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Abstract. We aim to preserve the large amount of data generated in-
side base station-less sensor networks with minimum energy cost, while
considering that sensor nodes are selfish. Previous research assumed that
all the sensor nodes are cooperative and designed a centralized minimum-
cost flow solution. However, in a distributed setting wherein energy- and
storage-constrained sensor nodes are under different control, they could
behave selfishly, only to maximize their own benefit. In this paper, we
take a game theoretic approach and design a computationally efficient
data preservation game. We show that in our game, individual sensor
nodes, motivated solely by self-interest, achieve good system-wide data
preservation solution.

Keywords – Sensor Networks, Data Preservation, Energy-Efficiency, Game
Theory

1 Introduction

Sensor networks are ad hoc multi-hop wireless networks formed by a large num-
ber of low-cost sensor nodes with limited battery power, storage spaces, and
processing capacity. Wireless sensor networks have been used in a wide range of
applications such as military surveillance, environmental monitoring, and target
tracking [22]. Recently, some of the emerging sensor networks are deployed in
challenging environments such as in remote or inhospitable regions, or under
extreme weather, to continuously collect large volumes of data for a long period
of time. Such emerging sensor networks include seismic sensor networks [5], un-
derwater or ocean sensor networks [17, 10, 21], wind and solar harvesting [11, 3],
and volcano eruption monitoring and glacial melting monitoring [20, 12].

In the above scenarios, it is not practical to deploy data-collecting base sta-
tions with power outlets in or near such inaccessible sensor fields. Due to the
absence of the base stations, these sensor networks are referred to as base station-
less sensor networks. Sensory data generated therefore have to be stored inside
the network for some unpredictable period of time and then being collected by
periodic visits of robots or data mules [16], or by low rate satellite link [6]. In



2 Yutian Chen and Bin Tang

particular, some sensor nodes are close to the events of interest and are con-
stantly generating sensory data, depleting their own storage spaces. We refer
to the sensor nodes with depleted storage spaces while still generating data as
source nodes. The newly generated data that can no longer be stored at source
nodes is called overflow data. To avoid data loss, overflow data is offloaded to
sensor nodes with available storages (referred to as storage nodes). We call this
process data preservation in base station-less sensor networks.

Since wireless communication consumes most of the battery power of sensor
node, the key challenge is how to conserve sensors’ battery power by minimiz-
ing the total energy consumption in data preservation. Tang et al. showed that
this problem is equivalent to minimum cost flow problem [18], which can be
solved optimally and efficiently [2]. Two fundamental assumptions are needed
for the optimal data preservation algorithm in Tang et al. to work. First, the
work assumes that all the the storage nodes are selfless in the sense that they
are willing to contribute their battery power and storage spaces to help offload-
ing and storing the overflow data from the source nodes. Second, the optimal
algorithm depends on full observability of the data preservation costs of each
storage node, including the cost of relaying and storing the overflow data.

In this work, we tackle the data preservation problem when sensor nodes are
selfish and are in lack of incentive to contribute to data preservation. Two reasons
make it important to view sensor nodes as selfish players. First, sensor nodes are
generally resource-constrained, with very limited amount of hardware resources
including battery power, storage capacity, and processing power. Such resource
constraints give sensor nodes minimum or zero motivation to be an altruistic
player in data preservation. Second, in a large scale distributed sensor networks,
sensor nodes could be under the control of different users or controllers, each
of which pursues their own self-interest in the network. Under above scenarios
sensor nodes can behave selfishly only to maximize their own benefit.

