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Abstract—We study overall storage overflow problem in sensor
networks, wherein data-collecting base station is not available
while more data is generated than available storage spaces
in the entire network. Existing research designs a two-stage
solution to solve this problem. It first aggregates overflow data
to the size that can be accommodated by the available storage
capacity in the network, and then offloads the aggregated data
into the network to be stored. We refer to this naive two-
stage solution as DAO-N. In this paper, we demonstrate that
this approach does not necessarily achieve good performance.
We propose a more unified method that is based upon data
replication techniques, referred to as DAO-R, in order to improve
the performance of DAO-N. Specifically, we design two energy-
efficient data replication algorithms to integrate data aggregation
and data offloading in DAO-N. We show via extensive simulations
that DAO-R outperforms DAO-N by around 30% in terms of
energy consumption under different network parameters.

Keywords – Data Aggregation, Data Offloading, Overall
Storage Overflow, Sensor Networks, Energy-Efficiency

I. Introduction

In this paper, we focus on some emerging sensor networks
such as underwater sensor networks [6] and wind and solar
harvesting [10, 15]. A common characteristic of such networks
is that they are all deployed in inaccessible or inhospitable
regions, or under extreme weather, to constantly collect large
amounts of data from the physical environments for a long
period of time. Due to the inaccessible and hostile environ-
ments, it is not viable to deploy base stations (with power
outlets) to collect data in or near the sensor fields. Therefore,
data generated have to be stored inside the sensor network for
some period of time and then be collected by periodic visits
of robots or data mules [9], or by low rate satellite links [14].

Meanwhile, storage is still a serious resource constraint of
sensor nodes despite the advances in energy-efficient flash
storage [16]. As a consequence of this resource constraint and
the absence of base stations, the massive sensory data could
soon overflow data storage of sensor nodes and cause data
loss. Below we outline two levels of data overflow and their
corresponding solutions.
• Node Storage Overflow. The first level of data overflow is
node storage overflow, wherein some data-generating sensor
nodes deplete their own storage spaces, causing data loss.
These sensor nodes with depleted storage spaces while still
generating data are referred to as data nodes. The newly
generated data that can no longer be stored at data nodes is

called overflow data. The solution to avoid such data loss is
simple: the overflow data is offloaded to other nodes with
available storages (referred to as storage nodes).1 Different
data offloading techniques have been proposed with the goals
of either minimizing the total energy consumption during
data offloading [17], or maximizing the minimum remaining
energy of storage nodes to prolong network lifetime [8],
or offloading the most useful information considering data
could have different priorities [21]. However, these tech-
niques did not address the second level of data overflow,
which is overall storage overflow explained below.

• Overall Storage Overflow. This happens when the total size
of the overflow data is larger than the total size of the
available storage in the network. Data offloading solely
can not solve this problem and discarding data becomes
inevitable if no actions taken. This is a more severe problem
compared to the node storage overflow.

Fortunately, the spatially redundant or correlated sensory data
provides us an opportunity to solve aforesaid overall storage
overflow problem, by allowing us to aggregate and reduce
the size of overflow data without sacrificing information loss.
To solve overall storage overflow, existing research [17, 18]
presents a naive data aggregation and offloading solution
called DAO-N, which aggregates the overflow data and then
offloads them into the network. In particular, they present an
approximation algorithm [18] to solve the data aggregation
part and an optimal algorithm for data offloading part [17].

In this paper, we show that solving each stage independently
and combining the results does not necessarily achieve best
performance. We present an unified approach, called DAO-R,
to leverage the synergies existing between data aggregation
and data offloading. Specifically, we design two centralized
data replication algorithms viz. Global Replication Algorithm
and Localized Replication Algorithm, wherein data is repli-
cated on the way of data aggregation. The novelty of DAO-R is
that replicating data along aggregation paths achieves the effect
of “offloading” overflow data to storage nodes, without intro-
ducing extra energy cost. We show via extensive simulations
that DAO-R outperforms DAO-N by around 30% in terms of
energy consumption under different network parameters.

