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Abstract—Many emerging sensor network applications operate
in challenging environments, wherein it is not feasible to install
a long-term base station with power plug to collect data. Data
generated from such base station-less sensor networks therefore
must be stored inside the networks for some unpredictable
period of time before uploading opportunities become available.
Consequently, generated data could overflow limited storage
capacity available in the entire network, making discarding
valuable data inevitable. To overcome such overall storage over-
flow in base station-less sensor networks, we propose and study
a new algorithmic problem called data aggregation for overall
storage overflow (DAO). Utilizing the spatial data correlation
that commonly exists among sensor data, DAO employs data
aggregation techniques to reduce the overflow data size, while
minimizing the total energy consumption and preserving as much
information as possible. With proper graph transformation, we
show that DAO is equivalent to multiple traveling salesman walks
problem (MTSW), a new graph-theoretic problem that has not
been studied. We prove that MTSW is NP-hard. We then solve it
optimally in linear topologies and design a (2− 1

q
)-approximation

algorithm for general graph topologies, where q is the number
of nodes to visit (i.e., the number of sensor nodes that aggregate
their overflow data). We further put forward a novel heuristic
algorithm and empirically show that it constantly outperforms
the approximation algorithm by 15%− 30% in energy consump-
tion. Finally, we design a distributed data aggregation algorithm
that can achieve the same approximation ratio as the centralized
algorithm, while incurring comparable energy consumption.

Keywords – Sensor Networks, Data Aggregation, Energy-Efficient
Algorithms, Graph Theory

I. Introduction

With the advance in sensor technology and maturity of
sensor network design and deployment, scientists are ready to
utilize sensor networks to explore the physical world in a scope
and a depth that was never reached before. For example, sensor
networks are being designed and deployed in recent years
to address some of the most fundamental problems facing
human beings, such as disaster warning, climate change, and
renewable energy. The emerging sensor networks designed for
those scientific applications include seismic sensor networks
[41], underwater or ocean sensor networks [4, 12], wind and
solar harvesting [17, 33], and volcano eruption monitoring and
glacial melting monitoring [31, 42]. One common characteris-
tic of these sensor networks is that they are all deployed in

challenging environments such as in remote or inhospitable
regions, or under extreme weather, to continuously collect
large volumes of data for a long period of time.

In such inaccessible sensor fields, it is not possible to deploy
high-power, high storage data-collecting base stations with
power outlets. Therefore sensory data generated have to be
stored inside the network for some unpredictable period of
time and then being collected by periodic visits of robots or
data mules [15], or by low rate satellite link [32]. We refer to
such sensor networks as base station-less sensor networks.
Due to inadequate human intervention in the inhospitable
environments, base station-less sensor networks must operate
much more resiliently than traditional sensor networks (with
base stations and in friendly environments).

In this paper, we focus on sensor network resilience against
storage overflow of sensor nodes, wherein storage spaces of
some sensor nodes are depleted and therefore it cannot store
any newly generated data. Storage overflow is a major obstacle
existing in above emerging sensor networks, due to following
reasons. On one side, massive amounts of data in above
scientific applications are generated, sensing a wide range
of physical properties in real world ranging from solar light
to wind flow to seismic activity. On the other side, storage
is still a serious resource constraint of sensor nodes, despite
the advances in energy-efficient flash storage [34] with good
compression algorithms (data is compressed before stored) and
good aging algorithms (fidelity of older data is reduced to
make space for newer data). As a consequence, the massive
sensory data could soon overflow data storage of sensor nodes
and causes data loss. For example, according to [28], an
acoustic sensor that has a 1GB flash memory and is designed
to sample the entire audible spectrum will run out of its
storage in just seven hours. Such storage overflow problem
is further exacerbated in base station-less sensor networks,
wherein the high-power, high-storage base stations are not
available to collect and store the data most of the time.
Below we give a more concrete example contributing to overall
storage overflow in base station-less sensor networks.

Motivating Example. In an underwater sensor network moni-
toring coral reefs and fisheries [40], the wireless sensor nodes
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have variety of sensing capabilities including cameras, water
temperature, and pressure. An autonomous underwater vehicle
(AUV) is dispatched periodically to upload the collected data.
Each sensor has 512KB of flash memory, whereas a single
255×143 image requires 36KB of data storage. Therefore the
storage may be filled quickly even if the images are taken
at a very slow rate. To alleviate this problem, nodes with
depleted storages can offload their overflow data, the part of
newly generated data that can no longer be stored locally, to
neighboring nodes with available storage before AUV arrives.

A more serious situation arises, however, when the total
size of the overflow data exceeds the total available storage in
the network, which obviously cannot be solved by aforesaid
data offloading. We refer to this problem as overall storage
overflow in sensor networks. Suppose in above scenario there
are 100 nodes and 10 of them are generating one image per
second, it just takes less than three hours to reach overall
storage overflow. If the AUV cannot be dispatched timely due
to inclement and stormy weather, and no other appropriate
actions are taken, discarding valuable data becomes inevitable.
Even using the latest parallel NAND flash technology with
16GB [22] and taking typical 640× 480 JPEG color images,
it takes less than one day to reach overall storage overflow.
In this paper, we endeavor to answer below question: For
base station-less sensor networks that operate in challenging
environments where human intervention is impossible, how
to retain all the generated information notwithstanding the
overall storage overflow?

In this paper, we take advantage of spatial correlation
that commonly exists among sensory data, and employ data
aggregation techniques to overcome overall storage overflow.
We formulate a new graph-theoretic problem called data
aggregation for overall storage overflow (DAO). To solve
DAO, we design a suite of energy-efficient optimal, ap-
proximation, heuristic, and distributed data aggregation algo-
rithms, with detailed analytical analysis of their performance
guarantees. The novelty of our aggregation techniques is a
routing structure called minimum q-edge forest, where q is the
number of sensor nodes that aggregate their overflow data. We
show that the minimum q-edge forest generalizes minimum
spanning tree, one of the most fundamental data structures, and
accurately captures information needed for energy-efficient
data aggregation. At the core of DAO is a new graph-theoretic
problem called multiple traveling salesman walks (MTSW),
which has not been studied in any of the existing work.

After being aggregated to the size accommodable by the
network, the overflow data can then be stored at nodes with
available storage using data offloading techniques proposed in
[37] (we further illustrate this using Example 1 in Section II).
Note that in this paper we do not consider how to upload data
from sensor nodes to base station, which has been studied
extensively by using data mules or mobile data collectors [24,
30].