When sensor nodes are selfish, those assumptions in Tang et al. are no longer
valid. First, in order to conserve their own battery power and storage spaces,
the storage nodes will choose not to spend their energy and storage resources to
help the source nodes to preserve the overflow data, obstructing the entire data
preservation process. Second, the associated costs of data preservation of each
storage node are normally private information which are not directly observed
by outsiders. Due to selfishness, the storage nodes are in lack of incentive to
truthfully report their costs. The reason is that each storage node needs to be
paid in order to be motivated to participate in data preservation. Nonetheless
through lying about its associated cost of data preservation, the storage node
may successfully induce a data preservation path which generates itself a higher
payoff compared to the payoff when it tells the truth. Such lying behavior of the
storage nodes out of their selfishness clearly makes the data preservation path
in Tang et al. inefficient. Therefore, with selfish sensor nodes, the challenge is to
achieve good system performance, i.e., efficient data preservation with minimum
energy cost, while still accommodating selfishness of the sensor nodes.
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In this paper, we address the above challenge by utilizing the technique of
algorithmic mechanism design (AMD) [13, 15, 14], a subfield of microeco-
nomics and game theory. The goal of AMD is desirable – it designs computation-
ally efficient game (including strategies and payoffs) such that individual players,
motivated solely by self-interest, achieve good system-wide solution. We design
computationally efficient data preservation game, in which a payment model is
presented to compensate selfish nodes for participating in the data preserva-
tion. The payment to each node is designed in a way such that the following
two purposes are achieved: first, each node, understanding how the payments
are calculated, finds it optimal truthfully reporting its private cost information.
Second, based on the reported cost of each node, the payment can sufficiently
motivate each node who is involved in the optimal data preservation path calcu-
lated in Tang et al. to actually participate in data preservation. With these two
goals achieved, the payment model in our game leads to good system-wide data
preservation solution with each sensor node motivated solely by self-interest.

2 Data Preservation Problem

Network Model. The sensor network is represented as an undirected connected
graph G(V,E), where V = {1, 2, ..., n} is the set of n sensor nodes and E is the
set of m edges. The sensory data are modeled as a sequence of data packets,
each of which is a bits. Some sensor nodes are close to the event of interest and
generate large amount of data packets and deplete their storage spaces; they are
referred to as source nodes. WLOG there are k source nodes Vs = {1, 2, ..., k}.
The rest nodes in V − Vs are referred to as storage nodes. Let di denote the
number of overflow data packets source node i generates. Because of the storage
depletion of the source nodes, the overflow data packets must be offloaded from
their source nodes to some storage nodes to be preserved. Let d =

∑k
i=1 di be

the total number of overflow data packets, and let D = {D1, D2, ..., Dd} denote
the set of these d data packets. Let s(j) ∈ Vs, 1 ≤ j ≤ d, denote Dj ’s source
node. Let mi be the available free storage space (in bits) at sensor node i ∈ V .
If i ∈ Vs, then mi = 0, implying that a source node is storage-depleted and
thus has zero available storage space. If i ∈ V − Vs, then mi ≥ 0, implying that
a storage node i can store another mi bits of data packets. We assume that∑n

i=k+1mi ≥ d · a, that is, the total size of the overflow data packets can be
accommodated by the total available storage spaces.

Energy Model. We consider three different kinds of energy consumptions in-
curred in data preservation.

– Transmitting Energy Et
i (j). When node i sends a data packet of a bits to its

one-hop neighbor j over their distance li,j , the amount of transmitting energy
spent by i is Et

i (j) = a · εai · l2i,j + a · εei . Here, εai is energy consumption of
sending one bit on transmit amplifier of node i, and εei is energy consumption
of transmitting one bit on the circuit of node i.
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– Receiving Energy Er
i . When node i receives an a-bit data packet from one of

its one-hop neighbor, the amount of receiving energy it spends is Er
i = a · εei .

Here, εei is energy consumption of receiving one bit on the circuit of node i.
Note that Er

i does not depend on the distance between nodes.
– Storing Energy Es

i . When node i stores a-bit data into its local storage, the
amount of storing energy it consumes is Es

i = a · εsi . Here εsi is the energy
consumption of storing one bit at node i.

Problem Formulation. Define a preservation function as p : D → V − Vs,
indicating that a data packet Dj ∈ D is offloaded from its source node s(j) ∈ Vs
to a storage node p(j) ∈ V −Vs to be preserved. Let Pj = {s(j), ..., p(j)} be the
preservation path along which Dj is offloaded. Let ci,j denote node i’s energy
consumption in preserving Dj . ci,j can be represented as Equation 1 below, with
σ(i, j) being the successor node of i on Pj .

ci,j =


Et

i (σ(i, j)) i = s(j)
Er

i + Es
i i = p(j)

Er
i + Et

i (σ(i, j)) i ∈ Pj − {s(j), p(j)}
0 otherwise

(1)

The objective is to find a preservation function p and Pj (1 ≤ j ≤ d) to minimize
the total preservation cost, denoted as c, i.e.,

c = minp

d∑
j=1

n∑
i=1

ci,j = minp

n∑
i=1

d∑
j=1

ci,j , (2)

under the storage constraint that the total size of data offloaded to storage node
i can not exceed i’s storage capacity: |j|1 ≤ j ≤ d, p(j) = i| ·a ≤ mi, ∀i ∈ V −Vs.

