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Abstract—In this paper we study a new algorithmic problem
that maximizes the throughput of virtual machine (VM) com-
munication in bandwidth-constrained data centers. Given a set
of VM pairs with different bandwidth demands that are already
placed inside cloud data centers, we study how to allocate the
network bandwidth to the VM pairs to accommodate maximum
number of VM communication while considering that cloud data
centers have limited bandwidths. We refer to this throughput
maximization problem as VMB. Due to the massive growth of
cloud communication traffic in recent years and that service
providers attempt to accommodate as many VM applications
as possible in order to maximize their profits, VMB is an
important problem to study. First we prove that VMB is NP-
hard. Then we propose a suite of algorithms to solve VMB. In
particular, we propose an approximation algorithm that achieves
approximation ratio of 1/(2 · dB

b
e · |E|1/(d

B
b
e+1) + 1), where

|E| is the number of edges in the data center network, B is
the average bandwidth capacity on edges, and b is the average
bandwidth demand of each request. We show through simulations
that our algorithms are effective in accommodating large number
of VM communications under different network parameters.
In particular, our approximation algorithm accommodates more
than 60% of total VM communications, and up to 38% more
VM pairs compared to existing research.

Keywords – Throughput Maximization, Virtual Machine
Communication, Cloud Data Centers, Bandwidth Constraints,
Approximation Algorithms

I. Introduction
Recent years have witnessed a dramatic growth of the cloud

data centers. Consisting of hundreds of thousands of server
machines, cloud data centers host rapidly-growing Internet
applications including video streaming and social media [24],
IoT-based applications such as ambient assisted living [12],
and Massive Open Online Courses (MOOCs) [11]. A recent
report of Cisco Global Cloud Index [2] shows that cloud data
center workloads and compute instances nearly tripled (2.7-
fold) for the last five years, which led to a massive growth in
the volume of data and traffic in cloud data centers.

Meanwhile, as a mature virtualization technology, virtual
machines (VMs) have become one of the key building blocks
of modern cloud data centers. Despite that VMs are isolated
units of CPU cycles, memory, and bandwidth, there are often
cases where VM applications need to communicate across
their isolation barriers. For example, a web service running

in one VM may need to communicate with a database server
running in another VM to satisfy the clients’ transaction
requests. A Google search engine VM might query a database
VM to return search results to the cloud users. Such isolation
unfortunately results in significant overheads (CPU, memory,
and bandwidth) when different VM applications need to com-
municate with each other to achieve application objectives [8].
How to facilitate efficient inter-VM communications in cloud
data centers becomes a challenging problem.

This problem is further exacerbated in bandwidth-
constrained data centers [6], wherein bandwidth provision
does not keep the pace with the growth of bandwidth demands
of VM applications. Despite the continuous improvement of
bandwidth provisions in cloud data centers, bandwidths are
still scarce network resources for the following reasons.

First, cloud providers usually oversubscribe their data center
resources (i.e., CPU, memory, storage, and bandwidth) to
leverage its underutilized capacity in order to maximize their
profits [7]. For example, some production datacenter networks
such as Facebook data centers are oversubscribed as high as
40:1, causing the intra-datacenter traffic to contend for core
bandwidth [20]. Second, the aforesaid VM applications are all
data- and bandwidth-intensive, and many of them are complex
combinations of multiple services that require predictable per-
formances. With an explosive growth of such VM applications
and their ensued network traffic, the demands for network
resources such as bandwidths and switches’ processing ca-
pabilities are rapidly growing. Consequently, such resources
could be exhausted and become a performance bottleneck in
a cloud environment. Although storage and processing power
are commodities, bandwidth is not [3]. For example, while the
cost of storage and computing has come down drastically over
the years (with petabytes of storage and racks of servers of
hundreds of cores), the bandwidth provision still lags behind
and the bandwidth is still relatively expensive [6].

The high bandwidth demands from cloud users, combined
with oversubscription of cloud data centers, lead to cloud
bandwidth overloading. This consequently stresses the cloud
network infrastructures and restrains VM communications in
cloud environment. A cloud service provider thus must manage
such bandwidth overloading while at the same time, aim to



maximize its profit as well as minimize service level agreement
(SLA) violations. When cloud infrastructures are stressed and
cloud resources are insufficient to accommodate all the VM
applications, service providers will accommodate as many VM
applications as possible in order to maximize their profits.