Paper Organization. The rest of the paper is organized as

1Sensor nodes that generate data but have not depleted their storage spaces
are considered as storage nodes.
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follows. Section II discusses related work. In Section III, we
introduce the overall storage overall problem with its network,
data correlation, and energy models. Section IV reviews DAO-
N and its algorithmic solutions. In Section V, we present DAO-
R and design two data replication algorithms to integrate data
aggregation and offloading. In Section VI, we compare DAO-
R with DAO-N and discuss the simulation results. Section VII
concludes the paper with possible future research.

II. Related Work
How to preserve data in sensor networks in the absence of

the base station has become an active research in recent years.
In particular, Tang et al. [17] addressed it as an energy-efficient
data redistribution problem. Tang and Ma [18] recently solved
overall storage overflow problem by aggregating overflow data
and reducing their sizes so that they can be accommodated by
the available storage. However, important research problem
such as how to integrate data aggregation and data offloading
to further save energies is not addressed.

Ganesan et al. [3] adopted data aggregation techniques to
tackle storage constraint of sensor networks. They proposed
wavelet compression techniques to construct summaries for
data at different spatial resolutions, and designed a progressive
aging scheme wherein older data gets more aggressively
summarized to save storage space for newer data. The summa-
rization is based on a hierarchical grid-based overlay, in which
summaries at each higher level of the hierarchy encompass
larger spatial scales but are more lossy. In contrast, our
approach does not rely upon any hierarchy of overlays.

Traditional data aggregation in sensor networks is to collect
sensor data by combining the data from different sensor nodes
on the way to the base station, in order to eliminate redundancy
and to reduce energy consumption. As a result, the underlying
routing structures for data aggregation are usually trees rooted
at the base station. Data aggregation techniques have been
designed for different purposes. Some are used to maximize
the network lifetime (the time until the first node depletes its
energy) [13, 19], some are used to minimize the total energy
consumption or communication cost [11, 12], and some to
reduce the delay of data gathering [20]. In contrast, data
aggregation in this paper has very different goal – it is to
aggregate the overflow data so that their size can be reduced
and accommodated by the storage spaces available in the
network, in order to prevent data loss caused by overall storage
overflow.

III. Overall Storage Overflow Problem [18]
The sensor network consists of data nodes (with overflow

data) and storage nodes (with available storage spaces), as
shown in Fig. 1. The total size of the overflow data from the
data nodes exceeds the total size of the storage spaces from
the storage nodes, resulting in overall storage overflow. To
aggregate data, one or multiple data nodes (called initiators)
send their entire overflow data to other data nodes. When a
data node (called an aggregator) receives the data, it aggre-
gates its own overflow data (each aggregator can aggregate its

data only once). After that, the aggregator forwards initiators’
overflow data to another data node, which then becomes an
aggregator and aggregates its own overflow data, and so on and
so forth. This continues until enough aggregators are visited
such that the total size of the overflow data after aggregation
equals to or is slightly less than the total available storages in
the network. At this point there is zero amount of overflow
data on each initiator, the last aggregator being visited by each
initiator has both its own aggregated data and the entire data
from the initiator, and all other aggregators have their own
aggregated overflow data. If a data node is not involved in
data aggregation (i.e., not an initiator and not an aggregator),
its overflow data is not aggregated. After aggregation, all the
overflow data (aggregated or not) are then offloaded to storage
nodes. The goal is to minimize the total energy consumption in
the entire process. Fig. 1 shows both stages of data aggregation
and data offloading.

Fig. 1. An illustration of data aggregation and offloading.

