9(b) wherein only one storage node receives a negative utility, Fig. 10(b) shows that in this stressful

network scenario, twelve scaling-down nodes are receiving negative utilities. This is because, with completely full

storage, it is more likely that the lying storage node i is assigned a heavy load, thus increasing ci dramatically, easily

making its utility negative. As a completely full network better demonstrates the dynamism of the VCG behaviors for

storage nodes, we adopt a completely full network for the rest of the simulations.
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7.2 Evaluating DPP and DPG-2
In DPP and DPG-2, due to their energy constraints, the sensor nodes could deplete their energy power, and the total

preservation cost is computed using the ILP-based minimum cost flow, viz. ILP (B) proposed in 4.2. We refer to any

sensor node that exhausts its battery power as a defunct node. A data node is defunct if it does not have enough

energy to relay (i.e., receive and transmit) at least one data packet to its closest neighbor. A storage node is defunct

if its remaining energy is less than the smaller one between the energy cost of saving one data packet to its local

storage and the energy cost of relaying one data packet to its closest neighbor. Finding defunct nodes is possible by

calculating each node’s energy consumption on its involved data preservation paths computed from ILP (B).

As defunct nodes occur and data preservation gets more challenging in DPP and DPG-2, we investigate progres-

sively. In Section 7.2.1, we focus on truth-telling data preservation (i.e., DPP) and get a general view of its network

characteristics, including fault tolerance and the energy consumption and workload of individual nodes. We then

investigate the DPG-2 (i.e., VCG under energy constraints) in Section 7.2.2 and observe that in contrast to DPG-1, an

anomaly arises wherein some nodes can yield a lying utility that is higher than the truth-telling utility in DPG-2,

therefore invalidating VCG mechanism. In Section 7.2.3, we analyze the data preservation flows computed by network

flow ILP (B) and obtain a “microscopic” view of each node’s workload. As such, in Section 7.2.4, we can attribute the

anomaly’s cause to data loss due to packet dropping by some storage node. In Section 7.2.5, we implement our DPG-2

with a data loss inhibiting mechanism and show that it restores the truthfulness of classic VCG.
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Fig. 11. Number of defunct nodes and total data packets offloaded in the network at different node energy Ei . The numbers in
the parentheses are the IDs of defunct nodes.

7.2.1 Network Characteristics in Truth-Telling. We set the storage capacity of storage nodes mi as 26, the

minimum storage capacity that allows the DPG-2 to work. We assume that all the sensor nodes have the same

initial energy levels Ei , as the sensor nodes usually have full and the same battery power when initially deployed

(nonetheless, our game works for the case of different Ei as well). To investigate VCG behaviors, we are interested in

finding minimum feasible energy level Em , sensor nodes’ minimum energy level at which all the 1000 data packets in

the network can still be offloaded. When Ei = (Em − 1) mJ, at least one data packet cannot be offloaded. Asmi = 26

and Em provide the minimum storage and energy support for feasible data preservation, such “minimum” feasible

condition can produce stressful data preservation scenarios that do not conform to the standard VCG, as we will

show in Section 7.2.2 and later.

Fault-tolerance. To find Em , we decrease Ei from 1600 mJ, at which all the data can be offloaded, and record the total

number of data packets offloaded as shown in Fig. 11. At each Ei , we first use the maximum flow ILP viz. ILP (A)

proposed in Section 4.2.1 to find out the number of packets that can be offloaded. Then we use the ILP (B) proposed in

Section 4.2.2 to find out the minimum total energy consumption (i.e., total preservation cost) in offloading those data

packets. Fig. 11 shows the number of defunct nodes (and their IDs) at different Ei . It has zero defunct nodes at 1600

mJ and increases to 4 at 1312 mJ while the data preservation is still kept feasible, demonstrating the fault-tolerant

capability of ILP (B). Among the four defunct nodes, three are data nodes (i.e., nodes 0, 2, and 4), and one is a storage

node (i.e., node 32). When we further decrease Ei to 1311 mJ, only 999 data packets can be offloaded. We thus set Em
as 1312 mJ for the rest of the simulation experiments unless otherwise mentioned.