Algorithm. Tang. et al. [18] has shown that this problem is equivalent to the
minimum cost flow problem in a properly transformed graph of the sensor net-
work graph. The minimum cost flow problem can be solved optimally and effi-
ciently [2]. We adopt and implement the scaling push-relabel algorithm proposed
in [7, 1]. It has the time complexity of O(|V |2|E|log(|V |C)), where C is the max-
imum capacity of an edge in the transformed graph. We denote the algorithm
designed in Tang. et al. [18] as the centralized algorithm to highlight that it min-
imizes data preservation energy based on the assumption that each node in the
network is selfless and therefore fully cooperative.

In this work, we instead consider selfishness of nodes in the sense that each
node is maximizing its own interest instead of the system interest. The central
problem is to design a mechanism to incentivize selfish nodes to accomplish
data preservation as in the centralized algorithm. Note that each source node is
obligated to offload its data therefore selfishness does not apply to source nodes.
On the other hand, storage nodes are selfish and need to be motivated. However,
selfishness of storage nodes can lead to two problems. First, each storage node
has no incentive to either relay or store data as either task consumes energy.
Therefore, our mechanism needs to pay those storage nodes involved in data
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preservation path solved from the centralized algorithm, in order to give them
incentive to participate in data preservation. The second problem is more subtle
but fundamental. The centralized algorithm can figure out the minimum cost
data preservation path only based on the assumption that data preservation
costs of each storage node are observed. However, some of those cost parameters
of each node (given by εei , ε

a
i and εsi ) are private information of each node and

may not be directly observed by outsiders. Thus our mechanism needs to induce
each node to truthfully report their unobserved cost parameters, so that the
centralized algorithm can calculate the minimum cost path based on the reported
cost parameters.

3 Algorithmic Mechanism Design (AMD) Approach

The goal of AMD is to design a game in which selfish players maximizing their
own utility will choose strategies resulting in the social optimum specified by
an optimal algorithm. Here the resulted state is referred to as the dominant
strategy equilibrium/solution. Dominant strategy of a player is a strategy always
maximizing his utility regardless of the other players’ strategies. In a dominant
strategy solution, each player is playing his dominant strategy. Note that a domi-
nant strategy solution is also a Nash equilibrium since no player has an incentive
to deviate from its strategy unilaterally. The challenge in the data preservation
problem is to design utility function so that truthfully reporting its cost param-
eter is a dominant strategy to each storage node. Below we first introduce the
concepts and notations of the AMD model. We then present the payment model,
and prove that under this payment model, acting truthfully (that is, telling its
true energy cost involved in data preservation) is each node’s dominant strategy.

The AMD Model. There are n nodes in the network - node i has some private
information ti, called its type. There is an output specification that maps each
type vector t = {t1, ..., tn} to some output o. Node i’s cost is given by valuation
function vi(ti, o), which depends on ti as well as o. A mechanism defines for each
node i is a set of strategies Ai. When i plays strategy ai ∈ Ai, the mechanism
computes an output o = o(a1, ..., an) and a payment vector p = (p1, ..., pn), where
pi = pi(a1, ..., an). Node i wants to maximize its utility function πi(a1, .., an) =
vi(ti, o) + pi.

There are three observations of the total preservation cost (Equation 2). First,
the total cost is the sum of all participating nodes’ energy costs. We can therefore
adopt the Vickrey-Groves-Clark (VCG) mechanism [19, 9, 4]. VCG mechanism
applies to mechanism design optimization problems where the objective function
is simply the sum of all agents’ valuations, and it guarantees that each agent
plays truthfully by reporting its true valuation [13]. Second, to minimize the
total preservation cost for all the data packets, it only needs to minimize the
preservation cost for each data packet Dj , given its source node and destination
node. Therefore, our payment model focuses on only one packet, say Dj . Third,
in the context of data preservation, ci,j is essentially the private information held
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by storage node i. To each storage node i, its strategy set includes to truthfully
report its cost parameter (therefore ci,j) or to lie about its cost parameter. That
is, (ci,1, ci,2, ..., ci,d) ∈ Ai and vi(ti, o) = −ci,j for any i. Therefore i’s utility is
πi = pi − ci,j .

Payment and Utility Model. Below we present the payment and utility
model. Since we focus on any data packet Dj (and its preservation path Pj),
we use ci instead of ci,j to denote node i’s true cost. pi is the payment made to
node i in order to motivate it to participate the data preservation, πi = pi − ci.
Let c−i denote the strategies of all other nodes except node i.

