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Abstract—When sensor network applications are deployed in
an inaccessible or inhospitable region, or under extreme weather,
it is usually not viable to install a long-term base station in the
field to collect data. The generated sensory data is therefore
stored inside the network first, waiting to be uploaded. However,
when more data is generated than available storage spaces in the
entire network can possibly store, and uploading opportunities
have not arrived, data loss becomes inevitable. We refer to
this problem as overall storage overflow in sensor networks. To
overcome overall storage overflow, existing research designs a
two-stage approach as below. First, by taking advantages of
spatial correlation that commonly exists among sensory data, it
aggregates overflow data to the size that can be accommodated by
the available storage capacity in the network. Then, it offloads
the aggregated data into the network to be stored. We refer
to this naive two-stage approach as DAO-N. DAO-N is NP-
hard. In this paper, we demonstrate that this approach does
not necessarily achieve good performance in terms of energy
consumption. We propose a more unified framework that is based
upon data replication techniques in order to solve overall storage
overflow and improve the performance of DAO-N. We refer to our
approach as DAO-R. Specifically, we design two energy-efficient
data replication algorithms to integrate data aggregation and
data offloading seamlessly. We also give a sufficient condition
under which DAO-R can be solved optimally. Via extensive
simulations, we show that DAO-R outperforms DAO-N by around
30% in terms of energy consumption under different network
parameters.

Keywords – Data Aggregation, Data Offloading, Overall
Storage Overflow, Sensor Networks, Energy-Efficiency

I. Introduction

In this paper, we focus on some emerging sensor network
applications such as underwater sensor networks [12] and
wind and solar harvesting [16, 29]. A common characteristic
of such networks is that they are all deployed in inaccessible or
inhospitable regions, or under extreme weather, to constantly
collect large amounts of data from the physical environments
for a long period of time. Due to the inaccessible and hostile
environments, it is not viable to deploy base stations (with
power outlets) to collect data in or near the sensor fields.
Therefore, data generated have to be stored inside the sensor
network for some period of time and then be uploaded by
periodic visits of robots or data mules [15], or by low rate
satellite links [27].

Despite the advances in energy-efficient flash storage [30]
with good compression algorithms (data is compressed before
stored) and good aging algorithms (fidelity of older data is

reduced to make space for newer data), storage is still a
serious resource constraint of sensor nodes. For example, in an
acoustic sensor network that monitors bird vocalizations in a
forest [24, 25], an acoustic sensor that has a 1GB flash memory
and is designed to sample the entire audible spectrum will
run out of its storage in just seven hours. As a consequence
of this resource constraint and the absence of base stations,
the massive sensory data could soon overflow data storage of
sensor nodes and cause data loss. Below we outline two levels
of data overflow.

Node Storage Overflow. The first level of data overflow is
node storage overflow, wherein some data-generating sensor
nodes deplete their own storage spaces, causing data loss.
These sensor nodes with depleted storage spaces while still
generating data are referred to as data nodes. The newly
generated data that can no longer be stored at data nodes
is called overflow data. To avoid data loss in node storage
overflow, the technique of data offloading is usually employed:
the overflow data is offloaded from its data node to other
nodes with available storages (referred to as storage nodes)
before uploading opportunities arrive.1 In particular, different
data offloading techniques have been proposed in existing
research with the goals of either minimizing the total energy
consumption during data offloading [34], or maximizing the
minimum remaining energy of storage nodes to prolong net-
work lifetime [14], or offloading the most useful information
under battery energy constraint considering data could have
different priorities [39]. However, these techniques did not
address the second level of data overflow viz. overall storage
overflow introduced below, which is what this paper focuses.

Overall Storage Overflow. This happens when the total size
of the overflow data is larger than the total size of the available
storage in the network, therefore not all the overflow data
can be stored and kept in the network using aforesaid data
offloading techniques. Here we use an underwater sensor
network application that monitors coral reefs and fisheries
[3, 35] to further motivate overall storage overflow. In this
application, each underwater sensor node is equipped with a
camera and can take pictures of the surrounding environment.
An autonomous underwater vehicle (AUV) is then dispatched

1Sensor nodes that generate data but have not depleted their storage spaces
are considered as storage nodes, as their storage spaces can be used to store
overflow data from data nodes.
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periodically to upload the generated images from sensor nodes.
Each sensor node has 512KB of flash storage and the resolu-
tion of the images is 255×143 pixels. Consider that each pixel
is one byte (each byte is either red, green, or blue), each image
thus requires around 36KB of data storage. Suppose there are
100 sensor nodes deployed in this application, 10 of which are
generating one image per minute. It will then take less than
three hours to exhaust the available storage in the network and
to reach overall storage overflow. In the same scenario, even
using the latest parallel NAND flash technology with 16GB
storage [20] and taking typical 640×480 JPEG color images,
it will take less than one day to reach overall storage overflow.
If the AUV cannot be dispatched timely due to inclement and
stormy weather, and no other appropriate actions are taken,
discarding valuable data becomes inevitable.

Therefore overall storage overflow is a more severe problem
compared to the node storage overflow. How to overcome
overall storage overflow and prevent data loss becomes a new
challenge. Below we introduce two main techniques used in
this paper viz. data aggregation and data replication.
• Data Aggregation. In order to achieve fine-grain monitor-
ing, it usually requires dense sensor nodes deployment in
wireless sensor networks. Due to high density of nodes, spa-
tially proximal sensor observations are highly correlated [17].
Therefore, the spatially redundant or correlated sensory data
provides us an opportunity to solve aforesaid overall storage
overflow problem by allowing us to aggregate and reduce
the size of overflow data without sacrificing information loss.
To solve overall storage overflow, existing research [33, 34]
implies a two-stage approach. First, it aggregates and reduces
the size of overflow data such that it can be accommodated by
the available storage in the network [33]. Then, it offloads the
data into the network [34] to be stored. That is, it treats data
aggregation and data offloading as two independent stages
that take place sequentially and solves each separately. We
refer to this naive and straightforward approach as naive data
aggregation and offloading (DAO-N). The existing research
present an approximation algorithm [33] to achieve energy-
efficient data aggregation and an minimum cost flow based
optimal algorithm [34] for energy-efficient data offloading.