The main contributions of this paper include the following.
1). We identify an overall storage overflow problem in sensor

networks, and formulate a new data aggregation problem

called DAO. (Section I and II)
2). We show that DAO is equivalent to a new multiple
traveling salesman walks problem (MTSW) with appropriate
graph transformation. (Section IV)

3). We prove that the MTSW is NP-hard. We solve it
optimally in linear topologies and design a (2 − 1

q )-
approximation algorithm for general graph topologies, where
q is the number of nodes to visited or the number of
aggregators in DAO. (Section III)

4). We design an efficient heuristic algorithm that further
improves the approximation algorithm by 15% − 30% in
terms of energy consumption. (Section VI)

5). We design a distributed data aggregation algorithm that
achieves the same approximation guarantee as the approx-
imation algorithm, while being optimal with regards to the
message complexity. (Section V)
The rest of the paper is organized as follows. In Section II,

we formulate the DAO problem and illustrate it with an
example. In Section III we formulate the MTSW problem
and present a suite of optimal, approximation, and heuristic
algorithms. We show in Section IV that with proper graph
transformation the DAO is equivalent to the MTSW therefore
the algorithms for MTSW can be applied to solve DAO. In
Section V, we design a distributed data aggregation algorithm
for the DAO with time and message analysis, and show that
it can achieve the same aggregation cost as the approximation
algorithm does. In Section VI, we compare all the different
algorithms under different network dynamics and discuss the
simulation results. Section VII discusses state-of-the-art and
the significance of our work. Section VIII concludes the paper
with possible future research.

II. Data Aggregation For Overall Storage Overflow
(DAO)

In this section, we first introduce the DAO with a problem
statement. We then present its network model, data spatial
correlation model, and energy model. We finally formally
formulate the DAO and end with an illustrative example.

Problem Statement. Fig. 1 shows a base station-less sensor
network. Some sensor nodes are close to the events of interest
thus are constantly generating sensory data, depleting their
own storages. We refer to sensor nodes with depleted storage
spaces while still generating data as data nodes. The newly
generated data that can no longer be stored at data nodes is
called overflow data. To avoid data loss, overflow data is
offloaded to sensor nodes with available storages (referred to
as storage nodes).1 To start the aggregation process, one or
more data nodes (called initiators) send their overflow data
to visit other nodes. When a data node receives the data, it
becomes an aggregator by aggregating its own overflow data,
and then forwards the initiator’s entire overflow data, in multi-
hop manner, to another data node. This data node becomes an
aggregator and aggregates its overflow data, and so on and so

1Sensor nodes that have generated data but have not depleted their storage
spaces are storage nodes, since they can store overflow data from data nodes.



3

forth. When a storage node receives the data, it simply relays
it (note that a storage node cannot store part or entirety of
the received data until data aggregation process is done, since
other aggregators need the entire data in order to aggregate
their own). This continues until enough aggregators are visited
such that total size of the overflow data after aggregation
equals to or is slightly less than total available storage in the
network.

Any node participating in this process (including initiator,
aggregator, and relaying storage node) consumes its own
battery energy. To save energy consumption, the challenge
is therefore to select initiators from the data nodes, and to
decide the sequence of aggregators/storage nodes visited by
each initiator’s data, such that enough number of aggregators
are visited while costing minimum amount of energy.

Fig. 1. An illustration of DAO.

Network Model. The sensor network is represented as
an undirected connected graph G(V,E), where V =
{1, 2, ..., |V |} is the set of |V | sensor nodes, and E is the
set of |E| edges. There are p data nodes, denoted as Vd (the
other |V | − p nodes are storage nodes). Let R denote the
size of generated overflow data in bits at each data node,
and let m be the available storage space in bits at each
storage node. (We leave that data nodes have different sizes of
overflow data and storage nodes have different sizes of storage
spaces as future work.) Due to the overall storage overflow,
p×R > (|V | − p)×m, giving that p > |V |m

m+R and p ∈ Z+.

Spatial Correlation Data Model. We propose an entropy-
based spatial correlation model that is based upon [10]. The
spatial correlation data model in [10] assumes that each sensor
node generates a R-bit packet and transmits it back to the
base station, therefore every node serves as an initiator. In
our case, R is the amount of overflow data generated only at
data node and only selected dada nodes can serve as initiators.
Let H(X) denote the entropy of a discrete random variable
X , and H(X|Y ) denote the conditional entropy of a random
variable X given that random variable Y is known. If data
node i receives no side information from other data nodes, its
overflow data is entropy coded with H(i|j1, ..., jp) = R bits.
If data node i receives side information from at least another
data node, the size of its overflow data is H(i|j1, ..., jp) =
r ≤ R, jk ∈ Vd ∧ jk 6= i, 1 ≤ k ≤ p. This correlation
model has two advantages. First, it captures the uniform data

spatial correlation scenario, wherein data generated at different
data nodes have similar correlation with each other (we leave
the more challenging and realistic model that different nodes
have different data correlation as future work). Second, it is
an effective distributed coding strategy, which works well in
large scale sensor network applications. We are aware of other
distributed coding techniques such as Slepian-Wolf coding [9,
35]. However, they need global correlation structure, which is
impractical in large scale sensor networks.

Based on this model, we have two observations about the
data aggregation in DAO:

Observation 1: Each data node can be either an initiator,
or an aggregator, or none of them, but not both of them. An
initiator cannot be an aggregator because its data serves as
side information for other nodes to aggregate. An aggregator
cannot be an initiator since its aggregated data loses the side
information needed for others nodes’ aggregation. �

Observation 2: Each aggregator can be visited multiple
times by the same or different initiators (if that is more energy-
efficient). However, the data of an aggregator can only be
aggregated once, with size reduced from R to r. Besides, when
an initiator A is visited by another initiator B, it is equivalent
to that B visits A and all other data nodes visited by A. �

Energy Model. We adopt first order radio model [13] for
battery power consumption. When node u sends R-bit data to
its one-hop neighbor v over distance lu,v , transmission energy
cost at u is Et(R, lu,v) = Eelec × R + εamp × R × l2u,v ,
receiving energy cost at v is Er(R) = Eelec × R. Here,
Eelec = 100nJ/bit is energy consumption per bit on trans-
mitter and receiver circuits, and εamp = 100pJ/bit/m2

is energy consumption per bit on transmit amplifier. Let
W = {v1, v2, ..., vn} be a walk, a sequence of n nodes with
(vi, vi+1) ∈ E and v1 6= vn (if all nodes in W are distinct,
W is a path). Let w(R, u, v) = Et(R, lu,v) + Er(R), and
c(R,W ) =

∑n−1
i=1 w(R, vi, vi+1) denote aggregation cost, the

total energy consumption of sending R-bit from v1 to vn
along W . We assume that there exists a contention-free MAC
protocol to avoid overhearing and collision (e.g. [6]).

Valid Range of p. We have calculated the lower bound
of p. Next we compute the upper bound of p, so that the
overflow data after aggregation can fit in the available storage.
Let q denote the number of aggregators to visit. Since each
aggregator reduces its overflow data size by (R− r), and the
total anticipated data size reduction is p×R−(|V |−p)×m =
p× (R+m)− |V | ×m, therefore all together

q = dp× (R+m)− |V | ×m
R− r

e (1)

distinct aggregators need to be visited. Meanwhile, since at
least one data node needs to be the initiator to start the aggre-
gation process, there can only be maximum of p− 1 aggrega-
tors (Observation 1). We therefore have dp×(R+m)−|V |×m

R−r e ≤
p− 1, which gives p ≤ b |V |m−R+r

m+r c. The valid range of p is
therefore

|V |m
m+R

< p ≤ b|V |m−R+ r

m+ r
c. (2)
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Problem Formulation of DAO. Given a valid p value and
its corresponding q value, meaning q of the p data nodes
are aggregators, then the rest p − q data nodes can serve as
initiators (Observation 1). DAO selects:
• set of a (1 ≤ a ≤ (p− q)) initiators, denoted as I, and
• corresponding set of a aggregation walks: W1, W2, ...,
Wa, where Wj (1 ≤ j ≤ a) starts from a distinct initiator
Ij ∈ I, and |

⋃a
j=1{Wj − {Ij} − Gj}| = q. Here, Gj is

the set of storage nodes in Wj thus Wj − {Ij} −Gj is the
set of aggregators in Wj . Since an aggregator can appear
multiple times in the same or different aggregation walks
(Observation 2),

⋃a
j=1{Wj −{Ij}−Gj} signifies a set of q

distinct aggregators in the network.
That is, each initiator sends its overflow data to all the
aggregators in its aggregation walk, such that all together
q distinct aggregators are visited in the network, and the
total energy consumption in this process

∑
1≤j∈a c(R,Wj),

referred to as total aggregation cost, is minimized.