Workload and Energy Consumption of Storage Nodes. After getting a global view of the BSN’s fault tolerance, we

take a microscopic look at each storage node’s workload and energy consumption. We define a storage node’sworkload
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Fig. 12. Workload (i.e., number of receiced, transmitted, and saved packets) and energy consumption of truth-telling storage
nodes.

as the total number of data packets it receives, which also equals the sum of the number of data packets it saves

and relays (i.e., transmits). A node’s workload is the node’s ” contribution ” to the data preservation process. Fig. 12

shows that node 48 has the largest workload, receiving around 200 data packets. Referring back to the BSN topology

in Fig. 7, node 48 is close to data nodes 3, 5, and 6, thus serving as the “traffic hub” to offload their data packets to

the storage nodes located at the top-left region of the sensor field. However, although it is the most loaded, node

48’s energy consumption of 728.4 mJ is not the highest. Instead, node 32 has the highest energy consumption among

storage nodes, already depleting 1312 mJ of its battery power. Like node 48, node 32 is close to a few data nodes

(i.e., nodes 1 and 8); unlike node 48, node 32 is relatively distant from neighboring storage nodes, thus costing more

transmission energy to relay data packets. Note that node 23 does not participate in the data process as it sits on the

very edge of the sensor field, incurring zero workloads and energy consumption.

7.2.2 Anomaly Cases in DPG-2. Now we vary the scaling factor α of the node’s transmission parameter ϵa from

0.6, 0.8. 0.9, 1, 1.1, to 1.2, and investigate each storage node’s utility and the resulting total preservation cost of the

network. We have observed two anomaly cases in Fig. 13. First, Fig. 13(a) shows that while most of the storage nodes

comply with the VCG theory that their truth-telling utilities at α = 1 are no less than their lying utilities, node 32 has

a truth-telling utility that is less than its lying utilities at α = 0.6, 0.8, and 0.9. Second, Fig. 13(b) shows that when

node 32 lies at α = 0.6 and 0.9, the resultant total preservation cost of the entire network is smaller than that under

its truth-telling at α = 1, contradicting the optimality of ILP (B). Note that for a few nodes (e.g., nodes 25 and 30 at

α = 0.6), the total preservation cost is larger than the optimal. This is because when some storage nodes claim they

are more energy-efficient in data preservation than they actually are, the ILP (B) assigns them more data packets than

it does in the optimal solution, resulting in much larger non-optimal energy consumption.

7.2.3 Investigating Data Loss. We conjecture that the lower than optimal energy consumption in Fig. 13(b) is

because some data packets are dropped in the BSN when node 32 lies with α = 0.6 and 0.9. We thus implement Algo. 1

to find if any storage node has dropped data packets during the data preservation process. Fig. 14(a) shows when

each storage node lies with α = 0.6, its assigned (and actual) receive, transmit, and save, as illustrated in Fig. 6, as

well as its own individual energy consumption. By comparing the assigned load and actual load of each storage node

following Algo. 1, we find that nodes 25, 30, 32, 43, and 45 have dropped packets. This is further sustained by the

fact that each has depleted its respective energy power of 1312mJ. Referring to the topology in Fig. 7, these nodes

are close to one or more data nodes and involve heavily relaying their data packets, thus consuming lots of energy.

Therefore, we conclude that a storage node drops data packets due to energy depletion, causing data loss.

In particular, Fig. 14(b) shows that node 32 has dropped data packets at α = 0.6, 0.8, and 0.9, which explains why in

Fig. 13(b) the resultant total preservation cost when node 32 lies is less than optimal. Referring back to Fig. 12, as

node 32 already depletes its energy when truth-telling, when it scales down, it will be assigned more data packets

than it is when truth-telling. Thus it must drop any such extra packets assigned due to its energy depletion. As its

energy consumption is still 1312 mJ while other nodes get fewer data preservation tasks, the total preservation cost

of the entire BSN is thus smaller than that of the optimal.
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(a)

Anomaly 2

(b)

Fig. 13. Two anomaly cases in DPG-2. (a) Node 32’s lying utility is larger that its truth-telling. (b) Total energy consumption (i.e.,
total preservation cost) resulted from node 32’s lying is lower than the optimal total preservation cost when it is truth-telling.

However, although nodes 25, 30, 43, and 45 at α = 0.6 drop some data packets and cause data loss, the resultant

total preservation costs are still larger than optimal, as shown in Fig. 13(b). This indicates that data loss does not

necessarily yield reduced total preservation cost. As each node is assigned more workloads when it lies, the resulting

data preservation solutions could deviate from the optimal a lot and result in a much higher total preservation cost,

although the node has dropped some packets due to insufficient energy. This shows that data loss is necessary for the

less-than-optimal total preservation cost.

Another observation from Fig. 14(b) is that when increasing α towards 1, the occurrences of data loss decrease.

This is because as fewer data preservation tasks are assigned to a lying node, the less chance it will exhaust its battery

power. Data loss does not occur for α = 1, as data preservation is always feasible in truth-telling. When α > 1, there

is no data loss either; as each lying node claims to cost more than it actually does, it gets assigned fewer tasks than it

normally does and thus has sufficient energy to finish the assigned tasks.

7.2.4 Why Only Node 32 Has the Incentive to Lie? Although a few nodes, including node 32 have dropped data

packets when lying, why does only node 32 has a lying utility larger than its truth-telling one? This implies only

node 32 has the incentive to lie. We define a storage node’s incentive to lie as its lying utility minus its truth-telling

utility; that is, the more utility it gets, the larger its incentive to lie.