MSP-430
instruc-
tion

Toshiba
NAND
Read

Toshiba
NAND
Write

CC2420
Radio
Tx

CC2420
Radio
Rx

Energy (µ
J/byte)

0.0008 0.004 0.009 1.8 2.1

Ratio 1 5 11 2250 2600
TABLE I

PER-BYTE ENERGY USAGE: COMMUNICATION, STORAGE, AND
COMPUTATION (TABLE 5, [28]).

• Data Replication. In this paper, we show that even by solv-
ing each stage independently with good performance, DAO-
N does not necessarily achieve best overall performance.
The key observation is that instead of taking place strictly
one after the other, data offloading and data aggregation can
actually take place simultaneously to achieve better energy

efficiency overall. We propose a unified approach that inte-
grates data aggregation and data offloading via data replica-
tion techniques. Specifically, we design two centralized data
replication algorithms viz. Global Replication Algorithm and
Localized Replication Algorithm, wherein data is replicated
on the way of data aggregation. We refer to our integrated
approach as DAO-R.
The novelty of DAO-R is that replicating data in the process

of data aggregation achieves the effect of data offloading.
Mathur et al. [28] did extensive investigation of the energy
cost of NAND-flash storage, in comparison to computation
and communication in sensor network systems, as shown in
Table I. They found that radio transmission and reception
represent a more than 200-fold increase in energy usage over
writing to NAND flash. As data replication is simply writing
a copy of the data into the storage, its energy cost can be
considered as negligible compared to wireless communication
cost. Therefore in this paper we assume that data replication
does not incur extra energy cost. We also give a sufficient
condition that solves DAO-R optimally. Finally, we show via
extensive simulations that DAO-R outperforms DAO-N by
around 30% in terms of energy consumption under different
network parameters. Note that in this paper we do not consider
how to upload data from the network to base station when
uploading opportunities are available. Data mules or mobile
data collectors can be used to upload data using techniques in
[26] and [22].

Paper Organization. The rest of the paper is organized as
follows. Section II discusses state-of-the-art and related work.
In Section III, we introduce the overall storage overall prob-
lem, present the network, data correlation, and energy models.
Section IV reviews DAO-N and its algorithmic solutions. In
Section V, we present DAO-R and design two data replication
algorithms to integrate data aggregation and offloading. We
also give an efficient condition under which DAO-R can
be solved optimally. In Section VI, we compare DAO-R
with DAO-N and discuss the simulation results. Section VII
concludes the paper with possible future research.

II. Related Work

When sensor networks are deployed in challenging environ-
ments such as inaccessible regions or extreme weather, it is
not viable to deploy a base station with power outlets near the
sensor network to collect data. How to preserve data in sensor
networks in the absence of the base station has become a active
research in recent years. There are active system research that
focused on disconnection-tolerant operations in the absence
of the base station [24, 25, 36, 40]. he authors in these papers
design acoustic solar-powered sensor networks, which monitor
the social behavior of animals in the wild. Since no base
station is available, they design cooperative distributed storage
systems specifically for disconnected operations of sensor
networks, to improve the utilization of the networks data
storage capacity. Other research instead took an algorithmic
approach by focusing on the optimality of the solutions [14,
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34, 39]. Tang et al. [34] addressed the energy-efficient data
redistribution problem in data-intensive sensor networks. Hou
et al. [14] studied how to maximize the minimum remaining
energy of the nodes that finally store the data, in order to store
the data for long period of time. Xue et al. [39] considered
that sensory data from different source nodes have different
importance, and study how to preserve data with highest
importance. Tang and Ma [33] recently solved overall storage
overflow problem by aggregating overflow data and reducing
their sizes so that they can be accommodated by the available
storage. However, they either does not address the overall
storage overflow problem or important research problem such
as how to integrate data aggregation and data offloading to
further save energies is not addressed.

Ganesan et al. [8] adopted data aggregation techniques to
tackle storage constraint of sensor networks. They proposed
wavelet compression techniques to construct summaries for
data at different spatial resolutions, and designed a progres-
sive aging scheme wherein older data gets more aggres-
sively summarized to save storage space for newer data. The
summarization is based on a hierarchical grid-based overlay,
in which summaries at each higher level of the hierarchy
encompass larger spatial scales but are more lossy. In contrast,
our approach does not rely upon any hierarchy of overlays.
Moreover, we study the hardness of the problems and solve it
optimally or sub-optimally in terms of total energy consump-
tion.

Traditional data aggregation in sensor networks is to collect
sensor data by combining the data from different sensor
nodes on the way to the base station, in order to eliminate
redundancy and to reduce energy consumption during data
collection. As a result, the underlying routing structures for
data aggregation are usually trees rooted at the base station.
Data aggregation techniques have been designed for different
purposes. Some are used to maximize the network lifetime
(the time until the first node depletes its energy) [23, 37],
some are used to minimize the total energy consumption or
communication cost [19, 21], and some to reduce the delay of
data gathering [38]. In contrast, the overall storage overflow
problem studied in this paper takes place when the base station
does not exist and there is not enough storage to store all
the overflow data. Consequently, data aggregation in has very
different goal compared to traditional data aggregation – it
is to aggregate the overflow data so that their size can be
reduced and accommodated by the storage spaces available in
the network, in order to prevent data loss caused by overall
storage overflow.