Network Model and Data Correlation Model. We represent
the sensor network as a graph G(V,E), where V =
{1, 2, ..., |V |} is the set of |V | sensor nodes uniformly dis-
tributed inside the network, and E is the set of |E| edges.
There are p data nodes (denoted as Vd), each has R bits of
overflow data. The other |V | − p nodes are storage nodes,
denoted as Vs, each of which has m bits of available storage
spaces. We adopt data correlation model proposed in [2]. Let
H(X|Y ) denote the conditional entropy of a random variable
X given that random variable Y is known. Overflow data at
data node i is represented as an entropy H(i) = R bits if
no side information is received from other data nodes; and
H(i|j1, ..., jp) = r ≤ R bits, jk ∈ Vd ∧ jk ̸= i, 1 ≤ k ≤ p,
if data node i received side information from at least another
data node. That is, a data node aggregates its overflow data
from R to r if it receives data from at least one initiator.

First Order Radio Energy Model [7]. For node u sending R-
bit data to its one-hop neighbor v over their distance lu,v ,
the transmission energy cost at u is Et(R, lu,v) = Eelec ×
R + ϵamp × R × l2u,v , the receiving energy cost at v is
Er(R) = Eelec × R. Here, Eelec = 100nJ/bit and ϵamp =
100pJ/bit/m2. Let w(R, u, v) = Et(R, lu,v) + Er(R). Let
W = {v1, v2, ..., vn} be a walk, i.e., a sequence of n nodes
with (vi, vi+1) ∈ E, 1 ≤ i ≤ n − 1 and v1 ̸= vn. If all
the nodes in W are distinct, W is a path. Let c(d,W ) =∑n−1

i=1 w(d, vi, vi+1) denote the energy consumption of send-
ing d-bit of data along W .

In data aggregation, the route that the R-bit overflow data
at each initiator traverses could be either a path or a walk,
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because enough number of aggregators needs to be visited in
order to reduce overflow data size. c(R,W ) is the aggregation
cost of R-bit data traversing along W starting from its initiator.
In data offloading, however, the route that the overflow data
traverses is always a path, in order to minimize the energy
consumption for offloading. Besides, in data offloading, each
offloaded overflow data unit is not necessarily in sizes of R or
r. Instead, for the purpose of energy efficiency, the overflow
data at each data node can be splitted into small units, each
of which can be offloaded to different storage nodes. Let the
size of each small unit be x-bit, then c(x,W ) is the offloading
cost of offloading this x-bit data from its data node v1 to a
storage node vn, along path W .

Feasible Overall Storage Overflow. It refers to the conditions
that a) there is an overall storage overflow, b) enough number
of aggregators are visited such that the data after aggregation
can fit in the available storages. Let q denote the number of
needed aggregators. It derives [18] that for feasible overall
storage overflow,

q = ⌈p×R− (|V | − p)×m

R− r
⌉ = ⌈p× (R+m)− |V | ×m

R− r
⌉,

(1)
and the valid range of p is

|V |m
m+R

< p ≤ ⌊|V |m−R+ r

m+ r
⌋. (2)

Given p and q, at most (p− q) data nodes can be selected as
initiators.

Fig. 2. A sensor network with overall storage overflow problem.

EXAMPLE 1: Fig. 2 illustrates the overall storage prob-
lem with a linear sensor network of five nodes. Nodes B,
D, and E are data nodes, while A and C are storage nodes.
Numbers in parentheses are the overflow data sizes R. The
energy consumption along any edge is one per unit of data.
There are total 3 units of overflow data while there are only
2 units of available storage, causing overall storage overflow.
Number of aggregators q is calculated as 2 using Equation 1.
This leaves one data node to be initiator. In Section IV, we
show how to select the initiator and corresponding aggregation
path to solve this overall storage overflow problem. □

IV. Review of DAO-N: A Naive Two-Stage Approach

DAO-N solves data aggregation and data offloading as two
separate and independent problems, and then combine the
solutions (i.e., the energy cost of DAO-N is the sum of
aggregation cost and offloading cost). The DAO-N is NP-hard,
since its constituent data aggregation problem itself is NP-hard
[18]. Below we present algorithms solving data aggregation
and data offloading, respectively.

Data Aggregation Approximation Algorithm. Below we
present an approximation algorithm, which yields energy cost
that is at most (2− 1

q ) times of the optimal [18].

