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Abstract

The Traveling Salesman Problem (TSP) is one of the
most well-known combinatorial optimization problems in
computer science and engineering. Inspired by a few
robotic applications, this paper studies a new variation
of the TSP called the Budget-Constrained Traveling Sales-
man Problem (BC-TSP). Given a weighted complete graph
G(V,E) where node i ∈ V has an available prize of pi,
two nodes s, t ∈ V , and a budget, the goal of the sales-
man is to find a route from s to t to maximize his collected
prizes while keeping his travel cost within the budget. We
design two greedy algorithms and a multi-agent reinforce-
ment learning (MARL) algorithm to solve BC-TSP. We use
data on the 48 state capital cities on the US mainland to
show that the MARL algorithm collects more prizes than
two handcrafted greedy algorithms while traveling less
distances. This demonstrates that MARL is an effective
and efficient algorithm for solving BC-TSP. To our knowl-
edge, our work is the first to apply the MARL technique to
solve the BC-TSP problem.

Keywords – Budget-Constrained Traveling Salesman
Problem, Multi-Agent Reinforcement Learning

1. Introduction

The Traveling Salesman Problem (TSP) is one of the
most well-known combinatorial problems in computer sci-
ence and engineering [6, 10]. This paper studies a new
variation of the TSP called the Budget-Constrained Trav-
eling Salesman Problem (BC-TSP). BC-TSP is inspired by
many emerging robotic applications, wherein robots are
dispatched to accomplish tasks such as search and rescue
and data collection. As robots are mainly powered by bat-
teries, one critical goal for the untethered robot is to ac-
complish as many tasks as possible and then return to the
charging station before its battery is depleted.

In this paper, we identify, formulate, and solve a new
variation of the traveling salesman problem (TSP) called
the budget-constrained traveling salesman problem (BC-

TSP). TSP is one of the most famous combinatorial opti-
mization problems in computer science. With numerous
applications, including DNA sequencing, chip design, and
robotics [6], TSP studies how a traveling salesman can
start from a source city, visit all other cities, and return to
the destination city efficiently. In contrast, in BC-TSP, we
assume that the traveling salesman has a budget and each
node has some amount of prize to be collected. The goal
for the salesman is to find a subset of the nodes to visit
to maximize the collected prizes with the given budget.
Here, the budget is a resource constraint upon the traveling
salesman in any network applications modeled as BC-TSP
and is application-specific. It could be the robots’ battery
power in the RSN scenario mentioned above or the com-
puting power of the agents in many of the AI/ML applica-
tions [9].

In this paper, we design a suite of algorithms to solve
BC-TSP. We first design two intuitive greedy heuristics,
wherein the salesman iteratively decides to visit a node
with the maximum available prize or the maximum prize-
cost ratio (which will be defined later). We then design a
multi-agent cooperative reinforcement learning (MARL)-
based algorithm to solve the BC-TSP. Unlike the hand-
crafted greedy algorithms, in MARL, intelligent agents
learn cooperatively by interacting with the environment
and adjusting their actions accordingly [18]. Therefore,
the MARL algorithm is more adaptive and robust in a dy-
namic network environment and has become an ideal alter-
native to solve many network-related combinatorial prob-
lems time-efficiently [12]. However, it remains unclear as
to what extent the prize collection in BC-TSP corresponds
to cumulative reward maximization in MARL. In this pa-
per, we endeavor to integrate the prizes in BC-TSP into
the RL reward model and design the first MARL algorithm
to solve BC-TSP. Via extensive simulations, we show that
the MARL algorithm can collect more prizes than the two
greedy algorithms while traveling less distances.



