
Data Caching in Ad Hoc Networks Using
Game-Theoretic Analysis

Yutian Chen

Economics Department
California State University at Long Beach

Long Beach, CA 90840
ychen7@csulb.edu

Hoang Dang and Bin Tang

Electrical Engineering and Computer Science Department
Wichita State University

Wichita, KS 67260
hoangdangninh@gmail.com, bintang@cs.wichita.edu

Abstract— Extensive research has been performed to study
selfish data caching in ad hoc networks using game-theoretic
analysis. However, due to the caching problem’s theoretical
root in classic facility location problem and k-median prob-
lem, most of the research assumes i), the data items are
initially outside of the network, and ii), the caching cost
is either a constant or not considered. In this paper, we
study a general data caching model in which the data item is
initially in the network, and both caching and access cost are
distance-dependent in multi-hop ad hoc networks. We first
show the studied problem is NP-hard. We construct a pure
Nash Equilibrium, in which a node will not deviate its caching
strategy if others remain theirs. However, a Nash Equilibrium
may not guarantee social optimal cost – due to the selfishness
of each node, the price of anarchy, which is the relative cost
of the lack of cooperation among nodes, could be as large as
O(N), where N is number of nodes in the network. Using an
external incentive mechanism based upon a payment model,
we construct a Nash Equilibrium wherein social optimal is
also achieved.

Keywords – Data caching; game theory; ad hoc net-
works

I. INTRODUCTION

Ad hoc networks are multi-hop wireless networks con-
sisting of small wireless computing devices such as conven-
tional computers (e.g., PDA, laptop, or PC), or embedded
processors such as tiny, low-cost, and low-power sensor
motes. Ad hoc networks are constructed mainly for the
information sharing and task coordination among a group
of people, without the support of any communication in-
frastructure. For example, in an ad hoc network established
for spontaneous meeting, several authors can meet and
coordinate to modify the same document (e.g., an article or
a powerpoint slides) in a distributed fashion. Similarly, in
interconnected distributed information systems, an object
(a web page, an image, a video clip, or a file) may
be accessed from multiple distributed locations (network
nodes) simultaneously.

Caching has been proposed to be an effective technique
to facilitate information access in ad hoc networks. Besides
the traditional advantages brought by caching such as less
data access latency, improved data reliability and fault
tolerance, utilizing caching to optimize network perfor-
mance of ad hoc networks is motivated by the following
two aspects. First, the ad hoc networks are multi-hop

networks. Thus, remote access of information typically
occurs via multi-hop routing, wherein access latency can
be particularly reduced by data caching. Second, ad hoc
networks are generally resource constrained in terms of
wireless bandwidth, memory capacity and battery energy of
nodes. Data caching can help reduce communication cost
among nodes, which results in conserving battery energy
and minimizing bandwidth usage in ad hoc networks.

Due to above reasons, many caching techniques have
been developed recently to achieve good overall perfor-
mance of the ad hoc network [4, 5, 18, 20, 21] (please
refer to Section II for a comprehensive literature review).
They are all cooperative caching techniques, wherein nodes
follow carefully designed protocols to achieve overall
good system performance. One effect of such cooperative
caching is that some nodes have to possibly cache data
items which are most accessed by other nodes instead of
themselves. Such mistreatment [12] renders those nodes
to break away from the group and operate in isolation using
a local greedy replication scheme, in which they store the
data they access most in the local memory, instead of data
items most accessed by other nodes. It is important to take
into consideration such selfish behaviors when we want to
improve the system performance.

Several research, among many others, has been per-
formed to address above selfish data caching behavior
using game-theoretic analysis [2, 3, 7, 10]. Historically, data
caching and the related cache placement problem have
the theoretical root in facility location problem [6] and k-
median problem [1], wherein facility is considered as cache
node in the network. Both problems study how to place
facility in the network with least cost to satisfy the access
demands from the client nodes. Here the facility could be a
delivery center, a distribution center, a transportation hub,
or a restaurant. In the facility location problem, setting up
a facility at a node incurs a certain fixed cost, and the goal
is to minimize the sum of total access cost and the facility
setting-up costs of all facilities, without any constraint. The
k-median problem minimizes the total access cost under
the number constraint, i.e., that at most k nodes can be
selected as facilities, without considering setting-up costs.
In both problems, the facilities to be set up are not initially
in the network. As a result, most of work of selfish data

2
caching assume that i) the data items are initially outside
of the network and ii) the caching cost is either a constant
or does not exist.

While this assumption is valid in many situations, there
are applications where the data items are instead in the
network and caching cost depends on where the data is lo-
cated inside the network. In such applications, the caching
cost depends on the network topology and distances among
nodes. For example, in P2P networks, each peer initially
has some data objects and shares them with other peers;
in sensor networks, sensor nodes sense and generate data
which are transmitted back to the base station for analysis
or accessed by other sensor nodes in the network. In
both cases, data are originally generated and stored in the
network. Our model is geared towards multi-hop wireless
ad hoc network, where the data items are initially at
some nodes (called source nodes) in the network, and are
subsequently cached by other nodes. The efficiency of data
caching scheme in this paper depends on not only the
network topology and nodes’ access patterns, but also the
data items’ locations in the network.