We target this problem in this paper while focusing on VM
communications within a cloud data center. In the data centers,
the east-west traffic accounts for 75.4 percent of traffic and the
internal traffic has increased much faster than Internet-facing
traffic [2]. Furthermore, instead of focusing on the general all-
pair VM communication paradigm that is commonly adopted
by almost all of the research [22], [13], we focus on pairwise
VM communication in this paper. Pairwise communication,
wherein VMs communicate in pairs, is a prevalent communi-
cation paradigm in cloud computing platforms. For examples,
in both cloud chatbots (e.g., Slack [4] and Amazon Lex [1])
and cloud messaging apps (e.g., WhatsApp and Facebook
Messenger), one to one communication is still the most
dominant one. Besides, such pairwise communicating VMs
could have a diverse bandwidth demands ranging from low-
bandwidth texts and voices to high-bandwidth live-streaming
videos. Hence, it is important to provide bandwidth guarantees
to such diverse pairwise applications in order to preserve the
predictability of their response time.

In this paper we identify, formulate, and solve a new algo-
rithmic problem called VMB. Given a bandwidth-constrained
data center, and VM communicating pairs with varying
bandwidth demands, the goal of VMB is to maximize the
number of VM pair communications (from the perspective
of the cloud service providers). We formulate the VMB
as a graph-theoretical problem and prove its NP-hardness.
We then propose a series of efficient bandwidth allocation
algorithms that decide not only which VM pairs are to be
accommodated but also the path along which each pair com-
municates. In particular, we prove that one of the algorithms
is an approximation algorithm with approximation ratio of
1/(2 · dBb e · |E|

1/(dBb e+1) + 1), where |E| is the number of
edges in the data center network, B is the average bandwidth
capacity on edges, and b is the average bandwidth demand of
each request. We show through simulations that our approxi-
mation algorithm accommodates more than 60% of total VM
communications, and up to 38% more VM pairs compared
to existing research under different network parameters. To
the extent of our knowledge, maximizing the throughput of
pairwise VM communication in a bandwidth-constrained data
center has not been adequately tackled before. Our work is
the first to deliver a constant-ratio approximation algorithm
for this hard problem.

II. Related Work
How to accommodate VM communication in bandwidth-

constrained data center has been an active research topic.
Bodk et al. [6] observed that there exists an inherent tradeoff
between achieving high fault-tolerance and reducing band-
width usage. They created an optimization framework that
achieves both high fault-tolerance and efficient bandwidth
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Fig. 1. A fat tree with k = 4 and 16 PMs. There are four communicating
VM pairs: (v1, v

′
1), ..., (v4, v

′
4), each VM is at a different PM.

usage in a bandwidth-constrained data centers. In particular,
they proposed minimum k-way cut [15] to partition the logical
machines into a given number of clusters in order to minimize
bandwidth consumption.

Lee et al. [19] presented a solution that provides bandwidth
guarantees to cloud applications based on network abstraction
and a workload placement algorithm. Duan et al. [10] studied
load balancing in a multi-tenancy oriented data center consid-
ering the bandwidth constraint of servers. Yu et al. [28] studied
how to embed virtual clusters survivability in the cloud data
center and jointly optimized primary and backup embeddings
of the virtual clusters with bandwidth-guarantee. Liu et al.
[21] provided an in-network solution to achieve bandwidth
guarantees and work conservation simultaneously.

All above work focuses on how to place the VMs or work
loads inside cloud data centers to achieve bandwidth guarantee
or resource efficiency. Our work instead assumes the VM pairs
have already been placed inside the cloud data centers. This
assumption is valid for the following reasons. Once the VMs
and workloads are placed achieving various efficient resource
utilization, it is possible such initial placement is no longer
efficient due to dynamic resource demands of workloads in
production data centers [25]. We thus need to consider that the
VM applications and workloads are already placed in the cloud
data centers and ask how to optimize their resource utilization
dynamically. Our designed algorithm can indeed be executed
periodically for throughput maximization of VM communica-
tions in response to dynamic user bandwidth demands.