Our work addresses data resiliency issue to overcome
overall storage overflow in sensor networks. Data resiliency
refers to the ability of long-term viability and availability
of data despite of insufficiencies of (or disruptions to) the
physical infrastructure that stores the data. Many data re-
silience techniques have been proposed to overcome against
different causes of data loss in sensor networks. Ghose et
al. [9] are among the first to propose Resilient Data-Centric
Storage (R-DCS) to achieve resilience by replicating data

Data nodes: V
d 

Storage nodes: V
s 

Data aggregation: 

Data offloading: 

Initiators: I 

Fig. 1. An illustration of overall storage overflow.

at strategic locations in the sensor network. Ganesan [7]
consider constructing partially disjoint multipaths to enable
energy efficient recovery from failure of the shortest path
between source and sink. Recently, network coding techniques
are used to recover data from failure-prone sensor networks.
Albano et al. [2] propose in-network erasure coding to improve
data resilience to node failures. Kamra et al. [18] propose to
replicating data compactly at neighboring nodes using growth
codes that increase in efficiency as data accumulates at the
sink. However, all these data resilience measures adopt the
traditional sensor network model wherein base stations are
always available near or inside the networks. We consider
a more challenging scenario wherein base stations are not
available due to the harsh environments therefore data must be
stored and preserved inside the network. Consequently, overall
storage overflow and its resulted data resiliency becomes new
challenges.

III. Overall Storage Overflow Problem [33]
In this section, we introduce overall storage overflow prob-

lem, including its network model, data spatial correlation
model, energy model. We also discuss its feasible condition,
under which overall storage overflow occurs in the network.

Network Model. We represent the sensor network as a graph
G(V,E), where V = {1, 2, ..., |V |} is the set of |V | sensor
nodes uniformly distributed inside the network, and E is the
set of |E| edges. As shown in Fig. 1, the sensor network
consists of data nodes (with overflow data) and storage
nodes (with available storage spaces). There are p data nodes
(denoted as Vd), each has generated R bits of overflow data
over some period of time. The other |V |−p nodes are storage
nodes, denoted as Vs, each of which has m bits of available
storage spaces. The total size of the overflow data from the
data nodes exceeds the total size of the storage spaces of the
storage nodes, resulting in overall storage overflow. Therefore
we have p×R > (|V | − p)×m, which gives

p >
|V |m
m+R

. (1)

To aggregate data and to reduce data size, one or multiple
data nodes (called initiators) send their entire overflow data
to other data nodes. When a data node (called an aggregator)
receives the data, it can aggregate its own overflow data due
to spatial correlation existing between its own overflow data
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and the one from initiators (each aggregator can aggregate its
data only once). After that, the aggregator forwards initiators’
overflow data to another data node, which then becomes an
aggregator and aggregates its own overflow data, and so on and
so forth. This continues until enough aggregators are visited
such that the total size of the overflow data after aggregation
equals to or is slightly less than the total available storages in
the network. At this point there is zero amount of overflow
data on each initiator, the last aggregator being visited by
each initiator has both its own aggregated data and the entire
overflow data from the initiator, and all other aggregators have
their own aggregated overflow data. If a data node is not
involved in data aggregation (i.e., not an initiator and not an
aggregator), its overflow data is not aggregated. As shown
in Fig. 1, after aggregation, all the overflow data (aggregated
or not) are then offloaded to storage nodes. The goal is to
minimize the total energy consumption in the entire process.

Data Correlation Model. We adopt data correlation model
proposed in [6], in which the correlation function is derived
as an approximation of the conditional entropy. Following
this model, overflow data at data node i is represented as
an entropy H(i) = R bits if no side information is received
from other data nodes; and H(i) = r ≤ R bits if data node
i receives side information from at least another data node
j1, ..., jp, jk ∈ Vd ∧ jk 6= i, 1 ≤ k ≤ p. That is, a data node
aggregates its overflow data from R to r if it receives overflow
data from at least one initiator. We are aware several entropy-
based correlation models such as the ones proposed in [5, 31].
We adopt this correlation model because a) it is a simple and
distributed coding strategy, making it easy to implement in
large-scale sensor network and b) it is a realistic model that
approximates the case where the correlation function between
two nodes decreases with their distance [6].

In this data correlation model, we assume that each data
node can be either an initiator, or an aggregator, or none of
them, but not both of them. An initiator cannot be an aggrega-
tor because its overflow data has served as side information for
other data nodes (i.e., aggregators) to aggregate. An aggregator
cannot be an initiator since its aggregated data loses the side
information needed for others aggregators’ aggregation. We
also assume that the overflow data of an aggregator can be
aggregated only once, with size reduced from R to r, even
though it can be visited by the same or different initiators’
overflow data multiple times (if that is more energy efficient).

Feasible Overall Storage Overflow. Inequality 1 only gives
the sufficient condition for overall storage overflow. However,
not all the overall storage overflow can be solvable using data
aggregation and offloading. One extreme example is that all
the nodes in the network are data nodes and there are no
storage nodes at all. In this case there is obviously no way it
can aggregate the overflow data and offload them to storage
nodes. Below we introduce feasible overall storage overflow,
wherein not only overall storage overflow occurs, but also it
is possible to solve it. It must satisfy three conditions.
a). There is an overall storage overflow, which gives Inequal-

TABLE II
NOTATION SUMMARY

Notation Explanation
V , |V | Set and number of sensor nodes
Vd, p Set and number of data nodes
Vs set of storage nodes
q Number of aggregators needed
m Storage capacity of a storage node in V − Vd
R Overflow data size at each data node before aggregation
r Overflow data size at each data node after aggregation
I , l Set and number of initiators, 1 ≤ l ≤ (p− q)
Ij jth initiator, 1 ≤ j ≤ l
D The set of data packets after aggregation
Dinit(Dint

j ) Overflow data of all initiators (jth initiator)
Daggr Overflow data of all aggregators
Dnon−aggr Overflow data that are not aggregated
Dr(Dr

j ) Replicated overflow data of all initiators (jth initiator)

ity 1.
b). There are enough number of aggregators to visit in order

to reduce the data size.
c). The data after aggregation can fit in the available storage

in the network.
From b) and c), since the size of overflow data that needs to

be reduced is p×R−(|V |−p)×m = p×(R+m)−|V |×m,
and visiting one aggregator reduces its overflow data size by
(R− r), the number of needed aggregators, denoted as q, is

q = dp×R− (|V | − p)×m
R− r

e = dp× (R+m)− |V | ×m
R− r

e.
(2)

Given a specific p value and its corresponding q value
calculated from Equation 2, at most p − q data nodes can
then be selected as initiators. Finally, we find the valid range
of p in a feasible overall storage overflow.