In particular, in our network model, there is one data
item contained in a single source node, and there are
multiple client nodes that wish to access the data item. Dif-
ferent nodes have different demands (or access frequencies)
towards the data item. The cache node caches the data from
the closest existing cache node. Nodes that do not cache
the data access the data from the closest cache node. The
goal of the data caching problem is to determine a set of
nodes in the network to cache the given data item, such
that the total communication cost incurred in caching the
data item and accessing the data item is minimized.

We first show that our problem is NP-hard. We then show
a pure Nash Equilibrium exists in our data caching model
via a centralized construction. In game theory, the Nash
Equilibrium is the set of strategies taken by all the players
such that no player will improve its benefit by changing its
strategy unilaterally [14]. In our case, the caching strategies
by each node is that they choose whether to cache or not the
content so as to minimize their own cost. However, Nash
Equilibrium may not guarantee system-wide performance –
due to the selfishness of self-interested nodes, the resultant
social cost (total cost) could be much larger than the social
optimal cost (minimum total cost). Papadimitriou et al. [9,
16] illustrate this using price of anarchy, which is the ratio
of the social cost of the worst possible Nash equilibrium
to the cost of the social optimal solution. We show that
in our constructed Nash Equilibrium, the price of anarchy
could be as large as O(N), where N is number of nodes in
the network. Then, using an external incentive mechanism
based upon a payment model, we show that social optimal
can still be achieved while it is also a Nash Equilibrium
(i.e., with the price of anarchy O(1)).

Paper Organization. The rest of the paper is organized
as follows. Section II reviews both cooperative and selfish
data caching in ad hoc networks and in distributed system
as a whole. In Section III, we introduce our network model
and formulate the data caching problem, and show its

NP-hardness. In Section IV we formalize the selfish data
caching problem and demonstrate by a construction that
a pure Nash Equilibrium exists. Section V presents our
payment model which achieves the optimal social cost as
well as a Nash Equilibrium. In Section VI, we conclude
the paper and point out some future work.

II. RELATED WORK

A. Cooperative Caching in Ad Hoc Networks

There are lot of research designing distributed caching
algorithms in ad hoc networks. Hara and Madria [5] are
among the first to propose replica allocation methods in ad
hoc networks, by taking into account the access frequency
from mobile hosts to each data item and the status of the
network connection. Yin and Cao [20] design and evaluate
three simple distributed caching techniques, viz., Cache-
Data which caches the passing-by data item, CachePath
which caches the path to the nearest cache of the passing-
by data item, and HybridCache which caches the data item
if its size is small enough, else caches the path to the data.
Fiore et al. [4] design a cooperative caching scheme to
create a content diversity in ad hoc networks, so that a
requesting user likely finds the desired information nearby.
Zhao et al. [21] propose a novel asymmetric cooperative
cache approach, where the data requests are transmitted to
the cache layer on every node, but the data replies are only
transmitted to the cache layer at the intermediate nodes that
need to cache the data.

Ko and Rubenstein [8] propose a distributed protocol
that palaces replicated resources in a network such that
the distance between identical copies of the same resource
is large and each node is “close” to some copy of any
resource. They study it by coloring each node, where each
color is a replica the node is assigned. It proves the network
can converge to a stable state following such protocol.
In our previous work [18], we present a polynomial-
time centralized approximation algorithm to replicate data,
which reduces the total data access delay at least half of
that obtained from the optimal solution. We also show a
distributed caching technique derived from the centralized
approximation algorithm.

The data caching we study in this paper is closely related
to the rent-or-buy problem [17], a special case of the
connected facility location problem [13, 15, 17]. Swamy
et al. [17] give a 5-approximation algorithm. Nuggehalli
et al. [15] study the same problem in the context of
energy-efficient caching strategies in ad hoc networks.
They provide a distributed solution that is within a factor
of 6 of the optimal solution.

However, all of above work do not take into considera-
tion of selfishness of the network node, which is the topic
of this work.

B. Selfish Caching in Ad Hoc Networks and Distributed
Systems

Chun et al. [2] are among the first to propose to
study selfish caching in distributed systems using a game-
theoretic approach. They consider one data object which
is outside of the network. When a node decides to cache

3
the data object, it assumes that the node always gets this
data from outside of the network, which incurs a constant
caching cost. A node either caches the data object in its
local memory or accesses it from another node storing the
object, depending on which costs less. They show that
there exists a pure strategy Nash Equilibrium based on
above model. However, the total social cost can not achieve
optimum due to selfish behavior of players. They propose
a payment model, in which each node bids for having an
object replicated at another node, and show that both social
optimal and Nash Equilibrium can be achieved.