There are a few works that allocate communicating VMs
for efficient bandwidth usage [18], [14], [23]. Kumar [18]
presented hierarchical bandwidth allocation infrastructure that
supports service-level bandwidth allocation following prior-
itized bandwidth functions. Karmakar et al. [14] designed
a few bandwidth allocation policies with the objective of
maximizing throughput and bandwidth utilization while min-
imizing the service time and turnaround time. Nagaraj et al.
[23] proposed a flexible and fast bandwidth allocation control
that enables operators to specify how to allocate bandwidth
among contending flows to optimize for different service-level
objectives. Chen et al. [9] formulated an optimization problem
that allocates bandwidth to maximize the social welfare across
all the applications.

None of the work specifically maximizes the throughput
(i.e., number of bandwidth requests) of a cloud data centers



targeted in this paper. More importantly, most of above re-
search designed integer linear programming (ILP) solutions
that run in exponential time and polynomial-time heuristics
that do not have performance guarantees. We instead take a
different approach by designing an approximation algorithm
that is not only time-efficient but also provides performance
guarantees to the service providers.

The most related work to ours is by Wang et al. [27]. They
proposed efficient bandwidth allocation schemes to achieve
energy efficiency in cloud data centers. In particular, they
formulated a multi-commodity minimum cost flow problem,
proved its NP-hardness, and proposed a heuristic solution for
bandwidth allocation. As their problem set up is similar to
ours, we compare with their work.

III. Problem Formulation of VMB

Network Model. We model a data center as an undirected
general graph G(V,E). Here V = Vp ∪ Vs is a set of
physical machines (PMs) Vp and a set of switches Vs. E
is the set of edges connecting either one switch to another
switch or a switch to a PM. The bandwidth capacity of edge
e ∈ E is denoted as Be. There are l communicating VM pairs
P = {(v1, v′1), (v2, v

′
2), ..., (vl, v

′
l)} that are already created

and placed on the PMs. All the 2l VMs are randomly placed
on the PMs where VM v is placed at PM S(v) ∈ Vp. VM pair
(vi, v

′
i), 1 ≤ i ≤ l, demands bi amount of bandwidth in order

for vi and v′i to communicate with each other.

Fat-tree Data Centers. We focus on k-ary fat-trees [5], where
k is the number of ports of each switch. Fat-tree topologies
are widely adopted in data centers to interconnect commodity
Ethernet switches. However, the problem formulation of VMB
and its solutions are applicable to any topologies. There are
three layers of switches in a fat-tree: edge switch, aggregation
switch and core switch from bottom to top. In particular,
there are k PODs (i.e., Points of Delivery) in a k-ary fat-tree.
Each POD contains k/2 aggregation switches and k/2 edge
switches. Each edge switch directly connects to k/2 PMs; and
each of its remaining k/2 ports is connected to each of the k/2
aggregation switches from the same POD. In general, a k-ary
fat-tree supports k3

4 PMs. Fig. 1 shows a fat-tree with k = 4
and 16 PMs. As an example, there are four communicating
VM pairs: (v1, v

′

1), ..., (v4, v
′

4), each VM is at a different PM.

Probability of Proximity (PoP) of VM Pairs. To facilitate the
analysis of our VMB algorithms, we first introduce a new
concept to quantify the closeness of two VMs in any VM pair
in a k-ary data center. We define probability of proximity (PoP)
as the probability of one VM that is 0, 2, 4, and 6 hops away
from the other VM in the same pair assuming all VMs are all
randomly placed on the PMs.

Fig. 2 shows the PoP of any VM pair w.r.t. k in a k-
ary fat-tree. For example, the PoP for two VMs in a VM
pair that are under different PODs (thus are 6 hops away) is
k3

4 −
k2

4
k3

4

, which is 1 − 1
k . The PoPs for 0, 2, and 4 hops of

the two VMs in the same pair are 4
k3 , 2

k2 − 4
k3 , and 1
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2
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Fig. 2. The probability of proximity for VM pairs in a k-ary fat-tree.

respectively. An interesting observation from Fig. 2 is that with
the increase of k, the PoP for any VM pair of being 6-hop
away increases while the PoPs for other proximities decrease
(with the exception of 2 and 4 hops, for which the PoPs first
increase and then decrease).