This is attributed to two unique features of node 32 (among all the 40 storage nodes). First, node 32’s energy has

already been depleted in truth-telling data preservation. Therefore, when node 32’s lying results in a heavier data

preservation load, almost all the additional data load is discarded. Such additional data load does not increase node

32’s true energy cost. Second, in the BSN, node 32 is located at a strategically crucial position where not only do

multiple data nodes (nodes 1 and 8) need it for data preservation, but also it has relatively long distances to any
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Fig. 14. (a) Each storage node’s assigned (and actual) receive, transmit, and save, as well as energy consumption when α = 0.6. (b)
Number of dropped data packets by lying storage nodes.

of its neighbors. As such, node 32 must carry out these costly data preservation tasks despite their needed large

transmission energy. Meanwhile, when node 32 scales down its cost parameter with its additional data load assigned

increased, the data preservation cost of all nodes other than node 32, which is (c̃V − c̃i ) in utility equation Eqn. 18,

decreases. On the other side, constrained by its initial energy, node 32’s true cost for data preservation ci is roughly
the same lying or not. Therefore following Eqn. 18, node 32 garners a higher utility under lying than truth-telling.

In summary, for a storage node to find lying profitable, it must be on the verge of its energy depletion when

truth-telling; it also must be in a strategically important position such that when it scales down, it will be assigned

a much larger workload. Then a scaling-down node can reduce the total preservation cost of the entire BSN by being
assigned more workload while dropping data packets and not increasing its own energy cost, as it has already depleted its
energy. This, therefore, results in a larger payment for this strategically crucial lying node. Below we take a closer

look at node 32’s selfish behavior and quantitatively examine how its incentive to lie changes w.r.t. the exogenous

factors, including initial energy level Ei and storage capacitymi .

Incentive to Lie When Varying Ei . Fig 15(a) shows the utility of node 32 lying with different values of α while

increasing Ei from 1312 mJ to 1550 mJ and fixingmi as 26. When Ei ≤ 1450 mJ, node 32 has a truth-telling utility

smaller than at least one of its lying utilities. When Ei ≥ 1500 mJ, node 32 follows standard VCG theory in which the

truth-telling utility is the dominant strategy. Such behavior can be explained by Fig 15(b), which shows that when

α < 1 (i.e., 0.6 and 0.9), node 32’s incentive to lie decreases with the increase of Ei . As data loss by node 32 eventually

drops with the increase of Ei , it shrinks the potential benefit accrued to node 32 through its data loss, reducing its

incentive to lie.
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Fig. 15. Utility and incentive to lie of node 32 when varying initial energy level Ei and scaling factor α .

Meanwhile, we have two observations of node 32’s incentive to lie at α > 1. First, it is always negative, giving

node 32 no incentive to lie. This is because as no single node is critical to the data preservation feasibility (i.e., the

data preservation is still feasible when any node is removed), no data loss could occur when α > 1. Second, with

the increase of Ei , node 32’s incentive to lie increases and approaches zero, showing that its utility loss under lying

drops when the energy constraint is relaxed. Node 32’s lie becomes less harmful to the system performance when the

energy constraint is lifted. The data preservation load assigned to node 32 gets less and less differentiated from its

load under truth-telling. Indeed, if under a certain energy level, node 32 is assigned the same load under both α = 1.1
and truth-telling, its incentive to lie becomes zero.

Incentive to Lie When Varyingmi . Next, we fix the energy as 1312 mJ and compare node 32’s utilities by varyingmi .

Fig 16 shows that when α = 0.6 and 0.9 whilemi = 26 and 27, truth-telling utilities are less than the lying utilities,

which is against the AMD theory. However, when the storage capacity reaches 28, the truth-telling utility will be

larger than the lying utility. This shows that whenmi is small, nodes have more incentive to lie to gain more utilities,

which is further validated by its incentive to lie shown in Fig 17.

Fig 17 investigates the incentive to lie for node 32 under different storage capacities. When the scaling factor α < 1

(i.e., 0.6 and 0.9), its intention to lie decreases when increasing the storage capacity. With a larger storage capacity, as

each node does not need much energy to offload data, lying has less effect in distorting the data preservation route,

thus resulting in less data loss and less intention to lie. We also observe while α = 1.1 and we increase the storage

capacity, the difference between lying utility and truth-telling utility will decrease.