Laoutaris et al. [10] study distributed selfish replication
and caching of multiple objects. In their model, the set of
objects are also not in the network initially and the caching
cost is not considered. Moreover, the distances between
nodes are not factored in when playing the game. Rather,
it assumes that for each node, accessing an object from its
local cache always costs tl, from another cache node tr,
and from the origin server always ts, with tl ≤ tr ≤ ts. The
contributions of their paper are two fold: a) they consider
memory capacity of each node since multiple objects
are involved; b) the Nash Equilibrium object placement
strategies are implemented in a distributed manner. The
authors further extend their work by identifying and and
investigating the causes of mistreatment [11, 12].

Our work considers one in-network data item in a
multi-hop ad hoc network, wherein both accessing cost
and caching cost not only exist, but also are topology
dependent.

III. NETWORK MODEL AND PROBLEM FORMULATION

Network Model and Notations. We model the ad hoc
network as a connected general graph, G(V,E), where
V = {1, 2, 3, ...n = |V |} is set of nodes and E is set
of edges. Two nodes are connected by an edge if they are
within the transmission range of each other and thus can
communicate directly. There is a single data item D in
the network, which is stored in its original source node
S ∈ V . D is requested by the nodes in the network – each
node has its own access frequency towards the data; the
access frequency of node i ∈ V is ai ∈ R+. Let dij be
the shortest distance (in terms of number of hops) between
node i and node j, and let d(i,M) = minj∈M dij be the
shortest distance from i to some node in a set of nodes M .
For a set of nodes X ⊆ V , its metric closure is defined as
the complete graph upon X , wherein each edge is a shortest
path between two nodes in X in the original network graph
G(V,E). Let mst mc(X) denote the cost of a minimum
spanning tree of the metric closure upon X . Given a set
of cache nodes M where D is cached, the caching cost of
node i ∈M is proportional to its distance to another cache
node in M from which it caches the data; the access cost
of a non-cache node i accessing D is aid(i,M).

Let τ(M) denote the total cost in the network with a set
of cache nodes M (source node S ∈M), we have:

τ(M) =
∑
i∈V

ai × d(i,M) + γ ×mst mc(M) (1)

In above equation, the two terms on the right hand side
represent total access cost and total caching cost in the
network respectively. Here γ is a constant that indicates
the relative weight of caching cost compared to access cost.
Notice that, by varying γ, we can model different network
scenarios and requirements.

Data Caching Problem. The data caching problem based
on above network model, which we call in Caching prob-
lem in the rest of the paper, can be formulated as follows.
Given a network graph G(V,E), one data item D and its
source node S, and access frequencies of all client nodes,
the objective is to select a set of cache nodes M ⊆ V ,
such that the total cost in the network given by Equation
1 is minimized, i.e.,

min
M

τ(M) (2)

Let τopt denote the optimal cost, τopt = minM τ(M).
Let Copt denote the set of cache nodes (including S) in
the optimal solution, Copt = argminMτ(M).

Difference Between Our Model and Rent-or-Buy Based
Model. Our problem is closely related to the well-known
rent-or-buy problem [17]. In rent-or-buy problem, one
facility is already open, along with a set of locations
at which facilities can be further built. Connecting the
facilities incurs a cost which is proportional to the weight of
the Steiner tree [19] connecting all the facilities, and each
client accesses its closest facility. The objective is to find a
solution (i.e., to select the locations to build facilities and
connect them by a Steiner tree) which minimizes the total
access cost and connecting cost. The rent-or-buy problem
is known to be NP-hard [17].

In the rent-or-buy based data caching model, an interme-
diate node (called Steiner node) between two cache nodes
(called terminal nodes) can also cache a copy of the data. In
our model, however, a cache node always caches the data
from another already existing cache node in the network,
following a shortest path between these two nodes (and
we call such shortest path the caching path). Therefore,
by specifying which cache node caches data from which
existing cache node, our model mandates the timeliness of
selecting the cache nodes, which is the main characteristic
distinguishing our data caching model from rent-or-buy
based one.

Next, we show that the data caching problem defined
above is NP-hard.

Theorem 1: The in Caching problem is NP-hard.
Proof: The in Caching problem can be proved to be NP-
hard via a reduction from the facility location problem
(FLP) [6]. The FLP is similar to in Caching problem with
two differences: i) the data item is initially outside of the
network and ii) the caching cost is a constant. In in caching
problem, the caching cost of a cache node depends on its
distance to another cache node from which it caches the
data, thus is not the same for all the cache nodes. Therefore
FLP is a special case of in Caching when caching cost is
a constant, which shows in Caching problem is also NP-
hard.

4
IV. SELFISH CACHING GAME IN MULTI-HOP AD HOC

NETWORKS

In selfish caching game, however, whether a node caches
the data itself or accesses the data from other cache nodes
depends on which costs less, not on optimal solution.
Below we first discuss the cost model in the selfish
caching game, which is different from that in the data
caching problem discussed in Section III. Then we show
that a pure Nash Equilibrium exists. Finally we discuss
the performance of Nash Equilibrium in terms of the
price of anarchy, which quantifies the cost of the lack of
cooperation among nodes.