Problem Formulation of VMB. We give below definition.
Definition 1: (Feasible VM Pair Set.) A set of VM pairs

is feasible if and only if all the VM pairs in this set can
successfully communicate with each other with the demanded
bandwidth; that is, they are satisfied). Denote a feasible set of
k VM pairs as Pf = {(vf1, v′f1), (vf2, v

′
f2), ..., (vfk, v

′
fk)} ⊆

P , 1 ≤ k ≤ l. Let binary variable xei indicate if the
communication of (vfi, v

′
fi), 1 ≤ i ≤ k, goes through edge

e ∈ E: xei = 1 if yes and 0 otherwise. For any feasible set,
it must be

∑k
i=1(xek · bfi) ≤ Be for any e ∈ E. �

The objective of the VMB is to find a feasible VM pair set
with the largest number of VM pairs. More formally, let F
denote the set of all feasible VM pair sets. The goal is to find
a feasible VM pair set Pm

f ∈ F such as |Pm
f | ≥ |Pf | for all

Pf ∈ F (here | · | means the cardinality of the set). We refer to
|Pm

f | as the maximum throughput of the VM communications.
EXAMPLE 1: In Fig. 1, there are four VM pairs: (v1, v

′
1),

..., (v4, v
′
4), each VM is at a different PM. Assume Be = 1,

∀e ∈ E, and bi = 1, 1 ≤ i ≤ l, the maximum throughput
is thus 4, as shown using the different dashed lines. In this
case, all the four VM pairs can be accommodated without
violating the bandwidth constraints on edges. However, if any
of the VM pair has bandwidth demand of more than one, the
maximum throughput will be less than four. �

Theorem 1: VMB is NP-hard.
Proof: We consider a spacial case of VMB wherein each edge
has bandwidth capacity of one unit and each of the l VM pairs
requests one unit of bandwidth (i.e., bi = Be = 1, ∀e ∈ E,
1 ≤ i ≤ l), and denote it as VMB-1. To prove VMB is NP-
hard, we show that VMB-1 is equivalent to maximum edge
disjoint path problem (MEDP) [16], which is NP-hard.

MEDP is formally defined as below. Given an undirected
graph G(V,E), there are a set of k connection requests, each
of which is specified by a pair of terminals si and ti where
si, ti ∈ V . Let T be the set of all terminal pairs (s1, t1), ...,
(sk, tk). T is realizable in G if there exists mutually edge



disjoint paths P1, P2, ...., Pk such that Pi has end points si
and ti. The goal of MEDP is to find a maximum realizable
subset of a set T of terminal pairs in a graph G.

To show that MEDP is equivalent to VMB-1, let G′ be the
data center graph with k VM pairs, wherein VM pair (vi, v

′

i)
corresponds to the terminal pair (si, ti) in G. As each edge
has bandwidth capacity of one unit and each of the l VM pairs
requests one unit of bandwidth, a feasible VM pair set of k
VM pairs in VMB-1 and their routes must give k edge disjoint
paths in MEDP, and vice versa. Therefore, there exists a VM
throughput of k in G′ if and only if there are k realizable
terminal pairs in G.

IV. Algorithmic Solutions for VMB

In this section we propose three algorithms viz. an approx-
imation algorithm, a greedy algorithm, and a blocking island-
based bandwidth allocation algorithm [27] to solve the VMB.

Approximation Algorithm. We first present our approxima-
tion algorithm. Algo. 1 below works as follows. It first assigns
each edge in G a weight of 1. It then iteratively finds a shortest
path of minimum cost (among all the paths) connecting a VM
pair while satisfying the capacity of each edge. That is, if the
accommodated VM pair is (vk, v

′
k), then each edge on this

path must have remaining bandwidth of at least bk. Then,
it multiplies the weights of all the edges on this selected
path by α = |E|

1
dB/be+1 , where B is the average bandwidth

capacity of edges and b is the average bandwidth demand of
VM pairs. Using Fibonacci heap, the shortest path computation
takes O(|E| + |V |log|V |). There are at most l rounds, each
round one VM pair is accommodated. In each round it finds
among at most l VM pairs one minimum weighted route that
can be satisfied. Therefore the time complexity of Algo. 1 is
O(l2 × (|E|+ |V |log|V |)).