Fig. 2. A DAO example.

EXAMPLE 1: Fig. 2 gives an example of DAO in a grid
sensor network of 9 nodes (we use grid only for illustration
purpose – the DAO and its solutions are designed for general
graph topologies). Nodes B, D, E, G, and I are data nodes,
while A, C, F and H are storage nodes. We assume that
R = m = 1, r = 3/4, and energy consumption along any edge
is 1 for one unit of data. Overall storage overflow exists in this
scenario, since there are 4 units of storage space while there
are 5 units of overflow data. Using Equation 1, the number of
aggregators q is 4, leaving one data node to be initiator. One
of the optimal solutions could be selecting B as initiator and
setting its aggregation walk as: B, E, D, G, H , I , with total
aggregation cost of 5. �

Data Offloading After Data Aggregation. In Fig. 2, after
aggregation, the sizes of overflow data at B, E, D, G, and
I are 0, 3/4, 3/4, 3/4, and 7/4, respectively, totaling 4 units.
Therefore they can be offloaded and stored into the 4 units
of storage space available in the network. Note that 7/4 units
of data at I now include 3/4 unit of I’s own overflow data
and one unit of B’s overflow data. Next is to decide how
to offload those data to storage nodes with minimum energy
consumption.2 This has been shown to be a minimum cost flow

2Currently data aggregation and data offloading are separated stages – we
leave integrating them for a more energy-efficient solution as future work.

problem [37], which can be solved optimally and efficiently
[1]. One optimal minimum cost flow solution is offloading E’s
1/4 unit of data to A (cost 1/2), E’s 2/4 unit of data to C (cost
1), D’s 3/4 unit of data to A (cost 3/4), G’s 3/4 unit of data
to H (cost 3/4), I’s 1/4 unit of data to H (cost 1/4), I’s 2/4
unit data to C (cost 1), and B’s one unit of data, now located
at I , to F (cost 1), totaling 5.25 offloading cost.

Since data offloading can be achieved optimally, we only
focus on data aggregation in this paper. We find that DAO
gives rise to a new graph-theoretic problem, which we refer
to as multiple traveling salesman walks problem (MTSW). We
formulate and solve MTSW in Section III. In Section IV, we
show that the DAO is equivalent to the MTSW therefore the
algorithms for MTSW can be applied to solve DAO.

III. Multiple Traveling Salesman Walks Problem
(MTSW)

In this section, we first formulate the MTSW problem and
prove its NP-Hardness. Then we solve MTSW by presenting
an efficient optimal algorithm for linear topologies and an
efficient (2 − 1

q )-approximation algorithm for general graph
topologies, respectively.

A. Problem Formulation and NP-Hardness.

Given an undirected weighted graph G = (V,E) with |V |
nodes and |E| edges, a cost metric (which represents the
distance or traveling time between two nodes), the objective
of the MTSW is to determine a subset of at most b < |V |
starting nodes (i.e., the initiators in DAO), from each of which
a salesman can be dispatched to visit a number of other nodes
(i.e., the aggregators in DAO) following a walk, such that a)
all together q = |V | − b nodes (excluding starting nodes) are
visited, and b) the total cost of the walks is minimized.

Let w(u, v) denote weight of edge (u, v) ∈ E. We as-
sume that edge weights satisfy triangle inequality: for any
three edges (x, y), (y, z), (z, x) ∈ E, w(x, y) + w(y, z) ≥
w(z, x). Given a walk W = {v1, v2, ..., vn}, let c(W ) =∑n−1
i=1 w(vi, vi+1) denote the cost of traversing along W . The

objective of MTSW is to decide:
• the set of a (1 ≤ a ≤ b) starting nodes I ⊂ V , and
• the set of a walks W1,W2, ...,Wa: Wj (1 ≤ j ≤ a) starts

from a distinct node Ij ∈ I, and |
⋃a
j=1{Wj − {Ij}}| = q,

such that total cost
∑

1≤j∈a c(Wj) is minimized.

Theorem 1: The MTSW is NP-hard.
Proof: We show that traveling salesman walk problem
(TSW) [20] is a special case of MTSW. TSW is defined as
follows: Given a weighted graph, a starting node s and an
ending node t, the goal is to find a minimum-length s-t walk
that visits all nodes at least once. TSW is NP-hard (Section 6,
[20]). The differences between TSW and MTSW are a) there
can be multiple starting and ending nodes in MTSW while
there is only one starting node s and one ending node t in
TSW, and b) it needs to find the starting and ending nodes
in MTSW whereas in TSW s and t are fixed. In the special
case when b = 1, MTSW can be solved by calling TSW as a
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sub-routine upon all possible pairs of s and t, and finding the
one that yields the minimum cost. Therefore TSW is a special
case of MTSW and MTSW is NP-hard.

B. Optimal Algorithm for Linear Topologies.

Linear sensor networks [16] have been well adopted in
applications such as water pollution monitoring along the river
bank and underwater seismic monitoring along the seashore. A
linear sensor network is represented by a linear graph G(V,E),
which consists of |V | nodes: 1, 2, ..., |V | − 1, and |V | from
left to right. Two adjacent nodes u and v are connected by
an edge, with weight w(u, v). Algorithm 1 below works as
follows. First it finds the q edges in E with smallest weights
(line 2). Then it checks if any of pair of them are adjacent with
a common node (lines 5-9). If so, they are merged into one
path (in linear topologies, all the obtained walks are paths).
Finally, for each path, it starts with the leftmost node of the
path and visits the rest nodes in this path exactly once. Fig. 3
shows an example of a linear network of eight nodes, with
weight of each edge shown on the top of each edge. Suppose
q = 4; that is, it needs to find paths along which 4 nodes are
visited with minimum cost. Algorithm 1 yields two paths: one
is starting with node 2 and visiting nodes 3, 4, and 5, the other
is starting with 6 and visiting 7, with total cost of 10. This is
the minimum cost to visit 4 nodes.

1 

1 2 3 4 5 6 7 8 

5 4 3 6 2 7 

        
Fig. 3. An linear network of eight nodes with q = 4. The weight of each
edge is shown on the top of each edge.