2. Budget-Constrained Traveling Sales-
man Problem (BC-TSP)

2.1. Problem Formulation.
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Figure 1. An example.

Given a weighted com-
plete graph G(V,E), where
V is a set of nodes and E
is a set of edges. Each
edge (u, v) ∈ E has a
weight w(u, v), indicating
the travel distance or cost on
this edge. Each node i ∈ V
has a weight pi ≥ 0 ∈ R+,
indicating the prize available at this node. This prize can be
only collected once by the salesman. Given any two nodes
v1 and vn and a route between them R = {v1, v2, ...vn}
in G, where (vi, vi+1) ∈ E, denote its cost as CR =∑n−1
i=1 w(vi, vi+1) and its total prizes as PR =

∑
i∈R pi.

Let s, t ∈ V be the traveling salesman’s source and des-
tination nodes, respectively. Let B denote his budget,
which indicates the distance he can travel before reach-
ing t. The goal of the BC-TSP is to find a prize-collecting
route Rs = {s = v1, v2, v3, ..., vn = t} such that its total
prize PRs

is maximized while its cost CRs
≤ B.

EXAMPLE 1: Fig. 1 illustrate BC-TSP with budget
B = 8. The numbers on the edges are their weights, and
the numbers in the parentheses are the prizes available at
nodes. Assume s = E and t = C. The optimal walk from
E to C is E, D, B, and C, with a total prize of 8 and a
total cost of 8. Other routes are not optimal. For example,
although the path of E, A, B, and C is within the budget
with a cost of 7, its total prize is 7.

2.2. Combinatorial Algorithms for BC-
TSP

Definition 1: (Budget-Feasible Nodes.) Given the cur-
rent node r the traveling salesman is located and his
available budget B, the budget-feasible nodes, denoted as
F(r,B), is s’s unvisited neighbor nodes that the sales-
man can travel to and then return to destination node t
with enough budget. That is, F(r,B) = {u|(r, u) ∈
E ∧ (w(r, u)+w(u, t) ≤ B)∧u ∈ U}, where U is the set
of unvisited nodes.

Greedy Algorithm 1. In Algo. 1, at any node, the sales-
man always visits a budget-feasible node with the largest
prize. It first sorts all the nodes in the descending order of
their prizes (line 2) and then takes place in rounds (lines
4-12). In each round, with the current node r and the
currently available budget B, it checks if unvisited and
budget-feasible nodes still exist (line 4). If so, it visits
the one with the largest available prize and updates all the

information accordingly (lines 5-10). It stops when there
are no unvisited nodes, or all the unvisited nodes are not
budget-feasible (line 4), at which it goes to the destination
node t and returns the route with its total cost, total prizes
collected, and its remaining budget (lines 13 and 14). Its
time complexity is O(|V |2). Algo. 1 also works for the
problem where s = t.

Algorithm 1: Greedy Algorithm 1 for BC-TSP.
Input: A complete weighted graph G(V,E), s, t, and

initial budget B.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, initially {s};
CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially V − {s, t};
r: the current node where the salesman is located;
B: current available budget, is B initially;
1. r = s, R = {s}, CR = PR = 0, B = B,

U = V − {s, t} = {v1, v2, ..., v|V |−2};
2. Sort nodes in U in descending order of their prizes;

WLOG, let pv1 ≥ pv2 ...,≥ pv|V |−2
;

3. k = 1; // the index of the node with largest prize
4. while (U 6= φ ∧ F(r,B) 6= φ)
5. if (vk ∈ F(r,B))
6. R = R ∪ {vk};
7. CR = CR + w(r, vk), PR = PR + pvk ;
8. B = B − w(r, vk), U = U − {u};
9. r = vk;
10. end if;
11. k ++;
12. end while;
13. R = R ∪ {t}, CR = CR + w(r, t), B = B − w(r, t);
14. RETURN R, CR, PR, B.

Greedy Algorithm 2. Given an edge (u, v) ∈ E, and the
traveling salesman is at node u, we define the prize cost ra-
tio of visiting v, denoted as pcr(u, v), as the ratio between
the prize available at v and the edge weight w(u, v). That
is, pcr(u, v) = pv

w(u,v) . Algo. 2 is similar to Algo. 1, ex-
cept it visits a budget-feasible node with the largest prize
cost ratio in each round. Its time complexity is O(|V |2).