Definition 1. Payment and Utility. Based on Green and Laffont [8], under
VCG mechanism, given any cost c̃i reported by node i, the amount of payment
given to node i depends on whether node i is chosen to participate in data preser-
vation according to the centralized algorithm. Its payment is 0 if it is not chosen;
and its payment when it is chosen is:

pi(c̃i, c−i) = cV−{i} − (c̃V − c̃i), (3)

where cV−{i} is the minimum total cost of the preservation path that does not go
through i; c̃V is the minimum total cost of the preservation path that goes through
i, when i reports its cost c̃i. Therefore i’s utility is 0 when it is not chosen by
the centralized algorithm; and when i is chosen, its utility is

πi(c̃i, c−i) = pi(c̃i, c−i)− ci = cV−{i} − (c̃V − c̃i)− ci, (4)

where ci is node i’s true cost. Moreover, we define cV as the minimum total cost
of the preservation path that goes through i when i truthfully reports its cost, i.e.,
when c̃i = ci. �
Time complexity of the payment model. The time taken to compute the pay-
ment model is the time taken for the minimum cost flow calculation, which is
O(|V |2|E|log(|V |C)), where C is the maximum capacity of an edge in the trans-
formed graph [7, 1]. Under this model, the amount of payment given to a specific
node i equals the total minimum cost of all the participating nodes when i does
not participate minus all other participating nodes’ cost when i participates. The
rationale is that a node can be motivated to participate if it is paid its share of
contribution, which in our case, is the amount of preservation energy this node
helps to reduce when it participates.

An implication here is that the payment and utility model is common knowl-
edge to each node. That is, each node understands that based on their reported
cost types and the corresponding data preservation path calculated by the cen-
tralized algorithm, their payment and utility are given by (3) and (4), respec-
tively. The timing of the game among the source nodes is given below.

Definition 2. Timing of the Game. The game unfolds as follows. In stage
1, each storage node reports its private type ci. In stage 2, the centralized al-
gorithm is applied based on reported cost types to calculate the minimum cost
data preservation path. In stage 3, each of the storage nodes chosen in the path
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chooses to participate in data preservation or not. If they participate, they realize
the data preservation cost and also the payment given by Equation (3), and each
gets utility given by Equation (4). �

Note that each storage node moves only in stages 1 and 3, when each chooses
how much to report for private type and whether to participate in data preser-
vation based on the corresponding payment. Stage 2 is non-strategic: in the
absence of base stations, the centralized algorithm is provided by an outsider
of the system, and it cannot be enforced in the system by the outsider. Since
there is a time sequence between the two decisions of each node in stage 1 and
stage 3, the solution concept of the game is subgame perfect Nash equilibrium
(SPNE). SPNE is a Nash equilibrium (NE) in which players are doing NE in
every subgame of the whole game tree.

Assumptions. We assume that the source nodes are obliged to offload their
overflow data packets to other storage nodes, thus need not to be motivated.
Therefore, their types are known public knowledge, and they will be reimbursed
according to true costs they entail. For storage node i that participates in the
preservation of a specific data packet, it incurs one of the two costs below:

– Relaying Cost cri (j). When node i receives a data packet and then sends it
to one of its one-hop neighbor j over their distance li,j , its relaying cost,
denoted as cri (j), is the sum of its receiving energy and transmitting energy.
That is cri (j) = Er

i + Et
i (j) = 2 · a · εei + a · εai · l2i,j .

– Storing Cost csi . When node i receives a data packet and then stores it into
its storage, its storing cost, denoted as csi , is the sum of its receiving energy
and its storing energy. That is, csi = a · εei + a · εsi .

Note that node i has three energy parameters: εei , ε
a
i , and εsi . Among them,

εei affects both cri (j) and csi , while εai only affects cri (j) and εsi only affects csi .
Next, we will study the AMD model wherein for each node i, either εai or εsi or
εei is the private type of node i not directly observed by the public. Since εai and
εsi each only affects one cost or the other, we study ti = εai or ti = εsi first

3.1 AMD When ti = εai or ti = εsi .

We focus on ti = εai since ti = εsi can be studied similarly. Below we give
a detailed proof that under above VCG payment model, for each node i,
truth-telling (reporting its true type ti) is a dominant strategy. We define
cr−i = {cr1, ....., cri−1, cri+1, ..., c

r
n} as the cost vector of other nodes except i. Since

the optimal minimum cost flow algorithm determines i’s successor node j, and
for ease of notation, we use ci instead of cri (j) to represent node i’s relaying cost,
and use c̃i instead of c̃ri (j) in the following theorem and proof.