Algorithm 1: Data Aggregation Approximation Algorithm.

1). Transform sensor network graph G(V,E) to G′(V ′, E′)
as follows. V ′ is set of p data nodes in V , i.e. V ′ = Vd.
For any two data nodes u, v ∈ Vd in G, there exists an
edge (u, v) ∈ E′ in G′ if and only if all the shortest paths
between u and v in G do not contain other data nodes. For
each edge (u, v) ∈ E′, its weight w(u, v) is the cost of the
shortest path between u and v in G.

2). Create a set S containing all the edges in E′ in nonde-
creasing order of their weights. Create a forest F of |V ′|
trees, each is one of the |V ′| nodes initially.

3). Starting from the first edge in S, if that edge connects
two different trees, add it to F and combines two trees into
a single tree. This repeats for q times.

4). Replace each edge (u, v) in F with a shortest path
between u and v in G (choose one randomly if there are
multiple).

5). For each connected component of the resulted F , if it is
linear, it starts from one end (the initiator) and visits the
rest nodes exactly once; if it is a tree, it does the following.
Find an edge (u, v) with maximum weight in the tree (tie
is broken randomly), which has three parts: Tu, (u, v), and
Tv. It starts from u (the initiator) and visits all the nodes
in Tu in a sequence following depth-first-search (DFS) and
comes back, then visits v, from where it visits all the nodes
in Tv in a sequence following DFS.
Applying above approximation algorithm to Example 1, it

obtains two data aggregation solutions. One is that data node
B is initiator and the aggregation path is B, C, D, and E, as
shown in Fig. 3(a). It also shows the sizes of overflow data
at each data node after aggregation (but before offloading). In
particular, there is no overflow data left at initiator B, and
there are 0.5 and 1.5 units of data at data nodes D and E
respectively. The aggregation cost is 3, which happens to be
optimal in this small network.

Data Offloading Algorithm. Data offloading is to offload the
overflow data from its data node to storage node, since there
are enough storage spaces available to store the overflow
data after data aggregation. The goal of data offloading is to
minimize the energy cost incurred in the offloading process.
Tang et al. [17] show that by transforming sensor network
graph G(V,E) into a flow network, data offloading problem
is equivalent to minimum cost flow problem [1], which is
solvable optimally in polynomial. In this paper we adopt the
scaling push-relabel algorithm proposed and implemented in
[4, 5], with time complexity of O(|V |2|E|log(|V |C)). Here C
is the maximum capacity of an edge in the transformed graph.

Fig. 3(b) shows the data offloading solution that follows
data aggregation in Fig. 3(a). It shows that 0.5 unit of data at
D and 0.5 unit of data at E are offloaded to storage node C,
while 1 unit of data at E is offloaded to storage node A, with
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offloading cost of 5.5.

Fig. 3. One naive two-stage solution with B being the initiator. (a) Data
aggregation stage: values in parentheses are sizes of overflow data after
aggregation. (b) Data offloading stage: values on the arrowed lines are sizes
of overflow data that is offloaded from its data node to a storage node.

V. DAO-R: Integrating Data Aggregation and Data
Offloading via Replication

In this section we first demonstrate the limitations of DAO-
N using Example 1. We then formulate DAO-R that integrates
data aggregation and offloading. Finally we solve DAO-R by
designing two data replication algorithms.

A. Limitations of DAO-N.

Another naive two-stage solution for Example 1 is shown
in Fig. 4, wherein data node E is initiator and the aggregation
path is E, D, C, and B. In this case, the aggregation
cost is again 3. However, the offloading cost is 2, a 64%
improvement compared to 5.5 in Fig. 3(b). Therefore, even
though the solution in Fig. 3 independently solves each of
the data aggregation and data offloading nicely (one with
approximation algorithm and the other optimal algorithm), the
combined solution may not give the best result.

Fig. 4. Another naive two-stage solution solution with E being the initiator.