Algorithm 2: Greedy Algorithm 2 for BC-TSP.
Input: A complete weighted graph G(V,E), s, t, and B.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, starts from s;
CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially U = V − {s, t};
r: the node where the salesman is located currently;
B: current remaining budget, is B initially;
1. r = s, R = {s}, CR = PR = 0, U = V − {s, t};



2. B = B;
// if not all nodes are visited, and there are feasible nodes

3. while (U 6= φ ∧ F(r,B) 6= φ)
4. Let u = argmaxv∈F (r,B)∩Upcr(r, v);
5. R = R ∪ {u};
6. CR = CR + w(r, u), PR = PR + pu;
7. B = B − w(r, u), U = U − {u};
8. r = u;
9. end while;
10. R = R ∪ {t}, CR = CR + w(r, t), B = B − w(r, t);
11. RETURN R, CR, PR, B.

EXAMPLE 2: In Fig. 1, with s = E and t = C, both
Algo. 1 and 2 yield the optimal solution of E, D, B, and
C, with a total cost of 8 and a total prize of 8. But in
general, they are not optimal, as shown in Section 4.

3. MARL Algorithm for BC-TSP

In this section, we first present the basics of RL and then
our cooperative MARL framework for BC-TSP.

Reinforcement Learning (RL) [18]. Agent’s decision-
making in an RL system is a Markov decision process
(MDP) represented by a 4-tuple (S,A, t, r):
• S is a finite set of states,
• A is a finite set of actions,
• t : S ×A→ S is a state transition function, and
• r : S × A → R is a reward function, where R is a real
value reward.

Q-learning is a family of value-based RL algorithms
[18]. It learns how to optimize the quality of the actions in
terms of the Q-value Q(s, a). Q(s, a) is defined as the ex-
pected discounted sum of future rewards obtained by tak-
ing action a from state s following an optimal policy. The
optimal action at any state is the action that gives the max-
imum Q-value. For an agent at state s, when it takes action
a and transitions to the next state t, Q(s, a) is updated as

Q(s, a)← (1−α)·Q(s, a)+α·[r(s, a)+γ ·maxbQ(t, b)],
(1)

where 1 ≤ α ≤ 1 is the learning rate that decides to what
extent newly acquired information overrides old informa-
tion in the learning process. In Eqn. 1, maxbQ(t, b) is the
maximum reward obtained from the next state t.

Multi-agent Reinforcement Learning (MARL) Algo-
rithm. In our MARL framework for BC-TSP, multiple
agents start from the node s. They work synchronously
and cooperatively to learn the state-action Q-table and the
reward table and take action accordingly. We first intro-
duce the action rules for all the learning agents and then
present our MARL algorithm.
Action Rule of Agents. Each agent follows the same ac-
tion rule specifying the next node it moves to during the

learning process. It consists of the following three scenar-
ios.
• Exploitation. The agent always chooses the node

t = argmaxu∈U∩F (s,B){
[Q(s, u)]δ × pu

[w(s, u)]β
}

to move to. Here, U is the set of nodes not visited yet by
the agent and F(s,B) is node s’s budget-feasible nodes,
and δ and β are preset parameters. That is, an agent, lo-
cated at node s, always moves to an unvisited and fea-
sible node u that maximizes the learned Q-value Q(s, u)
weighted by the length w(s, u) and the prize pu available
at node u. When q ≤ q0, where q is a random value in [0,
1] and q0 (0 ≤ q0 ≤ 1) is a preset value, exploitation is
selected; otherwise, the agent chooses exploration below.
• Exploration. In exploration, the agent chooses a node
t ∈ U ∩ F(s,B) to move to by the following distribution:

p(s, t) =
([Q(s, t)]δ × pu)/[w(s, t)]β∑

u∈U∩F (s,B)([Q(s, u)]δ × pu)/[w(s, u)]β
.