A. Cost Model

For each non-source node, still, it either caches the data
in its local memory (cache node) or accesses the data from
others (non-cache node). There are two kinds of cost for
node i: the access cost and the caching cost, which are
denoted as αi or βi respectively.
Access Cost. For a non-cache node i, once all the cache
nodes are selected and have data cached in their local mem-
ories, i accesses D from its closest cache node (including
the source node). Assuming k is i’s closest cache node
storing D, then i’s access cost αi is aidik.
Caching Cost. When a cache node i decides to cache data
from other existing cache nodes, it goes to the closest one,
say k, to fetch the data and cache it into its local memory.
Thus i’s caching cost βi is also proportional to the shortest
distance to cache node k and βi = γdik. As in Section III,
γ is a constant indicating the relative weight of caching
cost to access cost.
Total Cost in Nash Equilibrium. In a caching game where
each node is selfish, whether a node i is a cache node or
not only depends on ai and γ: if ai ≥ γ, i is a cache node
and caches the data from its nearest existing cache node;
if ai < γ, it is a non-cache node and accesses the data
from its nearest cache node. At Nash Equilibrium, each
node is either a cache node or non-cache node. Let the
cost of node i of requesting D be τi, then τi equals either
αi or βi. Let τN denote the total cost of the network in
Nash Equilibrium, τN =

∑
i∈V τi. Let CN denote the set

of cache nodes (including S) in a Nash Equilibrium as,
CN = {i|ai ≥ γ, 1 ≤ i ≤ n} ∪ {S}. Let m = |CN |.
Caching Strategy. The caching strategy of node i, denoted
as Ci, includes the following. First, it decides whether it
is a cache node or not. Second, if yes, it decides from
which cache node (called its parent cache node) it fetches
the data and caches in its local memory; if no, it decides
from which cache node it accesses the data item D. More
formally, Ci = (ni, pi, ci), where ni ∈ {yes, no} indicates
if i is a cache or not, pi is the parent cache node of i if
i is a cache node, otherwise i accesses D from its closest
cache node ci. Let SP denote the strategy profile of the
game, SP = {C1, C2, ..., Cn}. Thus SP shows the global
cache placement and data access in the entire network.

Before we present our algorithm that achieves Nash
Equilibrium, we first show a property of the Nash Equili-
birum achieved in our caching game, which says that the

cache node in Nash Equilibrium is still a cache node in the
optimal solution.

Lemma 1: CN ⊆ Copt.
Proof: We prove it by contradiction. Assume node i ∈
CN is not a cache node in the optimal solution, i.e., i /∈
Copt. We have that ai ≥ γ. In an optimal solution (there
could be multiple optimal solutions), assume i accesses
another cache node l for the data item D. To further reduce
the total cost, i can cache the data from l. This further
reduces the total cost of the entire network by (ai−γ)×dil,
contradicting that it is an optimal solution. Therefore CN ⊆
Copt.

We use CA to denote the set of non-cache nodes in Nash
Equilibrium that are cache nodes in the optimal solution,
i.e., CA = Copt − CN .

B. Nash Equilibrium Construction

Below, we first present the algorithm leading to a Nash
Equilibrium. Then we present some observation from the
algorithm, which serves as the basis of Nash Equilibrium
proof in Theorem 2 later. Finally we discuss the Price of
Anarchy of the achieved Nash Equilibrium. For the clarity
of the presentation, we call a cache node before it caches
data a potential cache node.

Nash Equilibrium Construction. The algorithm takes
place in iterations. In each iteration, a node (potential cache
node) is selected as cache node and caches data from
an already existing cache node, the caching path being a
shortest path between these two nodes. There are m − 1
non-source cache nodes, so the algorithm stops after m−1
iterations.

Minimum Caching Cost Algorithm for Nash Equilibrium.
1) Start with the source node S, find a potential cache

node which has the minimum shortest distance to
the source node (where there is a tie, the potential
cache node with smaller ID is selected). It is the new
cache node. Move a copy of the data from the source
node to the new cache node along the shortest path
between them.

2) while (There is still un-cached potential cache node)
Among all the shortest path linking any existing
cache node (parent cache) to any potential cache
node (child cache), find the one with the minimum
cost. When there is a tie of the parent cache and/or
child cache, choose the one with smaller ID. Move a
copy of the data from the selected parent cache node
to the selected child cache node along the shortest
path between them.

3) For each of the non-cache nodes, find its nearest
cache node from which it accesses the data.