Among all the p data nodes, since at least one data node
needs to be initiator (therefore can not be an aggregator), we
can have at most p−1 aggregators; i.e., q ≤ p−1. Combining
it with Equation 2, we have

dp× (R+m)− |V | ×m
R− r

e ≤ p− 1, (3)

which gives:

p ≤ b|V |m−R+ r

m+ r
c. (4)

Combining Inequalities 1 and 4 , the valid range of p for
feasible overall storage overflow is therefore

|V |m
m+R

< p ≤ b|V |m−R+ r

m+ r
c. (5)

Energy Model. We adopt the well-known first order ra-
dio model [13] for energy consumption in wireless com-
munication. For node u sending R-bit data to its one-hop
neighbor v over their distance lu,v , the transmission energy
cost at u is Et(R, lu,v) = Eelec × R + εamp × R × l2u,v ,
the receiving energy cost at v is Er(R) = Eelec × R.
Here, Eelec = 100nJ/bit and εamp = 100pJ/bit/m2. Let
w(R, u, v) = Et(R, lu,v) + Er(R). Let W = {v1, v2, ..., vn}
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be a walk, i.e., a sequence of n nodes with (vi, vi+1) ∈ E,
1 ≤ i ≤ n−1 and v1 6= vn. If all the nodes in W are distinct,
W is a path. Let c(d,W ) =

∑n−1
i=1 w(d, vi, vi+1) denote the

energy consumption of sending d-bit of data along W . We
consider two energy costs.

Aggregation Cost. In data aggregation, the route that the R-
bit overflow data from each initiator traverses could be either
a path or a walk. This is because for enough number of
aggregators to be visited in an energy-efficient way in order
to reduce overflow data size, an aggregator could be visited
multiple times. We refer to such path or walk as aggregation
path/walk, and c(R,W ) as the aggregation cost of R-bit data
traversing along W starting from its initiator.

Offloading Cost. In data offloading, however, the route that
the overflow data (either aggregated, with size of r, or not
aggregated, with size of R) traverses is always a path that
minimizes the energy consumption for offloading the overflow
data. Besides, in data offloading, each offloaded overflow data
unit is not necessarily in sizes of R or r. Instead, for the
purpose of energy efficiency, we assume that the overflow data
at each data node is splittable. That is, each overflow data can
be splitted into small units, referred to as data packets, each
of which is then offloaded to storage nodes. Let the size of
each data packet be x-bit, where x � r ≤ R, then c(x,W )
is the offloading cost of offloading this x-bit data packet from
its data node to a storage node along path W . Any overflow
data thus has R

x data packets before aggregation and has r
x

data packets after aggregation.
Our goal is to overcome overall storage overflow by finding

a data aggregation and offloading scheme that minimizes the
total energy cost, the sum of aggregation cost and offloading
cost. In Section IV, we formulate and present a naive, two-
stage approach, referred to as DAO-N, that treats data aggrega-
tion and data offloading as two independent stages. We design
time-efficient approximation algorithm and optimal algorithm
to solve each stage respectively. In Section V, we propose
and formulate a more unified as well as more energy-efficient
approach, referred to as DAO-R, that employs data replication
techniques to integrate data aggregation and offloading.

EXAMPLE 1: Fig. 2 illustrates the overall storage prob-
lem with a linear sensor network of seven nodes. Nodes A, D,
F , and G are data nodes, while B, C, and E are storage nodes.
Each data node has one unit of overflow data (i.e., R = 1).
Each storage node has one unit of storage space (i.e., m = 1).
As there are total 4 units of overflow data while only 3 units
of available storage, overall storage overflow occurs. r = 1.
Number of aggregators q is calculated as 2 using Equation 2.
Thus at most two data nodes can be selected as initiators. Note
this scenario is also a feasible overall storage overflow, as the
valid range of p given by Inequality 5 is a single value of 4.
The energy consumption on any edge is 1 for one unit of data.

�
In Section IV and V, we use Example 1 to show the

limitations of DAO-N and demonstrate how DAO-R improves
upon it. In particular, we show how DAO-N and DAO-R select

A B C D 

R = 1, r = 0.5, m = 1  

E 

Data nodes 

Storage nodes 

F G 

Fig. 2. An example of overall storage overflow.

the initiators and corresponding aggregation paths to solve
overall storage overflow problem differently.

IV. DAO-N: A Naive Two-Stage (Data Aggregation and
Data Offloading) Approach

Problem Formulation of DAO-N. Given an instance of feasi-
ble overall storage overflow, the DAO-N first decides a set of
l (1 ≤ l ≤ (p− q)) initiators I ⊂ Vd, and a corresponding set
of l aggregation paths/walks:2 W a

1 ,W
a
2 , ...,W

a
l , where W a

j

(1 ≤ j ≤ l) starts from a distinct initiator Ij ∈ I , and
|
⋃l

j=1{W a
j −{Ij}−Gj}| = q (Gj is the set of storage nodes

in W a
j ).

Let D = {D1, ..., D|D|} denote the set of |D| overflow data
packets after above aggregation, each is x-bit. Let s(i), where
1 ≤ i ≤ |D|, denote the data node of data packet Di. DAO-N
then decides an offloading function o : D → Vs, to offload
data packet Di ∈ D from its data node s(i) ∈ Vd to storage
node o(i) ∈ Vs; or equivalently, a set of |D| offloading paths:
W o

1 ,W
o
2 , ...,W

o
|D|, where W o

i (1 ≤ i ≤ |D|) starts from s(i)
and ends with o(i).

The goal of DAO-N is to minimize the total energy cost in
aggregation and offloading:

Ctotal =
∑

1≤j≤l

c(R,W a
j ) +

∑
1≤j≤|D|

c(x,W o
j ), (6)

under the constraint that the size of overflow data offloaded to
any storage node can not exceed its available storage capacity
|{j|1 ≤ j ≤ |D|, o(j) = i}| · x ≤ m,∀i ∈ Vs.