Furthermore, even though Fig. 4 gives optimal combined
total energy cost of data aggregation and offloading, its per-
formance can be further improved. Our key observation is that
while aggregating data, it can also replicate data along the
aggregation paths, since replicating data does not introduce
extra energy consumption. As result of replicating, less data
needs to be offloaded in data offloading stage. Fig. 5 shows that
when initiator E sends its one unit data passing storage node
C, it replicates half of the data and stores it at C. Therefore,
next in data offloading stage, node B only needs to offload
the other half unit of E to A (combined with its own 0.5 unit
after aggregation, B actually offloads one unit to A).2 The
offloading cost is 1.5, a 25% of improvement compared to
offloading cost of 2 in Fig. 4(b).

2Note that B still has 1.5 units of overflow data after aggregation, but only
one unit of them is offloaded.

Fig. 5. Illustrating DAO-R. 0.5 unit of initiator E’s data is replicated and
stored at C in data aggregation stage. Thereafter in the data offloading stage,
node B does not need to offload this part of data.

B. Problem Formulation of DAO-R.

We assume that l data aggregation paths W a
1 ,W

a
2 , ...,W

a
l

have already been found using Algorithm 1 in Section IV.
Like in Section III, we assume that the overflow data consists
of small units, each of which is x-bit and different units be
offloaded to different storage nodes. The overflow data that
needs to be offloaded after data aggregation falls into one of
the three categories:
• D

′
=

∪l
j=1 D

′

j : the overflow data of all the initiators. D
′

j

is the R amount of overflow data of Ij , initiator of W a
j

(1 ≤ j ≤ l). Note that each initiator’s overflow data has
been transmitted to the last aggregator of each aggregation
path after data aggregation.

• D
′′

: the overflow data of all the aggregators, each having r
amount of overflow data.

• D
′′′

: the overflow data that are not aggregated and are not
on any aggregation path. D

′′′
is empty if all the data nodes

are on some aggregation paths.
When the R amount overflow data traverses each aggre-

gation path starting from its initiator, it can replicate part or
all R on storage nodes along the path. The data replication
algorithms decide for each aggregation path W a

j :
• the end node Ij that serves as initiator,
• a subset of D

′

j , denoted as Dj , of data units to replicate,
• a replication function r : Dj → Vs ∩W a

j , to replicate and
store a data unit in Dj at a storage node in W a

j , when R
amount from Ij traverses along W a

j ,
under the constraint that the total size of replicated data on any
storage node along any aggregation path can not exceed this
node’s available storage capacity: |{k|k ∈ Dj , r(k) = i}|·x ≤
m, ∀i ∈ Vs ∩W a

j .
Let D = {D1, ..., D|D|} denote the set of |D| overflow

data after aggregation, each is x-bit. With Dj replicated and
stored on W a

j , the rest D
′

j − Dj amount still needs to be
offloaded from the last aggregator of W a

j in data offloading
stage. Therefore,

D =

l∪
j=1

(D
′

j −Dj)∪D
′′
∪D

′′′
= (D

′
−

l∪
j=1

Dj)∪D
′′
∪D

′′′
.

Let s(j) denote the data node of any data unit Dj ∈ D. The
data offloading algorithm is to decide an offloading function
o : D → Vs, to offload Di ∈ D from its data node
s(i) ∈ Vd to storage node o(i) ∈ Vs. Or equivalently, the data
offloading algorithm is to decide a set of |D| offloading paths:
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W o
1 ,W

o
2 , ...,W

o
|D|, where W o

j (1 ≤ j ≤ |D|) starts from s(j)
and ends with o(j), to minimize the offloading cost:

Coff =
∑

1≤j≤|D|

c(x,W o
j ), (3)

under the constraint that the size of overflow data offloaded to
any storage node in the network can not exceed its available
storage capacity: |{j|1 ≤ j ≤ |D|, o(j) = i}|·x ≤ m,∀i ∈ Vs.
In DAO-R, since all the aggregation paths are given, the total
aggregation cost is the same whether replication takes place
or not. Therefore we need to minimize offloading cost, which
is done by solving minimum cost flow algorithm [4, 5].