7.2.5 Data Loss Inhibiting Mechanism in DPG-2. We have shown that under the traditional VCG mechanism,

nodes can lie about their cost parameters, viz. ϵa , ϵe , ϵs to gain more utility. Below we implement DPG-2 to fix the

problem. On top of DPG-1, DPG-2 introduced in Section sec:modified mainly contains a data loss inhibiting mechanism
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that, for any node that drops its received packages, the system gives it zero payment. Fig 18 and 19 calculate the utility

of each node in DPG-2 when it is truth-telling or lies with different α . It can be seen that the truth-telling utility of each

node is always greater than or equal to its lying utilities. This demonstrates that the data loss inhibiting mechanism

in DPG-2 restores the effectiveness of VCG, with truth-telling again being the dominating strategy. Consequently, all

the nodes will truthfully report their cost parameters, guaranteeing optimal system performance with minimum total

data preservation cost.

Finally, we check if the truthfulness is still preserved in DPG-2 when each storage node lies all of its three parameters

simultaneously. We set the initial energy as 1312 mJ andmi as 26. We first investigate a homogeneous case wherein

each node lies about all its three cost parameters with the same α = 0.6, as shown in Fig. 20. We then investigate a

heterogenous case wherein each node lies about all its three parameters with α a random number in [0.1, 1], as shown

in Fig. 21. We compare their truth-telling and lying utility in each case. Both cases show that each storage node’s lying

utility is no more than its truth-telling utility, demonstrating that truth-telling is a dominant strategy for the storage

nodes in DPG-2. When α is a random number in [0.1, 1], some lying nodes will report their cost parameters by scales

smaller than 0.6. Consequently, these nodes could be compensated less by the central algorithm although assigned a

heavier workload due to its low reported cost for data preservation. This explains the more frequent occurrence of

negative utilities in Fig. 21 with Fig. 20.

8 CONCLUSION AND FUTUREWORK
In this work, we study the data preservation problem in base station-less sensor networks (BSNs) wherein energy-

and storage-constrained sensor nodes behave selfishly. BSNs find many emerging science applications in challenging

environments such as underwater exploration. Our goal is to minimize the total data preservation cost (i.e., total
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battery power consumption of sensor nodes) in the BSN while accommodating the selfish behavior of sensor nodes.

We take a game-theoretic approach and design a suite of data preservation games wherein the individual sensor

nodes, motivated solely by self-interest, achieve a good system-wide data preservation solution. Our BSN model, with

its theoretical roots in network flows and simplicity, may inspire new architectures for future network infrastructures
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and applications. It is indeed a very general information producer and consumer model that has not been adequately

explored in any context.

In particular, we formulate and solve a general data preservation problem called DPP and design an integer linear

program (ILP) to solve DPP optimally. To the extent of our knowledge, the DPP has not been studied in the existing

literature. In a special case of DPP wherein energy constraint is not considered (i.e., DPP-W), we identify the challenges

of applying VCGmechanism into our BSN model to motivate selfish sensor nodes. We show that with these challenges,

our game (i.e., DPG-1) still achieves a truthful and optimal system-wide data preservation solution with self-interested

sensor nodes. However, in the general case of DPP, wherein nodes have a finite amount of energy, we observe that

DPG-1 can no longer provide truth-telling and optimal data preservation. We thus design another data preservation

game viz. DPG-2 to fix the flawed VCG model used in DPG-1. We show via proof and simulations that DPG-2 not

only delivers truth-telling as a node’s dominant strategy but also achieves optimal data preservation in the BSN while

accommodating the selfish behavior of energy-constrained sensor nodes. In contrast to many existing works that

applied game theory and related techniques to solve sensor networking problems, our work takes a network flow

approach to facilitate the game design and game-theoretical analysis. Due to the theoretical roots of the game theory

and network flows, the designed techniques in our DPG-1 and DPG-2 are applicable to any network environment

where game theory and network flows play a role.

Currently, we do not consider the budget imbalance, which is the amount the central authority needs to finance the

data preservation process. We will consider if there exists an upper bound of such budget imbalance. Second, we will

consider that a storage node can also lie about its storage capacity. Although lying about either energy cost or storage

capacity can be treated similarly in analysis, lying about both simultaneously in the data preservation game is a more

challenging problem. Third, we have assumed that although sensor nodes have limited storage and energy capacity,

data preservation is still feasible; that is, all the data can be offloaded from data nodes to some storage nodes. In future

work, we will consider infeasible data preservation, wherein not all the data can be offloaded and preserved due to

either energy insufficiency or storage insufficiency, or both, and study the game-theoretic behavior of sensor nodes in

these more challenging scenarios. Finally, we will extend our analysis to a dynamic scenario wherein overflow data

are generated from time to time at different nodes. It is well understood in game theory that an infinitely repeated

game gives a much larger set of equilibria, and in certain scenarios, full cooperation can be achieved. In our setting

of data preservation among selfish nodes, it is interesting to see to what extent we need to provide motivation for

selfish storage nodes to cooperate to engage in optimal data preservation.
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