NP-Hardness of DAO-N. DAO-N treats data aggregation and
data offloading as two separate and independent stages, there-
fore the energy cost of DAO-N is the sum of aggregation
cost and offloading cost. The DAO-N is NP-hard, since its
constituent data aggregation problem itself is NP-hard [33].

Data Aggregation Algorithm. Below we present an approxi-
mation algorithm, which yields aggregation cost that is at most
(2− 1

q ) times of the optimal [33].

Algorithm 1: Data Aggregation Approximation Algorithm.

1). Transform sensor network graph G(V,E) to G′(V ′, E′)
as follows. V ′ is set of p data nodes in V , i.e. V ′ = Vd.
For any two data nodes u, v ∈ Vd in G, there exists an
edge (u, v) ∈ E′ in G′ if and only if all the shortest paths
between u and v in G do not contain other data nodes. For
each edge (u, v) ∈ E′, its weight w(u, v) is the cost of the
shortest path between u and v in G. We refer to G′(V ′, E′),

2For ease of presentation, we use aggregation path instead of aggregation
path/walk for the rest of paper.
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which will be used in next few steps to find initiators and
their aggregation paths, as the aggregation graph.

2). Create a set S containing all the edges in E′ in nonde-
creasing order of their weights. Create a forest F of |V ′|
trees, each is one of the |V ′| nodes initially.

3). Starting from the first edge in S, if that edge connects two
different trees, add it to F and combines two trees into a
single tree. This repeats for q times. We refer to the resulted
graph as q-edge forest.

4). Replace each edge (u, v) in F with a shortest path
between u and v in G (choose one randomly if there are
multiple). We refer to the resulted graph as shortest-path
q-edge forest.

5). For each connected component of the resulted shortest-
path q-edge forest, if it is linear, it randomly selects one end
as the initiator, starts from it and visits the rest nodes exactly
once. If it is a tree, it does the following. Find an edge (u, v)
with maximum weight in the tree (tie is broken randomly),
which has three parts: Tu, (u, v), and Tv . It selects u as
the initiator, starts from it and visits all the nodes in Tu
in a sequence following depth-first-search (DFS) and comes
back, then visits v, from where it visits all the nodes in Tv
in a sequence following DFS.

D F G D E F G 

(a)  (c)  

2 1 1 1 1 

D F G 

2 1 

(b)  

A 

3 

Fig. 3. Execution of Algorithm 1 on the sensor network graph G(V,E) in
Fig. 2. (a) Aggregation graph G′(V ′, E′). (b) 2-edge forest. (c) shortest-path
2-edge forest. The number on each edge indicates its weight.

The running time of Algorithm 1 is O(|E|log|E|) with
disjoint-set data structure [4]. Fig. 3 and Fig. 4(a) show the
execution of Algorithm 1 on the linear sensor network in
Fig. 2. Fig. 4(a) shows the aggregation graph, which is a linear
topology for this simple example. The numbers above edges
indicate their weights. Fig. 3(b) shows the 2-edge forest. And
Fig. 3(c) shows the shortest-path 2-edge forest, which has only
one connected component thus needs to select one initiator.

Fig. 4(a) shows one of the two data aggregation solutions
following Step 5 in Algorithm 1 (to illustrate data offloading
algorithm below, we include nodes A, B, and C as well). Data
node D is selected as the initiator and the aggregation path is
D, E, F , and G. The aggregation cost is 3, which happens to
be optimal in this small network. Numbers in parentheses are
the sizes of overflow data at each data node after aggregation
(but before offloading). In particular, there is no overflow data
left at initiator D, and there are 0.5 and 1.5 units of data at
data nodes F and G respectively. Plus 1 unit of data at data
node A, which does not participate in the data aggregation
process, the total size of the overflow data is now 3. The other
solution, wherein data node E is selected as the initiator, will
be discussed in Section V to show how DAO-R improves upon

DAO-N.

Data Offloading Algorithm. As there are enough storage
spaces available to store the overflow data after data aggrega-
tion, data offloading is to offload all the overflow data, whether
it is aggregated or not, from its data node to storage node.
The goal of data offloading is to minimize the energy cost
incurred in the offloading process. Tang et al. [34] show that
by transforming sensor network graph G(V,E) into a flow
network, data offloading problem is equivalent to minimum
cost flow problem [1], which is solvable optimally in polyno-
mial. In this paper we adopt the scaling push-relabel algorithm
proposed and implemented in [10, 11], with time complexity
of O(|V |2 · |E| · log(|V | · C)). Here C = max{R+r

x , mx } is
the maximum capacity of an edge in the transformed graph.

Fig. 4(b) shows the data offloading solution that follows
data aggregation in Fig. 4(a). It shows that 0.5 unit of data at
F and 0.5 unit of data at G are offloaded to storage node E, 1
unit of data at G is offloaded to storage node C, and 1 unit of
data at A is offloaded to storage node B. The offloading cost
is 6.5. The total cost in this two-stage solution is therefore 9.5.

C D(0) E F(0.5) G(1.5) 

(a) (b)  

C D(0) E F(0.5) G(1.5) 

0.5 
1 

0.5 

Initiators:   Data aggregation:  Data offloading:  

A(1) B A(1) B 

1 

Fig. 4. One naive two-stage solution with D being the initiator. (a) Data
aggregation stage: values in parentheses are sizes of overflow data after
aggregation. Data aggregation path is shown in dashed arrow line. (b) Data
offloading stage: values on the arrowed lines are sizes of overflow data that is
offloaded from its data node to a storage node. Data offloading path is shown
in solid arrow line.

V. DAO-R: Integrating Data Aggregation and Data
Offloading via Replication

In this section we first demonstrate the limitations of DAO-
N using Example 1. We then formulate DAO-R, which inte-
grates data aggregation and offloading. Finally we solve DAO-
R by designing two time-efficient data replication algorithms.