That is, a node u ∈ U∩F(s,B) is selected with probability
p(s, u), while

∑
u∈U∩F (s,B) p(s, u) = 1. The distribution

p(s, t) characterizes how good the nodes are at learned Q-
values, the edge lengths, and the node prizes. The higher
the Q-value, the shorter the edge length, and the larger the
node prize, the more desirable the node is to move to.
• Termination. When an agent is located at node s and
U ∩ F(s,B) = φ, it does not have an unvisited budget-
feasible node. In this case, the agent goes to destination t
and terminates in this episode.
MARL Algorithm. Next, we present our MARL algorithm
viz. Algo. 3, which consists of a learning stage for the m
agents (lines 1-32) and an execution stage for the traveling
salesman (lines 33-39). The learning stage takes place in
a preset number of episodes. Each episode consists of the
below two steps.

In the first step (lines 3-26), all the m agents are ini-
tially located at the starting node s with zero collected
prizes. Then, each independently follows the action rule to
move to the next budget-feasible node to collect prizes and
collaboratively update the involved edges’ Q-value. This
takes place in parallel for all the agents. When an agent
can no longer find a feasible unvisited node to move to due
to its insufficient budget, it terminates and goes to t (lines
8-14); in this case, it must wait for other agents to finish in
this episode. Otherwise, it moves to the next node, collects
the prize, and continues the prize-collecting process (lines
15-23). In either case, it updates the Q-values of the in-
volved edge. Here, we assume the prizes at each node can
be collected multiple times (as this is the learning stage).

In the second step (lines 27-31), them agents communi-
cate with each other and find among the m routes the one



with the maximum collected prizes. It then updates the
reward value and Q-value of the edges of this route.

Finally, in the execution stage (lines 33-38), the travel-
ing salesman starts from s, visits the node with the largest
Q-value in the Q-table, and ends at t, collecting the prizes
along the way. Note we set the initial Q-value and reward
value for edge (u, v) as pu+pv

w(u,v) and −w(u,v)
pv

, respectively,
to reflect the fact that the more prizes available and less
length of an edge, the more valuable of the edge for the
salesman to travel.

Algorithm 3: MARL Algorithm for BC-TSP.
Input: A graph G(V,E), s, t, and a budget B.
Output: A route R from s to t, CR, and PR.
Notations: i: index for episodes; j: index for agents;
Uj : set of nodes agent j not yet visits, initially V − {s, t};
Rj : the route taken by agent j, initially empty;
Bj : the currently available budget of agent j, initially B;
lj : the cost (i.e., the sum of edge weights) of Rj , initially 0;
Pj : the prizes collected on Rj , initially 0;
rj : the node where agent j is located currently;
sj : the node where agent j moves to next;
isDonej : agent j has finished in this episode, initially false;
R: the final route found the MARL, initially empty;
Q(u, v): Q-value of edge (u, v), initially pu+pv

w(u,v) ;

r(u, v): Reward of edge (u, v), initially −w(u,v)
pv

;
α: learning rate, α = 0.1;
γ: discount factor, γ = 0.3;
q0: trade-off between exploration and exploitation, q0 = 0.5;
δ, β: parameters in node selection rule; δ = 1 and β = 2;
W : a constant value of 100;
epi: number of episodes in the MARL, epi = 30000;
1. for (1 ≤ i ≤ epi) // Learning stage
2. All the m agents are at node s, rj = s, 1 ≤ j ≤ m;
3. for (j = 1; j ≤ m; j++) // Agent j
4. Pj = 0, Bj = Bj , isDonej = false;

end for;
// At least one agent has not finished in this episode

5. while (∃ j, 1 ≤ j ≤ m, isDonej == false)
6. for (j = 1; j ≤ m; j++) // Agent j
7. if (isDonej == false) // Agent j has not finished
8. if (Uj ∩ F(rj , Bj) == φ) // Agent j terminates
9. isDonej = true;
10. Rj = Rj ∪ {t}; // Agent j goes to t
11. lj = lj + w(rj , t), Bj = Bj − w(rj , t);
12. Q(rj , t) = (1− α) ·Q(rj , t)+

α · γ ·maxz∈Uj∩F (t,Bj)
Q(t, z);

13. rj = t;
14. end if;
15. else
16. Finds the next node sj following action rule;
17. Rj = Rj ∪ {sj};
18. lj = lj + w(rj , sj), Bj = Bj − w(rj , sj);
19. Pj = Pj + psj ; // Collect prize
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Figure 2. Comparing MARL, GA1, and GA2.