C. Data Replication Algorithms for DAO-R.

Selecting initiator for each aggregation path. After aggrega-
tion, among all data nodes on a particular aggregation path,
the initiator has least amount of overflow data (zero), the last
aggregator has most amount (R + r), while others having
the same r amount of overflow data. Therefore, having more
available storage spaces around the last aggregator would make
the data offloading next more energy-efficient. For example,
in Fig. 2, since B has two neighboring storage nodes while E
has zero, E is selected as the initiator.

Global Replication Algorithm. Once the initiator is selected
for each aggregation path, it begins the data aggregation and
replication process. Our Global replication algorithm works
as follows. First, it offloads the r amount of data at all the
aggregators and the overflow data that are not aggregated
(line 1). Then for each aggregation path, it finds its available
storage spaces left (line 3-7). The amount to be replicated is
the smaller of R and the size of the available spaces (line 8).
Next, while the R amount of data from initiator is traversing
along the path performing data aggregation, it replicates this
amount (line 9-16). Finally, it offloads each initiator’s overflow
data that has not been offloaded from the last aggregator of
each path (line 18). Since it uses minimum cost flow algorithm
to find the available spaces to replicate, Algorithm 2 takes
a global perspective and is therefore referred to as Global.
For ease of presentation, in algorithms below, v = mc(O,G)
means running the minimum cost flow algorithm on G(V,E)
to offload a set of data units O from its belonged aggregators,
yielding a minimum energy cost v.

Algorithm 2: Global Data Replication Algorithm.
Input: All aggregation paths in G(V,E): W a

j (1 ≤ j ≤ l)
Output: Coff

0. Notations:
u: a node in W a

j ;
u.next: the next node of u in W a

j ;
z: total size of data in Dj that are not yet replicated;
avail(u): amount of available storage at node u;
availj : amount of available storage at node W a

j ;
1. Coff = mc(D

′′ ∪D
′′′
, G);

2. for each W a
j (1 ≤ j ≤ l)

3. availj = 0, u = Ij .next;

4. while (u is not the last aggregator on W a
j )

5 availj = availj + avail(u);
6. u = u.next;
7. end while;
8. |Dj | = min{availj , R};
9. u = Ij .next, z = |Dj |;
10. while (z > 0)
11. if (u ∈ Vs)
12. Replicate avail(u) amount at u;
13. z = z − avail(u);
14. end if;
15. u = u.next;
16. end while;
17. end for;
18. Coff = Coff +mc(D

′ −
∪l

j=1 Dj , G);
19. RETURN Coff .

Time complexity. The minimum cost flow algorithm takes
O(|V |2|E|log(|V |C)), with C = max{R+r

x , m
x }. Since each

of the l (l = O(|E|)) aggregation paths can not have more than
|V | nodes, finding available storages and replicating data along
each aggregation path takes O(|V |). It takes O(|E|× |V |) for
all the aggregation paths. Therefore, the time complexity of
Algorithm 2 is O(|V |2|E|log(|V |C))).

Localized Replication Algorithm. We give below definition.
Definition 1: (Demand Number d(u) of Storage Node u)

For any storage node u on any aggregation path, let N(u) be
all its one-hop neighbors. For each data node v ∈ N(u) ∩
Vd, let s(v) denote number of v’s one-hop neighbors that are
storage nodes. Then d(u) =

∑
v∈N(u)∩Vd

1
s(v) . □

Note that s(v) ̸= 0 since v has at least one neighboring
storage node u. The idea behind d(u) is that the more number
of data nodes surrounding u and the less number of storage
nodes surrounding such data nodes, then more likely u will
be used to store the overflow data from those data nodes.
Therefore, we should replicate less amount of initiator’s data
D

′

j on u. It is a localized algorithm since it works on each
aggregation path one by one, and figures out the replicating
amount for each storage node based on demand number. The
algorithm works as follows. It first calculates demand number
of each storage node on the aggregation path, and then sorts
the storage nodes in non-descending order of their demand
numbers. Next it calculates the amount of data to be replicated
at storage node with smallest demand number, say u, as
min(R/d(u), R). If not the whole part of R are replicated
as well as not all the storage nodes on this path have been
considered, it then calculates the amount to be replicated on
the storage node with second-smallest demand numbers, and
so on. It stops either the whole part of R is replicated or all
storage nodes on the path are considered for replication.