A. Limitations of DAO-N.

Selection of Initiators. Another naive two-stage solution for
Example 1 is shown in Fig. 5. Fig. 5(a) shows that data node
G is selected as initiator and the aggregation path is G, F ,
E, and D, with the aggregation cost as 3. Fig. 5(b) shows the
data offloading: A offloads its 1 unit of data to B, D offloads
1 unit of data to C and the rest 0.5 to E, while F offloads
its 0.5 unit of data to E as well. The offloading cost of 3.
The total cost in this two-stage solution is thus 6. Compared
to total cost of 9.5 in Fig. 4, it is an a 37% improvement.

Therefore, even though the solution in Fig. 4 independently
solves each of the data aggregation and data offloading nicely
(one with approximation algorithm and the other optimal
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algorithm), the combined solution may not give the best result.
In DAO-R, we will propose a scheme that finds an initiator
for each aggregation path that yields minimum data offloading
cost.

C D(1.5) E F(0.5) G(0) 

(a) (b)  

C D(1.5) E F(0.5) G(0) 

0.5 1 0.5 

Initiators:   Data aggregation:  Data offloading:  

A(1) B A(1) B 

1 

Fig. 5. Another naive two-stage solution solution with G being the initiator.

Effect of Data Replication. Even though Fig. 5 gives optimal
combined total energy cost of data aggregation and offloading,
its performance can be further improved using data replication.
Our key observation is that when the initiator’s overflow data
traverses along the aggregation path, part or entirety of it
can be replicated on the storage nodes along the aggregation
path. We assume that replicating data does not incur any extra
energy consumption. As such, this amount of replicated data
does not needs to be offloaded from the last aggregator in data
offloading stage, saving energy cost.

Fig. 6 shows that when initiator G sends its one unit data
passing storage node E, it replicates 0.5 unit of data and stores
it at E. Next, in data offloading stage, node D only needs to
offload 1 unit of data (including the other 0.5 unit of G’s
overflow data as well as D’s own 0.5 unit of overflow data)
to C, costing one unit of energy. Plus 1 unit of A’s offloading
cost and 0.5 unit of F ’ offloading cost, the total offloading
cost is 2.5. Even though D still has 1.5 units of overflow
data after aggregation, only one unit of them is offloaded
due to replication. The total cost is thus 5.5. This is a 8%
of improvement upon the total cost of 6 in Fig. 5, wherein no
data replication is employed.

C D(1.5) E(0.5) F(0.5) G(0) 

(a) (b)  

C D(1.5) E(0.5) F(0.5) G(0) 

1 0.5 

Initiators:   Data aggregation:  Data offloading:  

A(1) B A(1) B 

1 

x   Data replication:  

x x 

Fig. 6. Illustrating DAO-R. 0.5 unit of initiator G’s data is replicated and
stored at E in data aggregation stage. Thereafter in the data offloading stage,
node D does not need to offload this part of data.

B. Problem Formulation of DAO-R.

We assume that l data aggregation paths W a
1 ,W

a
2 , ...,W

a
l

have already been found using Algorithm 1 in Section IV. Like
in Section III, we assume that the overflow data consists of
small data packets, each is x-bit and different data packets can
be offloaded to different storage nodes. As all the aggregation
paths are given, the total aggregation cost is the same whether

replication takes place or not in DAO-R. Therefore we only
need to minimize offloading cost while considering replication.

The overflow data that needs to be offloaded after data
aggregation falls into one of the three categories:
• Dinit =

⋃l
j=1D

init
j : the overflow data of all the initiators.

Dinit
j is the R amount of overflow data of Ij , initiator of W a

j

(1 ≤ j ≤ l). Note that after data aggregation, each initiator’s
overflow data has been transmitted to the last aggregator on
each aggregation path.
• Daggr: the overflow data of all the aggregators, each having
r amount of overflow data.
• Dnon−aggr: the overflow data of data nodes that are

not on any aggregation path therefore are not aggregated.
Dnon−aggr is empty if all the data nodes are on some
aggregation paths.
When the R amount overflow data traverses each aggre-

gation path starting from its initiator, it can replicate part or
all R on storage nodes along the path. The data replication
algorithms decide for each aggregation path W a

j :
• the data node, denoted as Ij , that serves as initiator,
• a subset of Dinit

j , denoted as Dr
j , of data packets to

replicate,
• a replication function r : Dr

j → Vs ∩W a
j , to replicate and

store a data packet in Dr
j at a storage node in W a

j , when R
amount of overflow data from Ij traverses along W a

j ,
under the constraint that the total size of replicated data on
any storage node can not exceed this node’s available storage
capacity:

∑
1≤j≤l |{k|k ∈ Dj , r(k) = i}| · x ≤ m,∀i ∈

Vs ∩W a
j .

Recall that D = {D1, ..., D|D|} is the entire set of data
packets to be offloaded after data aggregation. For each
aggregation path W a

j , with Dr
j replicated and stored on W a

j ,
the rest Dinit

j − Dr
j amount of overflow data from Ij still

needs to be offloaded from the last aggregator of W a
j in data

offloading stage. Therefore,

D = Daggr ∪Dnon−aggr ∪
l⋃

j=1

(Dinit
j −Dr

j )

= Daggr ∪Dnon−aggr ∪ (Dinit −
l⋃

j=1

Dr
j ).

(7)

Let s(j) denote the data node of any data packet Dj ∈ D.
The data offloading algorithm is to decide an offloading
function o : D → Vs, to offload Dj ∈ D from its data node
s(j) ∈ Vd to storage node o(j) ∈ Vs. Or equivalently, the
data offloading algorithm is to decide a set of |D| offloading
paths: W o

1 ,W
o
2 , ...,W

o
|D|, where W o

j (1 ≤ j ≤ |D|) starts
from s(j) and ends with o(j), to minimize the offloading
cost

∑
1≤j≤|D| c(x,W

o
j ), under the constraint that the size

of overflow data offloaded to any storage node in the network
can not exceed its available storage capacity: |{j|1 ≤ j ≤
|D|, o(j) = i}| · x ≤ m,∀i ∈ Vs. Minimizing data offloading
cost can be solved by minimum cost flow algorithm in
polynomial time [10, 11].
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C. Data Replication Algorithms for DAO-R.