Algorithm 1: An Approximation Algorithm for VMB.
Input: A data center graph G(V,E), l VM pairs P with

demands bi, 1 ≤ i ≤ l, bandwidth capacity Be of edge
e ∈ E;

Output: a feasible VM pair set F ;
0. F = ∅, α = |E|

1
B̄/b̄+1 ;

1. For each e ∈ E, set its initial weight to 1;
2. while (there are still VM pairs that can be accommodated)
3. Find minimum weighted path Pi where adding Pi does

not violate any edge’s bandwidth capacity, and Pi

connects VM pair (vi, v
′
i) not yet connected;

4. F = F ∪ {i};
5. Use path Pi to route the message from S(vi) to S(v′i);
6. Update available bandwidth of all edges in Pi;
7. Multiply the length of all edges in Pi by α;
8. end while;
9. RETURN F .

The rationale of α is that when an edge is selected to
accommodate the bandwidth request of some VM pair, we will
increase its weight to discourage this edge from be used again

immediately to route other VM pairs. This pricing method
enables Algo. 1 to accommodate as many VM pairs as possible
to achieve some constant-factor approximation ratio, as shown
below.

Theorem 2: In a VMB instance, if all its edges have the
same bandwidth capacity of B and all its VM pairs have the
same bandwidth demand of b, then Algo. 1 achieves 1/(2 ·
dBb e · |E|

1/(dBb e+1) + 1) approximation ratio. That is, the total
number of satisfiable VM pairs by Algo. 1 is at least 1/(2 ·
dBb e · |E|

1/(dBb e+1) + 1) times of the maximum number of
satisfiable VM pairs in the optimal solution.
Proof: We first consider a special case of dBb e = 2. Let F ∗

be the set of routing requests satisfied in the optimal solution
and F be the set of requests satisfied by Algo. 1. A path Pi

selected in Algo. 1 is short if its length is less than α2.
Let Fs denote the set of short paths selected by Algo. 1.

Let F̄ be the length function at the first iteration in Algo. 1
where a long path is selected. For a path P ∗i in the optimal
solution F ∗, it is short if F̄ (P ∗i ) < α2. As there are no short
paths left when the length function reaches F̄ , it must be the
case that path P ∗i has length at least α2. We thus have the first
observation OB (a): For a request i ∈ F ∗ that is not satisfied
by Algo. 1 (i.e., i ∈ F ∗ − F ), F̄ (P ∗i ) ≥ α2.

In the iteration where short paths are no longer available,
the total length of the edges in the graph is

∑
e F̄ (e). The

sum of the edges in the graph starts out with |E| (length 1
for each edge as indicated in Algo. 1). Adding a short path
to the solution Fs can increase the length by at most α3 as
the selected path has length at most α2, and the lengths of the
edges are increased by an α factor along the path. We therefore
have the second observation OB (b):

∑
e F̄ (e) ≤ α3|Fs|+|E|.

Consider OB (a) and all the paths in F ∗ − F , we get∑
i∈F∗−F F̄ (P ∗i ) ≥ α2|F ∗ − F |. On the other hand, each

edge is used by at most two paths in the solution F ∗, so we
have

∑
i∈F∗−F F̄ (P ∗i ) ≤

∑
e 2F̄ (e). Combining these with

OB (b), we get α2|F ∗| ≤ 2(α3|F | + |E|) + α2|F |. Finally,
we divide both sides by α2, and considering that |F | ≥ 1 and
α = |E|1/3, we get |F ∗| ≤ (4|E|1/3 + 1)|F |.