Algorithm 1: Optimal Algorithm For Linear Topologies.
Input: A linear topology G(V,E) and q, number of nodes

to visit;
Output: set of a paths: W1,W2, ...,Wa,

∑
1≤j∈a c(Wj);

0. Notations:
i: index for edges; j: index for paths;
Wj : jth path obtained;

1. i = 1; j = 1;
2. Find the q smallest-weight edges, name them

e1, e2, ..., eq from left to right in linear topology;
L(i), R(i): left and right end node of edge ei;

3. while (i ≤ q)
4. Wj = φ (empty set);
5. Ij = L(i); Wj = {L(i), R(i)};
6. while (i < q ∧R(i) == L(i+ 1))
7. Wj =Wj ∪ {R(i+ 1)};
8. i++;
9. end while;
10. i++; j ++;
11. end while;
12. a = j;

(a) B-Walk. (b) LP-Walk.

Fig. 4. Illustrating a walk in a tree T , in which w(u, v) = 2 and
weights of other edges being 1. (a) shows a Binary Walk (B-walk):
u, 6, 7, 6, 8, 6, u, v, 1, 2, 1, 3, 1, v, 4, 5, with a cost of 15. (b) shows
a Longest-Path Walk (LP-Walk): 2, 1, 3, 1, v, 4, 5, 4, v, u, 6, 7, 6, 8,
with a cost of 14. � and J– indicate the first and last node in a
walk, respectively.

13. RETURN W1,W2, ...,Wa,
∑

1≤j∈a c(Wj).

Time Complexity. Using heap data structure, it takes
O(|E|logq) to find the q smallest edges. Line 3-10 takes O(q).
Therefore the time complexity of Algorithm 1 is O(|E|logq).

Theorem 2: Algorithm 1 is optimal in linear topologies.
Proof: By way of contradiction, assume that Algorithm 1 is
not optimal and another algorithm, referred to as O, is optimal.
In O, since q nodes need to be visited and the topology is
linear, q edges must be selected. Denote these q edges selected
in O as eo1, eo2, ..., eoq . Since the q edges selected in Algorithm 1
e1, e2, ..., eq are the q smallest-weight edges, it must be that∑q
i=1 ei ≤

∑q
i=1 e

o
i , contradicting that O is optimal.

C. Approximation Algorithm for General Graph Topologies.

We first give a few definitions.
Definition 1: (Edge-Induced Subgraph.) An edge-

induced subgraph of G(V,E), denoted as G[E′](V ′, E′), is a
subgraph of G(V,E) that has edge set E′ ⊆ E, and for all
(u, v) ∈ E, u, v ∈ V ′ iff (u, v) ∈ E′. �

Definition 2: (Connected Components of An Edge-
Induced Subgraph.) The set of connected components of an
edge-induced subgraph G[E′], denoted as C(G[E′]), is a set of
connected subgraphs of G[E′]. The jth connected component
is denoted as Cj , 1 ≤ j ≤ |C(G[E′])|. �

Definition 3: (Cycleless Edges.) An edge e ∈ E is cycle-
less w.r.t. E′ ⊆ E, if e /∈ E′ and E′ ∪ {e} does not induce a
new cycle with connected components of G[E′]. �

Definition 4: (Binary Walk (B-Walk) In A Tree.) Given a
maximum-weight edge (u, v) in tree T (choose one randomly
if there are multiple), T can be divided into edge (u, v) and
two subtrees Tu and Tv , rooted at u and v respectively. The
B-walk of T starts from u and visits all the nodes in Tu in a
sequence following depth-first-search (DFS) and comes back,
then visits v, from where it visits all the nodes in Tv following
DFS. It stops as soon as all the nodes in T are visited. �

Fig. 4(a) shows a tree T with w(u, v) = 2 and weights of
other edges being 1. It also shows one B-walk, which has a
cost of 15. In any B-walk of T , (u, v) is traversed once, each
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edge in Tu is traversed twice, and each edge in Tv is traversed
once or twice.

Lemma 1: Let WB(T ) = {u1 = u, u2, ..., un} be a B-
walk in T . Let c(T ) =

∑
e∈T w(e). Then c(WB(T )) ≤ (2−

1
|T | )× c(T ), where |T | is the number of edges in T .
Proof: Since (u, v) is the edge in T with maximum weight,
w(u, v) ≥ 1

|T | × c(T ). In WB(T ), since (u, v) is traversed
exactly once and other edges are traversed at most twice,
c(WB(T )) ≤

(
2 × c(T ) − w(u, v)

)
. Therefore c(WB(T )) ≤(

2× c(T )− 1
|T | × c(T )

)
= (2− 1

|T | )× c(T ).

Approximation Algorithm for MTSW. Next we present an
polynomial approximation algorithm, which yields a total cost
of the walks that is at most (2− 1

q ) times of the optimal cost.
Algorithm 2 works as follows. Line 1 sorts all the edges in E
into nondecreasing order of their weights. Line 2 initializes a
set Eq to be an empty set and creates |V | trees, each containing
one node. The while loop in lines 3-9 checks if each edge
in E (in nondecreasing order of their weights) is cycleless
w.r.t. Eq . If yes, add it into Eq . This continues until q edges
are added into Eq . It then obtains G[Eq], the subgraph of G
induced by Eq (line 10). Since there is no cycles introduced,
each connected component of G[Eq] is either linear or a tree.
If it is linear, it starts from one end and visits the rest nodes
exactly once; if it is a tree, it does a B-walk (lines 11-15).

Algorithm 2: Approximation Algorithm for MTSW.
Input: G(V,E) and number of nodes to visit q;
Output: set of a walks: W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj);

1. Let w(e1) ≤ w(e2) ≤ ... ≤ w(e|E|);
2. Eq = φ (empty set), i = j = k = 1;
3. while (k ≤ q)
4. if (ei is a cycleless edge w.r.t. Eq)
5 Eq = Eq ∪ {ei};
6. k ++;
7. end if;
8. i++;
9. end while;
10. Let |C(G[Eq])| = a; /*a connected components*/
11. for (1 ≤ j ≤ a)
12. if (Cj is linear) Starts from one end of Cj and

visits the rest nodes in Cj once;
13. if (Cj is a tree) Do a B-walk in Cj ;
14. Let the resulted walk (or path) be Wj ;
15. end for;
16. RETURN W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj).

Discussions. Using disjoint-set data structure [8], Algorithm 2
takes O(|E|log|E|). It works alike the well-known Kruskal’s
minimum spanning tree (MST) algorithm [8], except that
instead of finding |V |−1 edges to connect all the nodes in V ,
it only finds q ≤ |V |−1 edges, to “connect” some nodes in V .
Therefore Algorithm 2 generalizes Kruskal’s MST algorithm
in which q = |V | − 1. Consequently, a MST is a special case
of G[Eq], a minimum q-edge forest formally defined below.
That is, a MST is a minimum q-edge forest with q = |V | − 1.

Definition 5: (Forest, q-Edge Forest, and Minimum q-
Edge Forest) A forest F of G is a subgraph of G that is
acyclic (and possibly disconnected). A q-edge forest Fq is a
forest with q edges. The cost of Fq , denoted as c(Fq), is the
sum of weights of all edges in Fq , c(Fq) =

∑
e∈Fq

we. Let
Fq be set of all q-edge forests of G. A q-edge forest Fmq is
minimum iff c(Fmq ) ≤ c(Fq),∀Fq ∈ Fq . �

Next we prove that G[Eq] is a minimum q-edge forest.
Therefore G[Eq] generalizes MST, and Algorithm 2 gener-
alizes Kruskal’s MST algorithm.