Theorem 1 For any node i, suppose ti = εai (that is, εai is i’s private type).
Reporting its true type εai is node i’s dominant strategy. That is, πi(ci, c−i) ≥
πi(c̃i, c−i), ∀ c̃i 6= ci and ∀ c−i.
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Proof: We consider that node i either reports truthfully or not. Under either
case, node i could be chosen to participate in the data preservation or not ac-
cording to the centralized algorithm. Therefore there are all together four cases.
Below we show that πi(ci, c−i) is always greater or equal to πi(c̃i, c−i) in all the
four cases.

Case I: Node i is in the preservation path when reporting either ci or c̃i.
Thus the payment of i when it reports truthfully is πi(ci, c−i) = cV−{i} − (cV −
ci)− ci = cV−{i} − cV . On the other side, when it lies by reporting c̃i, its payoff
is πi(c̃i, c−i) = cV−{i} − (c̃V − c̃i)− ci = cV−{i} − (c̃V − c̃i + ci) = cV−{i} − cV .
Therefore in this case πi(ci, c−i) = πi(c̃i, c−i). Note that πi(ci, c−i) ≥ 0 because
cV−{i} − cV ≥ 0.

Case II: Node i is in the preservation path when reporting ci, which implies
that cV−{i} ≥ cV ; and it is not in the preservation path when reporting c̃i, which
gives payoff πi(c̃i, c−i) = 0. Thus its payoff under truth-telling is πi(ci, c−i) =
cV−{i} − cV ≥ 0. In this case πi(ci, c−i) ≥ πi(c̃i, c−i).

Case III: Node i is not in the preservation path when reporting ci, which
gives πi(ci, c−i) = 0 and also implies that cV−{i} ≤ cV . However, it is in the
preservation path when reporting c̃i. Its payoff when it lies is πi(c̃i, c−i) =
cV−{i} − (c̃V − c̃i)− ci = cV−{i} − (c̃V − c̃i + ci) = cV−{i} − cV ≤ 0. Therefore
in this case πi(ci, c−i) ≥ πi(c̃i, c−i).

Case IV: Node i is not in the preservation path when reporting either ci or
c̃i. In this case πi(ci, c−i) = πi(c̃i, c−i) = 0.

Since πi(ci, c−i) ≥ πi(c̃i, c−i) holds regardless of other nodes’ strategy c−i
under all the cases, we conclude that reporting its true cost ci is node i’s domi-
nating strategy.

Theorem 2 With the payment given by (3), when εai or εsi is unobserved, there
exists SPNE of the game, in which every storage node i truthfully reports its
cost type in stage 1. Moreover, in stage 3 each node i chosen by the centralized
algorithm for data preservation will participate.

Proof: In stage 3, each storage node chosen by the centralized algorithm will
participate as long as its utility (i.e., payoff) is no less than zero. When we move
back to stage 1, by Theorem 1, each storage node has a dominant strategy, which
is to truthfully report the type. Therefore, the Nash equilibrium in stage 1 is that
each node truthfully reports its type. Since each node in the data preservation
path gets a non-negative utility (see the proof of Theorem 1), each will choose
to participate in stage 3. We conclude that the strategy given in this theorem
constitutes a SPNE.

3.2 AMD When ti = εie.

When εie is the unknown type of source node i, the reported value of the type
affects the two costs simultaneously: the relaying cost cri (j) and the storing cost
csi . The complication here is that by lying about its type, node i might switch
its role in data preservation from one task to a different task. For example, node
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i might be assigned to relay the data packet according to εie, its true cost type;
but by reporting ε̃ie 6= εie, node i might instead be assigned to store the data. It
is not clear whether VCG can continue to apply in this case or not. To examine
the situation when εie is the unknown type of node i, we first denote cisV as
the minimum total cost of data preservation given that node i stores the data
packet; and cirV as the minimum total cost of data preservation given that node
i relays the data packet. Note that cV−{i} is the minimum total cost of data
preservation given that node i does not participate in data preservation. The
following theorem shows that the basic idea of VCG continues to hold. Since the
optimal minimum cost flow algorithm determines i’s successor node j, and for
ease of notation, we use ci to represent cri (j) or csi , and use c̃i to represent c̃ri (j)
or c̃si in the following theorem and proof.