Above proof is for dBb e = 2. For any value of dBb e, if we
choose α = |E|1/(dBb e+1) and consider paths to be short if
their lengths are at most αd

B
b e, we get |F | ≥ |F ∗|/(2 · dBb e ·

|E|1/(dBb e+1) + 1).
Above proof technique is inspired by Kleinberg et al. [17]

solving the disjoint paths problem using pricing method, and
is used in our previous work [26] solving a routing request
maximization problem in static ad hoc networks.

Greedy Algorithm. We also present an efficient greedy
algorithm to serve as the benchmark for the performance
comparison. Algo. 2 works similar as Algo. 1 except that
it does not consider the pricing method adopted in Algo. 1.
In each round, it selects one VM pair that has not been
satisfied whose connecting shortest path is the minimum;
and meanwhile, each edge on this shortest path should have
enough available bandwidth for the bandwidth demand of this
VM pair. This continues until no more VM pairs can be



 30

 40

 50

 60

 70

 80

 90

 100

 4  6  8  10  12  14  16

R
o
u
ti
n
g
 P

e
rc

e
n
ta

g
e
(%

)

Number of Ports Per Switch k

Greedy
LB

Approximation
BI

(a) Be = 10Gbps, bi = 500Mbps.

 30

 40

 50

 60

 70

 80

 90

 100

 4  6  8  10  12  14  16

R
o
u
ti
n
g
 P

e
rc

e
n
ta

g
e
(%

)

Number of Ports Per Switch k

Greedy
LB

Approximation
BI

(b) Be = 10Gbps, bi is random.

Fig. 3. Varying number of ports k of switches.

accommodated due to insufficient bandwidth in the data center.
Its time complexity is again O(l2 × (|E|+ |V |log|V |)).

Algorithm 2: A Greedy Algorithm for VMB.
Input: A data center graph G(V,E), l VM pairs P with

demands bi, bandwidth capacity Be of edge e ∈ E;
Output: a feasible VM pair set F ;
0. F = ∅;
1. For all e ∈ E, set its weight to 1;
2. while (there are still VM pairs that can be accommodated)
3. Find minimum weighted path Pi where adding Pi

does not violate any edge’s bandwidth capacity, and
Pi connects some VM pair (vi, v

′
i) not yet connected;

4. F = F ∪ {i};
5. Use path Pi to route the message from S(vi) to S(v′i);
6. Update available bandwidth of all edges in Pi;
7. end while;
8. RETURN F .

Blocking Island Bandwidth Allocation Algorithm [27].
Wang et al. [27] proposed a bandwidth heuristic allocation
scheme that achieves proportional energy efficiency in data
centers. The key idea of their algorithm is to abstract the orig-
inal network graph into a tree containing available bandwidth
information and then apply the blocking island-based method
to decide which traffic demand should be allocated with its
demanded bandwidth. To achieve a higher success ratio of
bandwidth allocation and higher computation efficiency, it
selects the unallocated traffic demands as below. First, it sorts
all the VM pairs by maximum minimum-available bandwidth
edge in descending order. If there are ties, it chooses the one
with shorter path first. If there are still ties, it chooses the one
with highest bandwidth demand first. Then, it places each VM
pair along its shortest path, breaking ties randomly.

V. Performance Evaluation

Simulation Setting. In this section, we compare the per-
formances of our algorithms viz. approximation algorithm
Algo. 1 (referred to as Approximation) and greedy algorithm
Algo. 2 (referred to as Greedy) with blocking island-based
algorithm [27] (referred to as BI). We also present a variation
of the Approximation that focuses on the load-balancing of
the edges, and refer to it as LB. In particular, when there are
multiple edges available, LB selects the one whose remaining
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Fig. 4. Varying bandwidth demands bi of VM pairs.

bandwidth is the maximum. We create data centers of different
sizes, wherein each edge has a bandwidth capacity. The source
and destination VMs of each VM pair are randomly placed on
the PMs and each VM pair has a bandwidth demand for its
communication.

Unless otherwise mentioned, the bandwidth capacity on
each edge of the cloud data center is set as 10Gbps. In all
the simulation plots, each data point is an average of 10 runs
and the error bars indicate 95% of confidence interval. For fair
comparison, we run different algorithms on the same cloud
data center instance with the same initial placement of VM
communication pairs. Finally, as the number of accommodated
VM pairs depends on the total number of VM pairs l, to be
consistent in all the cases, instead of presenting number of
satisfied VM pairs as the throughput, we normalized it as the
ratio between the number of satisfied VM pairs and l, and
refer to it as routing percentage.