Lemma 2: c(G[Eq]) ≤ c(Fq),∀Fq ∈ Fq .
Proof: Let E = {e1, e2, ..., e|E|}, with w(e1) ≤ w(e2) ≤ ... ≤
w(e|E|). Let Eq = {eg1, e

g
2, ..., e

g
q}, with w(eg1) ≤ w(eg2) ≤

... ≤ w(egq). By way of contradiction, assume that another q-
edge forest, Oq , is a minimum q-edge forest with smaller cost
than that of G[Eq]. Let Oq = {eo1, eo2, ..., eoq} with w(eo1) ≤
w(eo2) ≤ ... ≤ w(eoq). Assume that egl ∈ Eq and eol ∈ Oq
are the first pair of edges that differ in Eq and Oq: e

g
l 6= eol

and egi = eoi , ∀ 1 ≤ i ≤ l − 1. According to Algorithm 2,
w(egl ) ≤ w(eol ). Now consider subgraph Oq ∪ {egl }.

Case 1: Oq ∪{egl } is a forest. Then c(Oq ∪{egl }−{eol }) ≤
c(Oq), contradicting that Oq is a minimum q-edge forest.

Case 2: Oq ∪{egl } is not a forest, i.e., there is a cycle in it.
egl must be in this cycle since there is no cycle in Oq . Besides,
among all the edges in this cycle that is not egl , at least one of
them is not in {eg1, e

g
2, ..., e

g
l−1}; otherwise there will not be

any cycle. Denote this edge as e′. Let egl be the nth edge in
E = {e1, e2, ..., e|E|}, that is egl = en, 1 ≤ n ≤ |E|.

Case 2.1: e′ ∈ {e1, e2, ..., en−1}. Thus w(e′) ≤ w(en−1) ≤
w(en) = w(egl ) ≤ w(eol ), contradicting that egl and eol are the
first pair of edges that differ in Eq and Oq .

Case 2.2: e′ ∈ {en+1, en+2, ..., e|E|}. Thus w(e′) ≥
w(en+1) ≥ w(en) = w(egl ). c(Oq ∪ {e

g
l } − {e′}) ≤ c(Oq),

contradicting that Oq is a minimum q-edge forest.
Reaching contradiction in all the cases, it concludes that

c(G[Eq]) ≤ c(Fq),∀Fq ∈ Fq .
Let O be an optimal algorithm of MTSW with minimum

cost of O. Next we show c(G[Eq]) is a lower bound of O.
Lemma 3: c(G[Eq]) ≤ O.

Proof: Without loss of generality, assume that all the edges
selected in O induces λ connected components, denoted as
Oj (1 ≤ j ≤ λ). Assume that there are lj nodes in Oj , and
sj (lj > sj ≥ 1) of them are starting nodes (therefore there
are sj walks in Oj , denoted as W o

j , visiting altogether lj − sj
nodes). Denote the sj walks in Oj as W o

j and let c(W o
j ) be

its cost. We have
∑λ
j=1 c(W

o
j ) = O.

Let c(Oj) =
∑
e∈Oj

w(e). Denote any spanning tree of
Oj as T oj , and let c(T oj ) =

∑
e∈T o

j
w(e). We have c(T oj ) ≤

c(Oj) ≤ c(W o
j ). The first inequality is because all the edges

in T oj are in Oj (but not vice versa); the second inequality
is because each edge in Oj is traversed at least once in O.
Therefore

∑λ
j=1 c(T

o
j ) ≤

∑λ
j=1 c(W

o
j ) = O.

Let q′ =
∑λ
j=1 |T oj |, where |T oj | is the number of edges

in T oj . We have q′ =
∑λ
j=1(lj − 1). The subgraph induced

by all T oj (1 ≤ j ≤ λ) is therefore a q′-edge forest. Since all
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together q nodes are visited,
∑λ
j=1(lj−sj) = q. Since sj ≥ 1,

we have q ≤
∑λ
j=1(lj − 1) = q′. Therefore, c(G[Eq]) ≤

c(G[Eq′ ])
Lemma 2
≤

∑λ
j=1 c(T

o
j ) ≤ O.

Theorem 3: Algorithm 2 is a (2− 1
q )-approximation algo-

rithm for MTSW under general graph topologies.
Proof: In Algorithm 2, each of the a connected components
Cj (1 ≤ j ≤ a) is either linear or a tree. Let qj and c(Cj)
denote the number of edges in Cj and the sum of weights
of edges in Cj , respectively. We have q =

∑a
j=1 qj and

c(G[Eq]) =
∑a
j=1 c(Cj). Let Wj be a B-DFS walk of Cj .

Then
∑a
j=1 c(Wj)

Lemma 1
≤

∑a
j=1

(
(2 − 1

qj
) × c(Cj)

)
<∑a

j=1

(
(2 − 1

q ) × c(Cj)

)
= (2 − 1

q ) × c(G[Eq])
Lemma 3
≤

(2− 1
q )×O.

Smaller-Tree-First-Walk (STF-Walk). When a B-Walk tra-
verses Tu first and then Tv , each edge in Tu is traversed twice
while each edge in Tv is traversed once or twice. A simple
improvement is to traverse, between Tu and Tv , the one with
smaller cost first. We refer to this as smaller-tree-first-walk
(STF-walk). The walk in Fig. 4(a) is indeed a STF-walk.

A Heuristic Algorithm. Next we present a heuristic algorithm
to further improve the performance upon Algorithm 2. It
differs with Algorithm 2 only in line 13: Instead of a B-walk
along each tree Cj (1 ≤ j ≤ a), it follows a longest-path-
based walk defined below.

Definition 6: (Longest-Path Walk (LP-Walk) In A Tree.)
Let P = {v1, v2, ..., vn} be the longest path in tree T (choose
one randomly if there are multiple). A LP-walk starts from v1,
visiting all the nodes in T in a sequence following DFS, and
ends at vn, such that every edge in P is traversed once. �

Finding longest path in a tree is to find the shortest path
among all pair of leaf nodes and choose the longest one. It
takes O(|V |3). LP-walk is based on the observation that when
more edges are traversed only once, the cost of a walk can
be further reduced. Fig 4(b) shows such a LP-walk, which
has a cost of 14. Because the maximum-weight edge (u, v)
is not necessarily on the longest path P , we are not able to
obtain performance guarantee for LP-walk. However, we show
empirically in Section VI that it outperforms Algorithm 2 by
15%− 30%, in terms of energy consumption, under different
network parameters.

IV. Equivalency Between MTSW and DAO

Now we transform the original sensor network G(V,E) into
an aggregation network G′(V ′, E′), and show that solving
DAO in G is equivalent to solving MTSW in G′.