Above is essentially the minimum spanning tree algo-
rithm upon the metric closure of all the cache nodes, which
is in the same line as the total caching cost modeled in
Section III. Figure 1 (a) shows such Nash Equilibrium
construction for a grid-like network topology, where each
node can only communicate directly with its (at most four)
neighbors. All the caching paths are shown as the arrowed
edges, the direction of which indicating the movement of

5

Source Node S Cache Nodes in NE

Non-cache Nodes in NE

(a) (b)

1

2

4

5 6 7

10

3 S

9 8

S

31

4 6 5

7

8

9

1 2

2 3 3 2

32 3

2

1

10

11
11

1

Fig. 1. Nash Equilibrium construction in a grid-like ad hoc network. (a)
shows the caching paths. The ID of a cache node is the time sequence
at which it gets a data copy from its parent cache following the direction
of the arrowed edge. Note that some edges are used multiple times,
indicated by the double arrowed edges. (b) shows the cache tree in the
Nash Equilibrium, with vertices as the cache nodes and the number on
the edge the cost of the shortest path between each pair of parent-child
cache nodes.

the data item from parent cache node to child cache node.
Note that the grid-like topology is only for the purpose of
ease of presentation, above Nash Equilibrium construction
is applicable to any topologies. For the ease of presentation,
the ID of each node in the figure indicates the iteration
(time sequence) at which the cache node gets a data copy
from its parent cache following the caching path, not its
actually ID.

Above algorithm gives the parent-child relationship of
all the cache nodes, indicating from which parent cache
node that each child cache node directly caches the data
item from. Consequently, this forms a tree rooted at source
node S, which we call the cache tree.

Cache Tree. Figure 1 (b) shows the cache tree correspond-
ing to the caching paths in Figure 1 (a). The vertices of the
cache tree is the set of cache nodes. Each edge represents
a parent-child cache node relationship. The number on the
edge indicates the cost of the shortest path between each
pair of parent-child cache nodes (recall that the caching
cost is proportional to such shortest path cost). Note that
the cache tree is a “logical” tree, because its corresponding
caching paths do not necessarily form a tree, as shown in
Figure 1 (a). Below we give some definitions related to the
cache tree.

Definition 1: (Parent Cache and Child Cache.) In cache
tree, cache node i is the parent cache of cache node j,
denoted as P (i), if j directly fetches the data from i. j is
a child cache of i. �

Definition 2: (Ancestor Cache and Descendant Cache.)
Cache node i is an ancestor cache of cache node j (i ̸= j)
if i is on the unique path from S to j in the cache tree.
That is, j directly or indirectly fetches the data from i. j

S

P(k)

ki

j

P(i)

t(P(k)) < t(i) < t(k)

Fig. 2. In a cache tree, if t(j) > t(i) and j /∈ D(i), then |iP (i)| ≤ |ij|,
which means i does not have incentive to deviate from P (i) to have cache
node j as its parent cache.

is a descendant cache of i. �
Definition 3: (Descendant Set.) The descendant set of

cache node i, denoted as D(i), is all the nodes in the
subtree rooted at i. That is, such subtree is the set of i’s
descendant caches. For example, the descendant set D(S)
of source node S is the whole cache tree excluding S itself.
�

Definition 4: (Selected Time of Cache Node.) Since in
caching game, each potential cache node is selected as
cache node one by one in a sequence and caches data,
the cache nodes in the resulted cache tree can be ordered
using their selected time. We use t(i) to indicate the time
sequence at which i is selected as cache node and assume
t(S) = 0. For any cache node i, we have t(D(i)) > t(i).
�
Discussion of the Selection of Parent Cache. In the
caching game, when i is selected to become a cache node,
it chooses the nearest existing cache node, P (i), as its
parent cache and fetches the data from P (i). However, a
later selected cache node j could be closer to i than P (i),
causing cache node i to deviate and cache the data from j
instead. Surprisingly, we show that for all the cache nodes
selected after i, only nodes in D(i) can possibly be closer
to i than P (i). Formally, Lemma 2 below shows that if
a cache node j caches after cache node i, and j is not a
descendant cache of i, then i does not have incentive to
deviate to cache from j.

Lemma 2: For two cache nodes i and j in a cache tree,
if t(j) > t(i) and j /∈ D(i), then i does not have incentive
to deviate from its parent cache P (i) to have j as its parent
cache.
Proof: As shown in Figure 2, since t(j) > t(i) and j /∈
D(i), along the path from j to S (including j and S),
there must exist one cache node, say k, with t(P (k)) <
t(i) < t(k) (note P (k) and P (i) could be the same node).
Denoting the cost of the shortest distance between cache
nodes A and B as |AB|, we have |iP (i)| ≤ |kP (k)|. This is
because at the iteration when i is selected as the cache node
and caches data from P (i), iP (i) is the minimum shortest
path among all the shortest paths connecting any cache
node to any potential cache node. Using similar argument,
we have |kP (k)| ≤ |ji|. So we have |iP (i)| ≤ |ij|, i does
not have incentive to cache from j.

For example, in Figure 1 (a), since t(6) < t(9) and node
9 /∈ D(6), node 6 will not deviate from its parent cache

6
node 2 to cache from node 9. This can be confirmed by
that the distance between node 6 and node 2 is 3 hops,
which is less than distance between node 6 and node 9,
which is 7 hops.