Effects of Number of Ports k of Switches. We first investi-
gate the effects of k on the throughput of VM communications,
shown in Fig. 3. We increase k from 4, 8, 12, to 16, with
number of PMs varying from 16 to 1024. We set he number of
VM pairs l = 10·k3

4 ; i.e., 10 VM pairs are randomly placed on
each PM. We have several observations. First, with the increase
of k, the throughput of all the algorithms decreases. This is
consistent with our previous analytical analysis shown in Fig. 2
that when k is large, it’s more likely two VMs in the same pair
are six hops away from each other, costing more bandwidth
compared to when k is small. Second, we observe that
Approximation outperforms the BI, which outperforms the LB
and Greedy in terms of throughput of VM communications.
In particular, the Approximation produces up to 38% more
throughput of the VM communications than the BI.

 0

 20

 40

 60

 80

 100

 4000  6000  8000  10000 12000 14000 16000 18000

R
o
u
ti
n
g
 P

e
rc

e
n
ta

g
e
(%

)

Number of VM Pairs l

Greedy
LB

Approximation
BI

(a) k = 12, bi = 400Mbps.

 0

 20

 40

 60

 80

 100

 4000  6000  8000  10000 12000 14000 16000 18000

R
o
u
ti
n
g
 P

e
rc

e
n
ta

g
e
(%

)

Number of VM Pairs l

Greedy
LB

Approximation
BI

(b) k = 12, bi is random.

Fig. 5. Varying number of VM pairs l.



Effects of Bandwidth Demands bi. We then investigate the
effects of bandwidth demands bi of VM pairs on the VM
throughput, shown in Fig. 4. We set k as 12, which means
there are l = 10 · k3/4 = 4320 VM pairs. Fig. 4(a) assumes
that each VM pair has the same uniform bandwidth demands
as specified and in Fig. 4(b), the bandwidth demands of VM
pairs are random numbers between 0 and the specified band-
width. Again we observe the same trend that Approximation
performs the best among the four algorithms. In particular, the
Approximation produces up to 35% more throughput of the
VM communications than BI does.

Effects of Number of VM pairs l. Finally we vary the number
of VM pairs l in Fig. 5 and investigate the performance of
the four algorithms in data center of k = 12. In particular,
we change l from 10 · k3/4 = 4320 to 40 · k3/4 = 17280.
Fig. 5(a) fixes each VM pair’s bandwidth demand as 400Mbps
while in Fig. 5(b), the bandwidth demand of each VM pair is a
random number in [0, 800Mbps]. In these stressful scenarios,
again we observe Approximation performs the best by yielding
more than 60% of VM communications, showing that it is an
effective bandwidth allocation scheme.

VI. Conclusion and Future Work
We proposed a new algorithmic problem to maximize the

throughput of VM communication in bandwidth-constrained
data centers. Given a set of VM pairs inside cloud data centers,
each with a particular bandwidth demand, it studies how to
allocate the cloud network bandwidth to the VM pairs to
accommodate maximum number of VM communication (i.e.,
maximizes the throughput) while considering that cloud data
centers have limited bandwidths. We proved its NP-hardness
and proposed a suite of algorithms. One of our algorithms is
an approximation algorithm that achieves approximation ratio
of 1/(2 · dBb e · |E|

1/(dBb e+1) + 1), where |E| is the number of
edges in the data center network, B is the average bandwidth
capacity on edges, and b is the average bandwidth demand
of each request. We compared it with existing approach and
showed that our algorithm accommodate up to 38% more VM
pairs compared to existing approach under different network
parameters. In our current setup, we assume that each VM
pair has the same priority thus our goal is to maximize the
number of VM pairs to be satisfied. As a future work, we
will consider that different VM pairs not only have different
bandwidth demands but also different priorities (i.e., weights).
How to maximize the total weight of all the accommodated
bandwidth requests become a new challenging problem.
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