Definition 7: (Aggregation Network G′(V ′, E′).) V ′ is
the set of p data nodes in V , i.e. V ′ = Vd. For any two
data nodes u, v ∈ V ′, there exists an edge (u, v) ∈ E′ if and
only if all the shortest paths between u and v in G do not
contain any other data nodes except u and v. For each edge
(u, v) ∈ E′, its weight w(u, v) is the cost of the shortest path
between u and v in G. �

Fig. 5. (a) Aggregation network G′ of sensor network G in Fig. 2. (b) 4-edge
forest Fq . (c) B-walk on Fq . (d) Aggregation walk with total aggregation cost
of 6. The numbers on edges are their weights.

Fig. 5(a) shows the aggregation network G′ of sensor
network G in Fig. 2. Fig. 5(b) shows a 4-edge forest Fq of
G′ obtained from Algorithm 2. Fig. 5(c) shows the B-walk on
Fq . Finally, we obtain the aggregation walk in G, shown in
Fig. 5(d), by replacing each edge (u, v) in Fq with a shortest
path between u and v in G (choose one randomly if there
are multiple). The total aggregation cost following this walk
is 6, one more than the optimal cost shown in Example 1. The
B-walk in this example happens to be a LP-walk.

The aggregation network is a novel graph structure that
is different from the metric completion of a graph. Metric
completion of G is a complete graph wherein the length of
edge between every pair of nodes in the graph equals to the
length of the shortest path between them in G. The aggregation
network resembles the metric completion of graph in the
definition of the edge weight or length. However, aggregation
network of G is not necessarily a complete graph, due to the
intrinsic multi-hop nature of a wireless sensor network. Next
we show that an optimal solution of MTSW in G′ yields an
optimal solution of DAO in G.

Theorem 4: DAO in G is equivalent to MTSW in G′.
Proof: First, we argue that any storage node in G does not
appear in G′. For any two data nodes X and Y , as DAO
concerns with visiting data nodes following shortest paths, all
the storage nodes on the shortest paths between X and Y in
G do not appear in G′, as long as the total aggregation cost
(i.e., the energy consumption of sending data from X to Y ) is
accurately captured. This is accomplished by the aggregation
network G′ defined above since the weight of the edge (X,Y )
in G′ represents the energy consumption along the shortest
paths between X and Y .

Second, we argue that if all the shortest paths between two
data nodes X and Y in G do not contain any other data nodes,
then in G′ they can be replaced by one single edge (X,Y ),
whose weight is the cost of any of such shortest paths. This is
due to the same reason that storage nodes are not included in
G′ as long as the energy consumption information is accurately
captured. For example, in Fig. 2, both of the two shortest paths
between data nodes E and I do not contain another data node,
therefore edge (E, I) appears in G′, as shown in Fig. 5.

Finally, if there exists multiple shortest paths between two
data nodes X and Y in G, some of which having at least
another data node as intermediate nodes and some not, edge
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(X,Y ) is not included in G′. This is because in order to
visit as many data nodes (aggregators) as possible while using
as least amount of energy as possible, it mandates that DAO
takes a shortest path with maximum number of data nodes as
intermediate nodes (Otherwise, less number of aggregators are
visited with the same amount of energy consumption, which is
against the goal of DAO). Therefore, if there is an aggregation
route from X to Y , it must go through maximum number of
intermediate data nodes (for the purpose of aggregation) along
a shortest path between X and Y , resulting in that edge (X,Y )
does not appear in G′. For example, in Fig. 2, edge (B, I) does
not appear in the aggregation network in Fig. 5, since one of
the shortest path between B and I contains the data node E.

Since all the information in G that is used for data aggrega-
tion calculation, including data nodes and energy consumption
sending data among them, are accurately captured in the
aggregation network G′, solving MTSW in G′ is equivalent
to solving DAO in G.

V. Distributed Data Aggregation Algorithm

We design a distributed data aggregation algorithm for
the overall storage overflow problem, referred to as Dis-
tributed DAO. It is based on the classic GHS algorithm, a
distributed, asynchronous algorithm by Gallager, and Humblet,
and Spira [11] that finds the optimal minimum spanning tree
(MST) of a graph.3 Below we present Distributed DAO and
its time and message complexities, and discuss its optimality.

Distributed DAO. It has two stages. First, it needs to find the
aggregation network G′(V ′, E′) in a distributed manner. This
is equivalent to finding the shortest path between each pair
of data nodes in sensor network G(V,E), which can be done
by distributed Bellman-Ford algorithm [29]. Second, it finds
the minimum q-edge forest in G′(V ′, E′) distributedly. Most
steps in second stage are similar with those in original GHS
algorithm. We therefore review GHS algorithm first.

The algorithm maintains a spanning forest of trees, each
being a sub-tree of the MST. It starts with each node being
considered as a fragment, which has level 0 initially. In each
“round” of the algorithm, each fragment independently finds
its minimum weight outgoing edge (MWOE) and uses this
edge to combine with other fragments. Specifically, each frag-
ment has its leader to manage the combining operations, which
are either “merge” or “absorb” operations. Absorb operation
doesn’t change the maximum level among all fragments while
merge operation may increase the maximum level by 1. To find
the MWOE, the leaders of two fragments, which are adjacent
to the edge added immediately in the previous step, send
initiate message to the members of the fragment. Upon receipt
of the initiate message, each member node finds its outgoing
edge and reports it to the leaders. Upon receipt of reports, the
leaders select a new leader, the node that is adjacent to the
MWOE for the entire fragment, and then begins a new round.

3There are a few work [7, 18] that construct distributed MST in wireless
ad hoc networks with less energy consumption. Their distributed MST is an
O(|V |log|V |)-approximation to the optimal MST.

During the execution of the algorithm, an edge that becomes
part of the MST is a branch edge. The only difference between
Distributed DAO and GHS is the termination case: for GHS, it
is when a fragment is unable to find a MWOE; for Distributed
DAO, it is when the number of branch edges reaches q.

Time and Message Complexity. We only give analysis results
due to space constraint. For the first stage of Distributed DAO,
both its time and message complexities are O(p|E|), where p
is the number of data nodes. For the second stage, its time
complexity is O(p · logp) while its message complexity is
O((p+ |E′|) · logp). Therefore, the first stage dominates and
both the time and message complexities of Distributed DAO
are O(p|E|).

Theorem 5: When there is one initiator allowed, Dis-
tributed DAO finds an optimal aggregation cost.
Proof: When there is only one initiator in the data aggregation,
q = |V |−1. Therefore finding minimum q-edge forest in data
aggregation is equivalent to finding a MST in the aggregation
network. Consequently, Distributed DAO is equivalent to GHS
algorithm. Due to the optimality of finding MST by the GHS
algorithm, the optimality of Distributed DAO also sustains.

VI. Performance Evaluation

A. Centralized Algorithms.

Our centralized algorithms are implemented in Java. In our
experiments, 50 and 100 sensors are uniformly distributed in
a region of 1000m × 1000m. Transmission range is 250m.
Unless otherwise mentioned, R = m = 512KB. We define
correlation coefficient as ρ = 1−r/R. ρ = 0 means no spatial
correlation at all, while ρ = 1 means perfect correlation (i.e.,
data at aggregators are duplicate copies of data at initiators
thus can be completely removed). In the plots, each data point
is an average over 10 runs and the error bars indicate 95%
confidence interval, wherever applicable. Since the comparison
results are similar for 50 and 100 nodes, we only present the
results for 50 nodes, because they can be clearly visualized.