Selecting initiator for each aggregation path. We have below
observations in order to decide which data node gets picked to
be the initiator for each aggregation path. After aggregation,
among all data nodes on a particular aggregation path, the
initiator has least amount of overflow data, which is zero; the
last aggregator visited has most amount, which is R+ r; and
other aggregators have r amount of overflow data. Having
more available storage nodes close to overflow data will cer-
tainly make data offloading more energy efficient, as overflow
data can be offloaded to storage spaces close by. Therefore
it is preferred that more storage spaces are around the last
aggregator for energy-efficient data offloading. For example, in
Fig. 2, since D has two neighboring storage nodes while G has
zero, G is selected as the initiator. Once the initiator is selected
for each aggregation path, it begins the data aggregation and
replication process simultaneously. Below we present two data
replication algorithms for this process.

Global Replication Algorithm. Algorithm 2 works as follows.
First, it offloads all the overflow data on the aggregators
Daggr as well as all the overflow data that are not aggregated
Dnon−aggr using minimum cost flow algorithm (line 1). Then
for each aggregation path, it finds its available storage spaces
left (line 3-7). The amount to be replicated on each aggregation
path is the minimum of R and the size of the available spaces
(line 8). Next, while the R amount of data from initiator
is traversing along the path performing data aggregation, it
replicates this amount on the storage nodes it visits (line 9-17).
Finally, it offloads each initiator’s overflow data that has not
been offloaded from the last aggregator of each path (line 19).
This is can be done by having a light-weighted data structure
such a bitmap included in the message. Each bit corresponds
to a data packet in the initiator’s overflow data and is initially
set as 0. It is set as 1 whenever the corresponding data packet
is replicated along the path. By doing this, the last aggregator
on each aggregation path knows exactly which data packets
have not bee replicated therefore need to be offloaded. Since
it uses minimum cost flow algorithm to find the available
spaces to replicate, Algorithm 2 takes a global perspective and
is therefore referred to as Global. For ease of presentation,
in algorithms below, v = mcf(O,G) means running the
minimum cost flow algorithm on G(V,E) to offload a set
of data packets O from its belonged aggregators, yielding a
minimum energy cost v.

Algorithm 2: Global Data Replication Algorithm.
Input: All aggregation paths in G(V,E): W a

j (1 ≤ j ≤ l)
Output: Data offloading cost Coff

0. Notations:
u: a node in W a

j ;
u.next: the successor node of u in W a

j ;
z: total size of data in Dj that are not yet replicated;
avail(u): amount of available storage at node u;
availj : amount of available storage at path W a

j ;
1. Coff = mcf(Daggr ∪Dnon−aggr, G);

2. for each W a
j (1 ≤ j ≤ l)

3. availj = 0, u = Ij .next;
4. while (u is not the last aggregator on W a

j )
5 availj = availj + avail(u);
6. u = u.next;
7. end while;
8. z = min{availj , R};
9. u = Ij .next, Dr

j = φ (empty set);
10. while (z > 0)
11. if (u ∈ Vs)
12. Replicate avail(u) amount of data re at u;
13. Dr

j = Dr
j ∪ re;

14. z = z − avail(u);
15. end if;
16. u = u.next;
17. end while;
18. end for;
19. Coff = Coff +mcf(Dinit −

⋃l
j=1D

r
j , G);

20. RETURN Coff .

Executing Algorithm 2 on the example in Fig 2, we can
either get the result shown in Fig 5 with offloading cost of
2.5, or the result shown in Fig. 6 with offloading cost of 2.
Time complexity. The minimum cost flow algorithm takes
O(|V |2|E|log(|V |C)), with C = max{R+r

x , mx }. Since each
of the l (l = O(|E|)) aggregation paths can not have more than
|V | nodes, finding available storages and replicating data along
each aggregation path takes O(|V |). It takes O(|E|× |V |) for
all the aggregation paths. Therefore, the time complexity of
Algorithm 2 is O(|V |2|E|log(|V |C))).

Theorem 1: In Algorithm 2, if ∀ 1 ≤ j ≤ l, availj ≥ R,
then Coff is minimum.
Proof: Recall D = Daggr ∪ Dnon−aggr ∪

⋃l
j=1(D

init
j −

Dj). Now if ∀ 1 ≤ j ≤ l, availj ≥ R, then |Dj | =
min{availj , R} = R. Recall that Dinit

j is exactly this R
amount of overflow data of Ij . Therefore Dinit

j = Dj ,
∀ 1 ≤ j ≤ l. D = Daggr ∪ Dnon−aggr, which is the
minimum amount of data that must be offloaded. Therefore
Coff = mc(Daggr ∪Dnon−aggr, G) is minimum.
Localized Replication Algorithm. In Global Algorithm, when
the initiator replicates its overflow data along its aggregation
path, it does not take into account of other aggregation paths.
However, it is possible that a storage node belongs to multiple
aggregation paths; thus multiple initiators need to coordinate
to replicate their overflow data onto this shared storage node
in order to achieve efficient data offloading. Below we design
a localized replication algorithm that addresses this issue. We
first give below definition.

Definition 1: (Demand Number d(u) of Storage Node u)
For any storage node u on any aggregation path, let N(u) be
all its one-hop neighbors. For each data node v ∈ N(u) ∩
Vd, let s(v) denote number of v’s one-hop neighbors that are
storage nodes. Let d(u) =

∑
v∈N(u)∩Vd

1
s(v) . �

Note that s(v) 6= 0 since v has at least one neighboring
storage node u. The idea behind d(u) is that the more data
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(c) r = 0.7R.

Fig. 7. Performance comparison when R = 1m.
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Fig. 8. Performance comparison when R = 5m.

nodes surrounding u and the less storage nodes surrounding
these data nodes, the more likely u will be used and shared
by such data nodes to store their overflow data (that is, u has
a higher demand from surrounding data nodes for its storage
spaces). d(u) is designed to decide how much each initiator
should replicate its data on u.