20. Q(rj , sj) = (1− α) ·Q(rj , sj)+
α · γ ·maxz∈Uj∩F (sj ,Bj)

Q(sj , z);
21. rj = sj ; // Move to node sj ;
22. Uj = Uj − {sj};
23. end else;
24. end if;
25. end for;
26. end while;
27. j∗ = argmax1≤j≤mPj ; // Route of largest prize
28. for (each edge (u, v) ∈ Rj∗)
29. r(u, v) = r(u, v) + W

Pj∗
; // Reward value r(u, v)

30. Q(u, v)← (1− α) ·Q(u, v)+
α · [r(u, v) + γ ·maxbQ(v, b)]; // Update Q-value

31. end for;
32. end for; // End of each episode in learning stage

// Execution stage
33. r = s, R = {s}, CR = 0, PR = 0, B = B;
34. while (r! = t)
35. u = argmaxbQ(r, b);
36. R = R ∪ {u}, CR = CR + w(r, u), PR = PR + pu,

B = B − w(r, u);
37. r = u;
38. end while;
39. RETURN R, CR, PR, B.

Discussions. There are epi episodes of learning. In each
episode, the first step takes at most m · |V |, where |V | is
the total number of nodes, and the second step takes at
most m + |E|, where |E| is the total number of edges.
Thus, the time complexity of Algo. 3 is O(epi ·m · |V |).

4. Performance Evaluation

Experiment Setup. We write our own simulator in Java
on a Windows 10 with AMD Processor (AMD Ryzen 7
3700X 8-Core) and 16GB of DDR4 memory. We refer to
the Algo. 1 as GA1, Algo. 2 as GA2, and the MARL algo-
rithm Algo. 3 as MARL. We compare them on traveling
salesman tours of 48 state capital cities on the US main-
land [2]. Given the latitude and longitude of each city, the
distance between any two cities can be computed using the



Haversine formula [1]. The prize at each city is a random
number in [1, 100]. Each data point in our plots is an av-
erage of 20 runs with a 95% confidence interval; in each
run, a state capital city is randomly chosen as the source
and destination city.

Comparing MARL, GA1, and GA2. Fig. 2 compares
all three algorithms by varying the budgets. Fig. 2(a)
shows the total prizes collected. We observe that MARL
and GA2 outperform GA1, and the performance differ-
ences are more prominent at smaller budgets. As GA1
always tries to collect the largest prize available, it could
travel long distances, thus exhausting its budget quickly.
Fig. 2(b) shows that at smaller budgets, all three algorithms
travel the same distances to collect prizes. This is because
they all have exhausted their budgets. At larger budgets,
MARL yields less distance cost than GA2, which travels
less distance than GA1. These demonstrate that the MARL
algorithm is more efficient (distance-wise) and effective
(prize-wise) than the handcrafted greedy algorithms.

5. Conclusions

We proposed an algorithmic problem called budget-
constrained TSP (BC-TSP) that arises from emerging
robotic applications wherein robots are dispatched to ac-
complish some tasks with limited battery power. Such ap-
plications include robotic sensor networks, electric cars in
ride-sharing, and automated warehouses. We designed two
greedy algorithms and a multi-agent reinforcement learn-
ing (MARL) algorithm to solve BC-TSP. The MARL al-
gorithm performs better than the handcrafted greedy algo-
rithms in both distance costs and prizes collected. To our
knowledge, our work is the first to apply the RL technique
to solve the BC-TSP problem.
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