Valid Range of p. Fig. 6(a) shows the valid range of p for
different correlation coefficient ρ. When ρ = 0.1, the valid
range of p is a single value of 26, with corresponding value
of q, the number of aggregators, as 20. When increasing ρ,
the valid range of p expands, from 26 − 29 for ρ = 0.3, to
26 − 33 for ρ = 0.5, to 26 − 37 for ρ = 0.7, to 26 − 49
for ρ = 1. This is because strong data correlation leads to
more data being aggregated, thus allowing more data nodes to
exist under overall storage overflow. It also shows that for each
ρ, q increases when increasing p. This is because more data
nodes means more overflow data and less available storage,
therefore more aggregators are needed to achieve enough data
size reduction. Finally it shows that for the same p, q decreases
when increasing ρ. This is implied by Equation 1, which can
be rewritten as: q = dp×(1+m/R)−|V |×m/R

ρ e. Fig. 6(b) shows
the maximum number of initiators p−q for each valid p value.
There are two cases that one initiator is allowed: ρ = 0.5 and
p = 33, and ρ = 1 and p = 49, while multiple initiators are
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Fig. 6. Valid range of p while varying ρ (R = m).
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Fig. 7. Performance improvement of STF-Walk over B-Walk.

allowed for other cases. We study both cases of single initiator
and multiple initiators.

Performance Improvement of STF-Walk Over B-Walk. We
first study the performance improvement of STF-Walk over B-
Walk. We choose ρ = 0.5, which is a representative correlation
coefficient, and vary p from 26 to 33. Fig. 7(a) shows that
when p is 26, 27, or 28, both STF-Walk and B-Walk yield
the same total aggregation costs. This is because when the
number of data nodes p is small, the number of aggregators q
is small, causing that the connected components of the resulted
q-edge forests are all linear. In linear topologies, aggregation
takes place by simply traversing from one end of the linear
topology to the other end, resulting the same performances
for both STF-Walk and B-Walk. However, when p gets larger,
STF-Walk yields less cost and performs better than B-Walk
does, because STF-Walk always traverses the smaller subtree
twice while B-Walk could possibly traverse the bigger subtree
twice. Fig. 7(b) shows that the performance improvement of
STF-Walk over B-Walk is around 5% − 10%. Therefore, for
the rest of the simulations we choose STF-Walk instead of
B-Walk, but still refer to it as B-Walk.

Comparing B-Walk with LP-Walk Visually. Before we per-
form a comprehensive comparison between B-Walk and LP-
Walk, we first compare them visually to gain some insights.

Single Initiator Case. We consider ρ = 0.5 and p = 33,
which has 32 aggregators and one initiator. Fig. 8(a) and (b)
show such a sensor network and its corresponding aggregation
network, respectively. Fig. 8(c) shows the corresponding 32-
edge forest.4 Fig. 8(d) and (e) show the aggregation walks
from B-Walk and LP-Walk, respectively. B-Walk visits 32
edges twice, resulting in a total aggregation cost of 381.2J ;
while LP-Walk only visits 12 edges twice, with a total cost of
290.6J , a 23.8% of improvement upon B-Walk.

Multiple Initiators Case. We consider ρ = 0.5 and p = 32,
which has 28 aggregators and allows at most 4 initiators.
Fig. 9(a) and (b) show such a sensor network and its cor-
responding aggregation network. Fig. 9(c) shows the 28-edge
forest of the aggregation network. It consists of four “clusters”,
each of which is visited by one initiator. However, Fig. 9(d)

4Here, each edge in the 32-edge forest is replaced by a shortest path of
storage nodes, if there are any. Therefore there are more than 32 edges in this
forest. The multiple initiators case below is similar.
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(a) Sensor network of 50 nodes. (b) Aggregation network. (c) 32-edge forest. (d) B-Walk (381.2J). (e) LP-Walk (290.6J).

Fig. 8. Visually comparing B-Walk with LP-Walk with one initiator. Black nodes are data nodes and white nodes are storage nodes, with
node ID shown inside. Here, ρ = 0.5, p = 33, and q = 32. � and J– indicate the first and last node in a walk, respectively.

(a) Sensor network of 50 nodes. (b) Aggregation network. (c) 28-edge forest. (d) B-Walk (cost 255.9J). (e) LP-Walk (cost 203.0J).

Fig. 9. Visually comparing B-Walk with LP-Walk with 4 initiators. Black nodes are data nodes and white nodes are storage nodes, with
node ID shown inside. Here, ρ = 0.5, p = 32, and q = 28. � and J– indicate the first and last node in a walk, respectively.
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Fig. 10. Comparing B-Walk with LP-Walk by varying p and ρ.

and (e) show that how B-Walk and LP-Walk visit each cluster
differently. It shows that B-Walk traverses 19 edges twice,
resulting in a total aggregation cost of 255.9J, while LP-Walk
traverses 9 edges twice, with a total aggregation cost of 203.0J,
a 20.7% of improvement. Compared to Fig. 8, this shows
that when increasing number of initiators, the performance
difference between B-Walk and LP-Walk gets smaller. In
particular, Fig. 9(d) and (e) show that they find exactly the
same aggregation walks for two smaller trees. This is because
with more initiators allowed, the resulted q-edge forest consists
of more trees with smaller sizes, each with a “short” longest
path. By traversing edges on such short longest paths once, LP-

Walk does not save as much at it does compared to traversing
a big tree with much longer longest path. Finally, compared
to single initiator case, both B-Walk and LP-Walk incur less
energy cost, because more initiators are utilized to find more
cost-effective aggregation walks.

Comparing B-Walk with LP-Walk by Varying p and ρ.
Next we compare B-Walk and LP-Walk while considering the
whole ranges of p ∈ [26, 49] and ρ = 0.1, 0.3, 0.5, 0.7, 1.0.
Fig. 10(a) shows that for each ρ, with the increase of p, the
total aggregation costs of both B-Walk and LP-Walk increase.
However, LP-Walk constantly performs better than B-Walk.
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Fig. 11. Comparing B-Walk with LP-Walk by varying R/m.

It also shows that for the same p, with the increase of ρ,
the aggregation costs for both B-Walk and LP-Walk decrease.
This is because more correlation means that less number of
aggregators are visited, thus reducing aggregation costs.

Fig. 10(b) shows the performance improvement percentage
of LP-Walk over B-Walk is generally 10%−20%. Combining
the 5% − 10% performance improvement of STF-Walk over
B-Walk, the performance improvement of LP-Walk over B-
Walk is therefore around 15%−30%. Furthermore, we observe
the smaller the ρ, the larger the performance improvement
percentage is. For example, when p = 26 (the only valid value
for ρ = 0.1), the performance improvement percentage for
ρ = 0.1 is 14% while zero for ρ = 0.3, 0.5, 0.7, 1.0. When
ρ = 0.5, in its valid p range (26− 33), it almost always has a
larger performance improvement percentage compared to ρ =
0.7, 1. When less data correlation exists, more aggregators are
visited, making the sizes of the resulted q-edge forest as well
as its constituent trees larger. By traversing the longest paths
of larger trees once, LP-Walk can thus save more aggregation
cost compared to traversing smaller trees.