Assumption. In our in-network data caching model, we
assume that an ancestor node can not access or cache
data from its descendant cache nodes. We believe this
is a valid assumption because otherwise, it violates the
intrinsic ancestor-descendant relationship between ancestor
and descendant nodes. This assumption, together with
Lemma 2, lead to below theorem about the Nash Equi-
librium construction.

Theorem 2: The minimum caching cost algorithm
reaches Nash Equilibrium.
Proof: To prove that Nash Equilibrium exists, we need
to show each node does not unilaterally deviate from its
caching strategy. That is, the caching node keeps its parent
cache node, while non-cache node accesses data from the
same cache node. For any non-cache node i, it will not
deviate to be a caching node since its access cost is less
than its caching cost, due to ai < γ; it will not access from
another cache node since it accesses the data from closest
cache node.

For any cache node i, it will not deviate to be a non-
cache node because ai ≥ γ. Below we show it will not
deviate from its parent cache node P (i) to any other cache
node, say j. This is true when t(i) > t(j), since |iP (i)| ≤
|ij| following the minimum caching cost algorithm. When
t(i) < t(j) and j /∈ D(i), from Lemma 2 i will not
deviate to have j as its parent cache node. When t(i) <
t(j) and j ∈ D(i), it does not deviate either since it is
prohibited that ancestor node accesses or caches data from
its descendant cache.

No node deviates unilaterally. We conclude that the min-
imum caching cost algorithm reaches Nash Equilibrium.

Source Node S

2

3

4

5

n-1

n
0

0 0

0

1

0

Non-cache node

Fig. 3. An example showing PoA = O(n) in the selfish caching game.

C. Price of Anarchy (PoA)

Price of Anarchy is defined as the ratio between the
social cost of the worst possible Nash equilibrium to the
cost of the social optimal solution [9, 16]. Below we discuss
the PoA in our constructed Nash Equilibrium.

Lemma 3: If ai ≥ γ for all i ∈ V , the PoA of the data
caching game is O(1).
Proof: In this case, all the nodes in the network are cache
nodes, and the total cost is τ =

∑
i∈V γdiP (i). The metric

closure upon all the cache nodes is the same as G(V,E).
The minimum caching cost algorithm upon the metric
closure is essentially the same as the minimum spanning
tree algorithm upon G(V,E). Thus both yield the same
cost, PoA of the game is O(1).

Lemma 4: If ∃ i ∈ V , such that ai < γ, the PoA of the
game can be O(n).
Proof: We prove this by showing an example depicted in
Figure 3. In this example, nodes {2, 3, ..., n − 1, n} are
all non-cache nodes, with a2 = a3 = an = a < γ.
The distance between node 2 and source node S is 1 and
the distance between nodes 3, 4, ..., n− 1, n to node 2 is
0. The Nash Equilibrium is that all the non-cache nodes
access the data from S, giving total cost τN = a× (n−1).
However, the social optimal solution is that node 2 caches
the data while nodes 3, 4, ..., n− 1, n access it from node
2, yielding optimal total cost τopt = γ. Therefore PoA =
τN

τopt = (n−1)a
γ , which is O(n).

Lemma 4 shows that due to the non-cooperation among
selfish nodes, the social optimal is not achieved in the Nash
Equilibrium. Below, we present a payment-based mecha-
nism wherein some non-cache nodes are made payment by
other nodes. We show our proposed mechanism can achieve
both Nash Equilibrium and social optimal.

V. PAYMENT MECHANISM

In this section, we design a payment-based mechanism
wherein a Nash Equilibrium is achieved while its total cost
is equal to the social optimal. Note CA is the set of non-
cache nodes in original Nash Equilibrium that are cache
nodes in the optimal solution. The idea of our payment-
based mechanism is to motivate the nodes in CA to cache
data such that the total cost of the network is optimal.
For this, each node who benefits from such caching makes
some amount of bid to this node. If this node caches the
data, then the bidding node must pay the bided amount to
the caching node. The payment mechanism also decides for
each caching node in CA, beyond how much bid it receives
that it is willing to cache the data. Using this payment
mechanism, we show that both Nash Equilibrium and social
optimal can be achieved.

As in [2], we define the strategy of each node i in
the payment game as a triplet (vi, bi, ti) ∈ {N,R+, R+},
indicating i) node i makes bi amount of bid to node vi and
ii) node i’s threshold value of received bid is ti beyond
which i will cache the data. We use Bi to denote the total
amount of bid that node i receives, i.e., Bi =

∑
{j|i=vj} bj .

A node i will cache the data if and only if Bi ≥ ti. Below
we first present some properties of the cache tree resulted
from the optimal solutions.

7
Lemma 5: For two cache nodes i, j ∈ Copt, if i ∈ CA

and j /∈ D(i), i.e., j ∈ {Copt − {i} ∪ D(i)}, then P (j)
is the same node in either the basic Nash Equilibrium or
the optimal solutions. j’s caching cost does not depend on
whether i caches or not. In other words, removal of i from
Copt will not affect the caching path of j /∈ D(i).