Algorithm 3: Localized Data Replication Algorithm.
Input: All aggregation paths in G(V,E): W a

j (1 ≤ j ≤ l)
Output: Coff

0. Notations:



6

 300

 400

 500

 600

 700

 800

 900

17 21 25 29 33 38

O
ff

lo
a

d
in

g
 C

o
s
t 

C
o
ff
 (

J
) 

Number of Data Nodes p

Naive
Global

Localized

(a) r = 0.3R.

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

17 20 22 24 27

O
ff

lo
a

d
in

g
 C

o
s
t 

C
o
ff
 (

J
) 

Number of Data Nodes p

Naive
Global

Localized

(b) r = 0.5R.

 600

 650

 700

 750

 800

 850

 900

17 18 19 20 21

O
ff

lo
a

d
in

g
 C

o
s
t 

C
o
ff
 (

J
) 

Number of Data Nodes p

Naive
Global

Localized

(c) r = 0.7R.

 500

 550

 600

 650

 700

 750

 800

 850

0.1 0.3 0.5 0.7

O
ff

lo
a

d
in

g
 C

o
s
t 

C
o
ff
 (

J
) 

r

Naive
Global

Localized

(d) Varying r with p = 20.

Fig. 6. Performance comparison when R = 5m.

Sj = {Sj
1, S

j
2, ..., S

j
kj
}: the set of kj (kj ≥ 0) storage

nodes on W a
j ;

i: index for storage nodes;
z: total size of data in Dj that are not yet replicated;

1. for each W a
j (1 ≤ j ≤ l)

2. for u ∈ Sj , calculate d(u);
3. Sort Sj in non-descending order of d(u);
4. Let d(Sj

1) ≤ d(Sj
2) ≤ ... ≤ (Sj

k), WLOG;
5. z = R, i = 1;
6. while (z > 0 ∧ i ≤ k)
7. Replicate min(R/d(Sj

i ), R) amount data Dj on Sj
i ;

8. z = z −R/d(Sj
i );

9. D
′

j = D
′

j −Dj ;
10. i++;
11. end while;
12. end for;
13. D =

∪l
j=1(D

′

j −Dj) ∪D
′′ ∪D

′′′
;

14. Coff = mc(D,G);
15. RETURN Coff .

Time complexity. For each aggregation path, finding demand
number for a storage node takes O(|E|2) (assuming an ad-
jacency list graph data structure), sorting storage nodes takes
|V |log|V |, and traversing each aggregation path takes O(|V |).
Each of the l aggregation path could have at most |E| edges.
Therefore it takes O(|E|3+ |V |log|V |+V ) = O(|E|3) for all
the aggregation paths. The minimum cost flow algorithm take
O(|V |2|E|log(|V |C)), with C = max{R+r

x , m
x }. Therefore

the total time complexity of Algorithm 3 is O(|E|3).

VI. Performance Evaluation
We compare the performances of DAO-N algorithm

(Naive), Global Replication Algorithm (Global), and the
Localized Replication Algorithm (Localized). 100 sensors
are uniformly distributed in a region of 1000m × 1000m.
Transmission range of sensor nodes is 250m. Unless otherwise
mentioned, R=5m where m=512KB and R=2560KB. We also
vary R/m to 10, with m=512KB while R=5120KB. In all plots,
each data point is an average over 20 runs, and the error bars
indicate 95% confidence interval.