Theorem 3 For any node i, suppose ti = εei (that is, εei is i’s private type).
Reporting its true type εei is node i’s dominant strategy. That is, πi(ci, c−i) ≥
πi(c̃i, c−i), ∀ c̃i 6= ci and ∀ c−i.

Proof: Based on the reported εei of node i, node i could be chosen to participate
in the data preservation or not according to the centralized algorithm. If it is
chosen, it may be designated to either transmit or store the data packet. We
need to show that regardless of other nodes’ reported cost types, telling truth
is always the optimal strategy of node i. There are in together six cases and we
show that πi(ci, c−i) is always greater or equal to πi(c̃i, c−i) in all the six cases.

Case I. Node i is in the preservation path to relay the data packet when
reporting either ci or c̃i.

Case II. Node i is in the preservation path to store the data packet when
reporting either ci or c̃i.

Case III. Node i is in the preservation path to relay the data packet when
reporting ci and is doing nothing when reporting c̃i.

Case IV. Node i is in the preservation path to store the data packet when
reporting either ci or c̃i.

Proof for πi(ci, c−i) ≥ πi(c̃i, c−i) for the four cases are similar as in the proof
of Theorem 1 and are omitted. We focus on the following two cases.

Case V. Node i is in the preservation path to relay the data packet when
reporting ci and is in the preservation path to store the data packet when re-
porting c̃i. This implies that cisV ≥ cirV . When node i reports ci, its payoff is
cV−{i} − cirV + ci − ci = cV−{i} − cirV . When node i reports c̃i, its payoff is
cV−{i} − c̃isV + c̃i − ci = cV−{i} − cisV . It follows that cV−{i} − cirV ≥ cV−{i} − cisV .

Case VI. Node i is in the preservation path to store the data packet when
reporting ci and is in the preservation path to relay the data packet when re-
porting c̃i. This implies that cisV ≤ cirV . When node i reports ci, its payoff is
cV−{i} − cisV + ci − ci = cV−{i} − cisV . When node i reports c̃i, its payoff is
cV−{i}− c̃irV + c̃i− ci = cV−{i}− cirV . It follows that cV−{i}− cisV ≥ cV−{i}− cirV .

Theorem 4 With the payment given by (3), when εie is unobserved, there exists
SPNE of the game, in which every source node i truthfully reports its cost type
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in stage 1. Moreover, in stage 3 each node i chosen by the centralized algorithm
for data preservation will participate.

Proof: It follows the same argument as the proof of Theorem 2 and is omitted
here.

4 Conclusion and Future Work

In this work, we study data preservation problem in base station-less sensor net-
works wherein energy- and storage-constrained sensor nodes behave selfishly. We
take a game theoretic approach and design a payment model under which the in-
dividual sensor nodes, motivated solely by self-interest, achieve good system-wide
data preservation solution. In particular, we break down the data preservation
cost of each storage node into two parts: relaying cost and storing cost, where
cost parameters are node-dependent. The payment model is designed in a way
such that no matter which cost parameter (related only to the relaying cost or
only to the storing cost or to both) is private to the node, truthfully reporting
the cost parameter is a dominant strategy to each node. We show that as a
result, in the game it is an equilibrium that each storage node first truthfully
reports its cost parameter, then participates in data preservation if it is chosen
by the centralized data preservation algorithm.

In the next step of the work, we will validate theoretical findings using sim-
ulation results. By contrasting the payment of each storage node in the sensor
network under truth-telling strategy to what it is under lying, we will show
that truth-telling is never worse off and in certain cases is strictly better off to
each storage node regardless of the choice of the other nodes. The simulation
results thus can verify that truth-telling is a dominant strategy of each source
node. Other future work includes relaxing some assumptions in the current work.
In particular, we have assumed that data preservation is feasible in the sensor
network, i.e., all the nodes have enough energy to offload and preserve all the
overflow data packets. If instead the network is infeasible so that some data
packets will inevitably be lost, it is interesting to see how the payment model
can work to induce the efficient data preservation. Finally, we will extend our
analysis to a dynamic scenario wherein overflow data are generated from time to
time at different nodes. It is well understood in game theory that an infinitely
repeated game gives a much larger set of equilibrium and in certain scenarios full
cooperation can be achieved. In our setting of data preservation among selfish
nodes, it is interesting to see to what extent we need to provide motivation for
selfish storage node to engage in the optimal data preservation.
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