Comparing B-Walk with LP-Walk by Varying R/m. We
compare B-Walk with LP-Walk on different R/m. When
increasing R/m, the overall storage overflow situation gets
more challenging since there are relatively more overflow data
compared to available storage spaces. We choose ρ = 0.5
and vary R/m from 1 to 5, under which the common valid
range of p is [26, 30]. Therefore we pick p = 26 and
p = 30 for comparison. Fig. 11(a) shows again that LP-
Walk yields less total aggregation cost under different R/m.
Fig. 11(b) further shows that the performance improvement
percentage of LP-Walk upon B-Walk generally increases when
increasing R/m. This indicates that LP-Walk performs even
better in more challenging overall storage overflow scenarios.
The observation is that when increasing R/m, the resulted
q-edge forests get larger. This favors LP-Walk, which travels
large amount of edges only once.

B. Distributed Algorithm.

Finally, we evaluate the performance of the Distributed
DAO. Distributed DAO is implemented in Python and is based
on DistAlgo [25], a high-level language for clear description
of distributed algorithms. 100 nodes are randomly placed in
a 2000m × 2000m region. The transmission range is 250m
and m = R = 512KB. We set the size of each overhead
message as 20B. Under above parameters, ρ = 0.6 and
p = 71 allow for one initiator case. Table I compares the
aggregation costs on the q-edge forests resulted from the
Distributed DAO as well as the centralized approximation
algorithm (Algorithm 2), while varying number of data nodes p
in its valid range [55,71]. It shows that even though centralized
algorithm performs much better than Distributed DAO when
p is small, Distributed DAO performs more and more closer
to the centralized algorithm when increasing p. When it gets
to the case of one initiator (p = 71), Distributed DAO yields
the same aggregation cost as the centralized algorithm does,
since they both result in the minimum q-edge forest, which is
a minimum spanning tree. Fig. 12 compares the total energy
cost, which for Distributed DAO, also includes the energy
consumptions for the aggregation network construction and
overhead messages. While centralized algorithm obviously
costs less energy than Distributed DAO, the energy consump-
tions of them are generally very comparable. This shows that
our distributed data aggregation algorithm is energy-efficient.

VII. Related Work
MSTW is different from well-known multiple traveling

salesman problem (mTSP) [5] and vehicle routing problem
(VRP) [39] studied in theory community. In mTSP, a group
of traveling salesmen are given, and it needs to decide a tour
for each salesman such that the total tour cost is minimized and
that each city is visited exactly once. MSTW, however, needs
to first decide how many salesmen can be dispatched (and
from which cities), then to find the tour for each. Besides, not
necessarily all the nodes will be visited in MSTW. In VRP, the
set of vehicle nodes and the set of customer nodes are usually
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p 55 60 65 70 71
q 17 34 50 67 70

Number of Initiators 38 26 15 3 1
Centralized (J) 78.79 251.76 494.12 787.07 876.29
Distributed (J) 209.52 479.12 680.93 827.76 876.29

TABLE I
AGGREGATION COSTS IN CENTRALIZED AND DISTRIBUTED ALGORITHMS.
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Fig. 12. Total energy consumption in centralized and distributed
algorithms.

disjoint. There is no such distinction in MTSW – each node
can either dispatch a salesman or be visited.

In sensor network community, there are active research that
focused on disconnection-tolerant operations in the absence
of the base station. Some system research were conducted to
design cooperative distributed storage systems and to improve
the utilization of the networks data storage capacity [27,
28]. Other research instead took an algorithmic approach
by focusing on the optimality of the solutions [14, 37, 44].
However, all above works assume that there is enough storage
space available to store the overflow data, thus not addressing
the overall storage overflow problem.

There is vast amount of literature of data aggregation
in sensor networks [3, 19, 23, 26, 36, 38, 43]. Here we only
review the most recent and most related works. Tree-based
routing structures were often proposed to either maximize the
network lifetime (the time until the first node depletes its
energy) [26, 43], or minimize the total energy consumption
or communication cost [19, 23], or reduce the delay of data
gathering [3].

Data aggregation in DAO, however, significantly differs
from existing data aggregation techniques both goals and
techniques. First, existing data aggregation is to reduce number
of transmissions by combining data from different sensors en
route to base station, thus saving energy. The goal of data
aggregation in DAO, however, is to aggregate the overflow
data so that they can fit into storage available in the network,
thus preventing data loss caused by overall storage overflow.
Second, most of the existing data aggregation techniques

wherein the underlying routing structures are trees rooted at
the base station covering all sensor nodes. In DAO, however,
since the base station is not available and data must be stored
inside the network, tree-bases routing structure is no longer
suitable. Instead, DAO introduces a novel routing structure
called minimum q-edge forest, which is the key that enable an
approximation algorithm with constant performance ratio, and
a new variation of the traveling salesman problem [21].

Some other works were based on non-tree routing structures,
using mobile base stations to collect aggregated data in order
to maximize the network lifetime [36, 38]. In contrast, we
address a very different problem for sensor networks: before
the mobile base stations or data mules become available, some
sensor nodes already deplete their storage. It therefore calls
for new data aggregation techniques that not only reduce the
size of sensory data while sacrificing no information loss, but
also guarantee that aggregated data can be stored inside the
network. To the best of our knowledge, the overall storage
overflow problem has not been addressed by any of the
existing data aggregation research.

VIII. Conclusion and Future Work
In this paper we tackled the overall storage overflow prob-

lem (DAO) in base station-less sensor networks, wherein the
generated sensory data overflows the storage capacity available
in the entire network. To solve the DAO, we designed a
suite of energy-efficient optimal, approximation, heuristic, and
distributed data aggregation algorithms. The novelties of our
work are two fold. First, underlying the DAO is a new multiple
traveling salesman walks problem (MTSW), which has not
been studied before. We proved its NP-hardness and designed
a constant ratio approximation algorithm for it. Second, the
minimum q-edge forest uncovered in this paper generalizes
minimum spanning tree, and the approximation algorithm
designed generalizes the well-known Kruskal’s algorithm.
Because of these theoretical significance, we believe that the
techniques proposed in this paper could potentially be of
interest to broader applications.

As future work, we will first extend the uniform data size
reduction by considering that different nodes could have differ-
ent correlation coefficients. Second, we will design distributed
algorithms by considering that overflow data can be generated
dynamically, and that some nodes can deplete their battery
power, as well as packet losses and retransmission. Third,
currently data aggregation and data offloading are treated as
two separate stages – we will consider integrating these two
stages and explore a more unified energy-efficient solution for
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the overall storage overflow problem. For example, in Fig. 2,
there are two optimal data aggregation solutions: B is the
initiator and its aggregation walk is: B, E, D, G, H , I; or
I is the initiator and its aggregation walk is: I , H , G, D,
E, B. However, the former achieves optimal for the whole
problem while the latter not. As an ongoing effort [2], we
have designed two energy-efficient data replication algorithms
to integrate data aggregation and data offloading. However,
they are heuristic algorithms that do not have any performance
guarantees. As future work, we would like to integrate these
two stages together to explore a more energy-efficient solution
for the overall storage overflow problem, while achieving some
performance guarantee.
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