Effect of Varying p. Fig. 6 shows the offloading cost of
three algorithms when R = 5m, with r varied from 0.3R,

0.5R, to 0.7R. In each case, we find the valid range of p
(using Equation 2) and increase p from its smallest to largest
valid values. It clearly show that Localized performs better
than Global, which performs better than Naive. In most cases,
performance improvement of Localized upon Naive is around
30%. In general, the offloading costs decrease with increase
of p in each case. This is because the total size of data to be
offloaded after aggregation, which is (|V | − p) ·m, decreases
with increase of p. There are a few cases, however, show that
offloading cost increase with increase of p. This is because
offloading paths could possibly become longer, even though
the total size of offloaded data gets smaller with increase of p.
Localized performs better than Global is because for Global,
after offloading according to the minimum cost flow algorithm
(line 1 of Algorithm 2), most of the storage nodes on the
aggregation paths are filled with offloaded data, leaving not
much space for data replication. For Localized, however, it
always replicates based upon the calculated demand number
of each storage node therefore replicating more wisely. We
notice a few cases wherein the offloading cost increases with
the increase of p (such as p = 33 in Fig. 6(a)), this is again
because offloading paths could possibly become longer, even
though the total size of offloaded data is smaller.

Effect of Varying r. Fig. 6(d) shows the performance com-
parison by varying r, with R = 5m and p = 20. It shows
that the offloading cost of all three algorithms generally
increase with the increase of r. This can be explained by the
non-uniform distribution of overflow data when r increases,
whereas uniformly distributed data can be offloaded more
easily. Initially, overflow data are uniformly spread inside the
network. Now by increasing r, q increases (Equation 1) and the
aggregation paths get longer. This means that more data nodes
get their overflow data reduced. Therefore overflow data are no
longer uniformly distributed with increase of q. Fig. 6(d) also
shows that when r is increased from 0.5 to 0.7, the offloading
costs for both Global and Localized slightly decrease. This is
due to the same reason above as well as the effect of data
replication – there are potentially more storage nodes on the
aggregation paths when they get longer, therefore benefiting
the data replication.

Effect of Varying R/m. Fig. 7 investigates the effect of R/m.
Since R/m = 5 and R/m = 10 have common valid range



7

 600

 650

 700

 750

 800

 850

 900

 950

5 10

O
ff
lo

a
d
in

g
 C

o
s
t 
C

o
ff
 (

J
) 

R/m

Naive
Global

Localized

(a) p = 17.
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(b) p = 19.
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(c) p = 21.
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(d) p = 23.

Fig. 7. Performance comparison by varying R/m. Here, r = 0.3.

of p, 17 ≤ p ≤ 23, when r = 0.3R, we adopt these set
of parameters. We vary p from 17, 19, 21, to 23. First we
observe that the offloading cost for Naive is always higher
in R/m = 10 than in R/m = 5. This can be explained
as below. R is doubled from R/m = 5 to R/m = 10.
However, since the total available storage, being (|V |−p)×m
is fixed, the same amount of overflow data after aggregation
are offloaded. Therefore, more amount of overflow data needs
to be reduced for R/m = 10, resulting in increased q (q equals
6 and 18 in R/m = 10 and R/m = 5, respectively). There-
fore it causes more non-uniformity of data distribution for
R/m = 10, causing increased data offloading cost. However,
when increasing from R = 5m to R = 10m, the offloading
cost for Localized always decreases while could be either way
for Global. This again demonstrates the effectiveness of our
replication algorithms – with increased q, longer aggregation
paths exist, allowing more storage nodes to store replicated
data.

VII. Conclusion and Future Work

We propose DAO-R to solve overall storage overflow prob-
lem in sensor networks. DAO-R employs data replication
to integrate data aggregation and data offloading to achieve
energy-efficiency. We show via simulations that DAO-R out-
performs the existing approach DAO-N by around 30% in
terms of energy consumption. As future work, we will consider
that different data nodes could have different amount of
overflow data as well as different storage nodes could have
different storage capacity. We will also consider more dynamic
scenarios, for example, some nodes could deplete their battery
power, and design distributed algorithm.
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