Proof: If t(j) < t(i), j’s caching path is not affected
because it caches before i caches. If t(j) > t(i), since
j /∈ D(i), by way of contradiction, if j changes its parent
cache from P (j) to another cache node, say k, as the
result of minimum spanning tree algorithm upon the metric
closure of all the nodes in Copt − {i}, this results that
the cache tree of all nodes in Copt is not minimum,
which contradicts with the fact that such tree is minimum
spanning tree upon the metric closure of all the nodes in
Copt.

So only nodes in D(i) can possibly change their caching
paths if i ∈ CA decides not to cache. Now we discuss
the payment mechanism in the optimal solution. For each
cache node i ∈ CA, we denote the set of non-cache nodes
accessing data from i as Θi.

Definition 5: (Benefit of cache node i ∈ CA to non-
cache node j ∈ Θi.) We define the benefit of cache node
i to non-cache node j ∈ Θi (i.e., aj < γ), denoted as
ψj , as the minimum extra cost incurred to j if i is not
a cache, and therefore j has to access the data from the
closest cache node in Copt − {i}. Formally, ψj = aj ×
(mink∈(Copt−{i})djk − dji). �

Definition 6: (Benefit of cache node i ∈ CA to another
cache node k ∈ D(i).) We define the benefit of cache node
i to another cache node k ∈ D(i), denoted as ϕk, as the
minimum extra cost incurred to k if i decides not to cache,
thus k has to cache the data from another cache node in
Copt −{i}. Formally, ϕk = γ× (dP ′(k)k − dP (k)k), where
P ′(k) is the parent cache of k following the minimum
spanning tree algorithm over the metric closure of the set
of cache nodes are Copt−{i}, and P (k) is the parent cache
of k when the set of cache nodes are Copt. �

Definition 7: (Benefit and average benefit of cache node
i ∈ CA to the entire network.) Now, the benefit of cache
node i to the entire network, denoted as NBi, is the saving
of the total cost due to caching at i. Formally, NBi =∑

j∈Θi
ψj +

∑
k∈D(i) ϕk − (γ − ai). The average benefit

of node i, denoted as nbi, is the average saving for all
the nodes in Θi and D(i), plus itself, if node i decides to
cache. That it, nbi = NBi/(|Θi|+ |D(i)|+ 1). �

Lemma 6: nbi ≥ 0.

Proof: By way of contradiction, assume nbi < 0 in the
optimal solution. That is,

∑
j∈Θi

ψj +
∑

k∈D(i) ϕk − (γ−
ai) < 0. Consider a new caching solution where i decides
not to cache and thus each node in Θi and D(i) chooses
its next best strategy. All other nodes in Copt − i are still
cache nodes. It is easy to see that the optimal cost minus

the cost of the new caching solution is at least:

(γ +
∑
j∈Θi

dji +
∑

k∈D(i)

dP (k)k)−

(ai +
∑
j∈Θi

mink∈(Copt−{i})djk +
∑

k∈D(i)

dP ′(k)k)

= (γ − ai)−
(∑
j∈Θi

mink∈(Copt−{i})djk − dji +∑
k∈D(i)

(dP ′(k)k − dP (k)k)
)

= (γ − ai)− (
∑
j∈Θi

ψj +
∑

k∈D(i)

ϕk)

> 0,

which contradicts the optimality of the optimal solution.
Payment mechanism. The bid of each node is set as
follows. For each j ∈ Θi, the amount j bids i is bj =
max{0, ψj − nbi}. For each k ∈ D(i), the amount k
bids i is bk = max{0, ϕk − nbi}. That is, each node
bids the amount which it benefits more than the average
benefit of the network due to i’s caching. For other nodes
l /∈ Θi ∪D(i) ∪ {i}, the amount l bids i is bl = 0.

The threshold of i ti is given as:

ti =

{
0 if i ∈ CN∑

j∈Θi
bj +

∑
k∈D(i) bk if i ∈ CA

For all the non-cache nodes in the optimal solution, their
threshold is 0 too.

Below we show that above payment mechanism yields
social optimal as well as Nash Equilibrium.

Theorem 3: The payment mechanism reaches Nash
Equilibrium, and it yields social optimal for the entire
network.
Proof: We need to show with the payment mechanism,
all the nodes in the optimal solution has no incentive to
deviate, as long as others stay with their strategies.

First, we show that for node i ∈ CA, it better off caches
the data in spite of the fact that ai ≤ γ. We have

Bi =
∑
j∈Θi

bj +
∑

k∈D(i)

bk

≥
∑
j∈Θi

(ψj − nbi) +
∑

k∈D(i)

(ϕk − nbi)

=
∑
j∈Θi

ψj +
∑

k∈D(i)

ϕk − (
∑
j∈Θi

+
∑

k∈D(i)

)× nbi

≥
∑
j∈Θi

ψj +
∑

k∈D(i)

ϕk

−(|Θi|+ |D(i)|)×NBi/(|Θi|+ |D(i)|+ 1)

≥
∑
j∈Θi

ψj +
∑

k∈D(i)

ϕk

−NBi +NBi/(|Θi|+ |D(i)|+ 1)

≥ γ − ai + nbi Definition of nbi
≥ γ − ai From Lemma 6

Above shows that for cache nodes in the optimal solution
that are not cache node in the previous Nash Equilibrium,

8
the amount of bids they collect is more than the extra cost
they incur due to caching. They better off to caching and
has no incentive to deviate.

VI. CONCLUSION AND FUTURE WORK

We apply game-theoretical analysis for the selfish
caching in wireless ad hoc networks. Our model considers
distance-dependent caching cost, which is different from
previous work. We first show a pure Nash Equilibrium
exists in our model. We then design a payment model,
in which the selfish caching game achieves both optimal
cost and Nash Equilibrium simultaneously. Our model is
more general and applicable than existing work for such
emerging networks as P2P and wireless ad hoc sensor
networks. As the ongoing and future work, we are validat-
ing our findings using simulations under various network
scenarios.

REFERENCES

[1] M. Charikar and S. Guha. Improved combinatorial algorithms for
the facility location and k-median problems. In Proc. of IEEE FOCS
1999.

[2] B.-G. Chun, K.Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou,
and J. Kubiatowicz. Selfish caching in distributed systems: A game-
theoretic analysis. In Proc. of ACM PODC 2004, pages 21 – 30.

[3] O. Ercetin and L. Tassiulas. Market-based resource allocation for
content delivery in the internet. IEEE Transactions on Computers,
52(12):1573–1585, 2003.

[4] Marco Fiore, Francesco Mininni, Claudio Casetti, and Carla-Fabiana
Chiasserini. To cache or not to cache. In Proc. of IEEE INFOCOM
2009.

[5] Takahiro Hara and Sanjay K. Madria. Data replication for improving
data accessibility in ad hoc networks. IEEE Transactions on Mobile
Computing, 5(11):1515–1532, 2006.

[6] K. Jain and V. V. Vazirani. Approximation algorithms for metric
facility location and k-median problems using the primal-dual
schema and lagrangian relaxation. Journal of the ACM, 48(2):274–
296, 2001.

[7] S. U. Khan and I. Ahmad. A pure nash equilibrium based game
theoretical method for data replication across multiple servers. IEEE
Transactions on Knowledge and Data Engineering, 20(3), 2009.

[8] B.-J. Ko and D. Rubenstein. Distributed self-stablizing placement of
replicated resources in emerging networks. IEEE/ACM Transactions
on Networking, 13(3):476 – 487, 2005.

[9] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilib-
ria. In Proc. of STACS 1999.

[10] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis.
Distributed selfish replication. IEEE Transactions on Parallel and
Distributed Systems, 17:1401–1413, 2005.

[11] Nikolaos Laoutaris, Georgios Smaragdakis, Azer Bestavros, Ibrahim
Matta, and Ioannis Stavrakakis. Distributed selfish caching. IEEE
Transactions on Parallel and Distributed Systems, 18:1361–1376,
2007.

[12] Nikolaos Laoutaris, Georgios Smaragdakis, Azer Bestavros, and
Ioannis Stavrakakis. Mistreatment in distributed caching groups -
causes and implications. In Proc. of IEEE INFOCOM 2006.

[13] P. Mirchandani and R. Francis. Discrete location theory. 1990.
[14] John Nash. Non-cooperative games. Annals of Mathematics, pages

286–295, 1951.
[15] Pavan Nuggehalli, Vikram Srinivasan, and Carla-Fabiana Chi-

asserini. Energy-efficient caching strategies in ad hoc wireless
networks. In Proc. of MOBIHOC 2003.

[16] C. Papadimitriou. Mistreatment in distributed caching groups causes
and implications. In Proc. of ACM STOC 2001.

[17] C. Swamy and A. Kumar. Primal-dual algorithms for connected
facility location problems. In Proc. of APPROX 2002.

[18] Bin Tang, Samir Das, and Himanshu Gupta. Benefit-based data
caching in ad hoc networks. IEEE Transactions on Mobile Com-
puting, 7(3):289–304, 2008.

[19] P. Winter. Steiner problem in networks: A survey. ACM Networks,
17(2):129–167, 1987.

[20] Liangzhong Yin and Guohong Cao. Supporting cooperative caching
in ad hoc networks. IEEE Transactions on Mobile Computing,
5(1):77–89, 2006.

[21] Jing Zhao, Ping Zhang, Guohong Cao, and Chita R. Das. Coopera-
tive caching in wireless p2p networks: Design, implementation, and
evaluation. IEEE Transactions on Parallel and Distributed Systems,
99(2):1045–9219, 2009.