It is a localized algorithm since it works on each aggregation
path one by one, and figures out the replicating amount for
each storage node based on demand number. The algorithm
works as follows. It first calculates demand number of each
storage node on the aggregation path, and then sorts the storage
nodes in non-descending order of their demand numbers (line
2-4). Next it calculates the amount of data that to be replicated
at storage node with smallest demand number, say u, as
min(R/d(u), R). If not the whole part of R are replicated
as well as not all the storage nodes on this path have been
considered, it then calculates the amount to be replicated on
the storage node with second-smallest demand numbers, and
so on. It stops either the whole part of R is replicated or all
storage nodes on the path are considered for replication.

Algorithm 3: Localized Data Replication Algorithm.
Input: All aggregation paths in G(V,E): W a

j (1 ≤ j ≤ l)
Output: Coff

0. Notations:
Sj = {Sj

1, S
j
2, ..., S

j
kj
}: the set of kj (kj ≥ 0) storage

nodes on W a
j ;

i: index for storage nodes;

z: total size of data in Dj that are not yet replicated;
1. for each W a

j (1 ≤ j ≤ l)
2. for u ∈ Sj , calculate d(u);
3. Sort Sj in non-descending order of d(u);
4. Let d(Sj

1) ≤ d(S
j
2) ≤ ... ≤ d(S

j
kj
), WLOG;

5. z = R, i = 1, Dr
j = φ (empty set);

6. while (z > 0 ∧ i ≤ kj)
7. Replicate min(R/d(Sj

i ), R) amount data re on Sj
i ;

8. z = z −min(R/d(Sj
i ), R);

9. Dr
j = Dr

j ∪ re;
10. i++;
11. end while;
12. end for;
13. D = Daggr ∪Dnon−aggr ∪

⋃l
j=1(D

init
j −Dr

j );
14. Coff = mcf(D,G);
15. RETURN Coff .

For the example in Fig 2, as only storage node E is on
the aggregation path, we calculate its demand number as 3

2 .
Therefore G replicates 2R

3 of its overflow data on E. The
offloading cost following Algorithm 3 is 8

3 . As there is only
one aggregation path in this example, the advantage of demand
numbers to help to share storages among multiple aggregation
paths is not particularly demonstrated. However, we show
that in simulations that Algorithm 3 performs better than
Algorithm 2 does.
Time complexity. For each aggregation path, finding demand
number for a storage node takes O(|E|2) (assuming an ad-



10

jacency list graph data structure), sorting storage nodes takes
|V |log|V |, and traversing each aggregation path takes O(V ).
Each of the l aggregation path could have at most |E| edges.
Therefore it takes O(|E|3+ |V |log|V |+V ) = O(|E|3) for all
the aggregation paths. The minimum cost flow algorithm take
O(|V |2|E|log(|V |C)), with C = max{R+r

x , mx }. Therefore
the total time complexity of Algorithm 3 is O(|E|3).
Distributed implementation of the algorithms. As there are
three kinds of algorithms presented in the paper viz. data
aggregation, data replication, and data offloading, we dis-
cuss their distributed implementations one by one. For data
aggregation, we can use the minimum spanning tree-based
distributed algorithm designed by Tang [33]. It can find
optimal data aggregation when there is only one initiator. Both
of its time and message complexities are O(p|̇E|). For the
data offloading algorithm, which is mainly a minimum cost
flow algorithm, it can be implemented using the technique
proposed by Quadrianto et al. [32]. They designed scalable
and distributed algorithms for both maximum flow problem
and minimum cost flow problem. Their distributed algorithms
are based on convex-concave saddle point reformulation and
take |E| iterations, where |E| is the number of edges.

For the data replication algorithm, above localized repli-
cation algorithm (Algorithm 3) can be implemented in a
distributed manner as follows. As each aggregation path and
its initiator have already been computed, the initiator can serve
as the controller of its belonged path by collecting information
from all other storage nodes and calculating each of their
demand number. Specifically, each storage node on each path
collects the information of their data node neighbors, from
which it collects information of their storage node neighbors,
and sends such information to the initiator. Once received from
all the storage nodes on the path, the initiator calculates each
storage node’s demand number, sorts them in non-descending
order and begins to traverse and replicate on them according
to the calculated demand number. This is done until either the
last aggregator on the path is reached or all the R amount of
overflow data of this initiator is replicated. Finally, aforesaid
distributed minimum-cost flow algorithm [32] is executed to
offload the overflow data that has not been replicated. As
this executes on the aggregation paths in a sequential manner,
synchronization is needed.

VI. Performance Evaluation

We compare the performances of DAO-N algorithm
(Naive), Global Replication Algorithm (Global), and the
Localized Replication Algorithm (Localized). 100 sensors
are uniformly distributed in a region of 1000m × 1000m.
Transmission range of sensor nodes is 250m. Unless otherwise
mentioned, R=m=512KB. We also vary R/m to 5 and 10, with
m=512KB while R=2560KB and 5120KB, respectively. Each
data point in all plots is an average over 20 runs, and the error
bars indicate 95% confidence interval.

Effect of Varying p. Fig. 7 shows the offloading cost of
three algorithms when R = 1m, with r varied from 0.3R,

0.5R, to 0.7R. In each case, we find the valid range of p
(using Inequality 5) and increase p from its smallest to largest
valid values. It clearly shows that Localized performs better
than Global, which performs better than Naive. In most cases,
performance improvement of Localized upon Naive is around
10%. In general, the offloading costs decrease with increase
of p in each case. This is because the total size of data
to be offloaded after aggregation, which is (|V | − p) · m,
decreases with increase of p. We notice a few cases wherein
the offloading cost increases a bit with the increase of p
(such as p = 57 in Fig. 7(c)), this is because offloading
paths could possibly become longer, even though the total
size of offloaded data is smaller with increase of p. Localized
performs better than Global does. This is because for Global,
after offloading all the overflow data of the aggregators and all
the overflow that are not aggregated using minimum cost flow
algorithm (line 1 of Algorithm 2), most of the storage nodes
on the aggregation paths are filled with offloaded data, leaving
not much space for replicating the overflow data from the
initiators. For Localized, however, it always replicates based
upon the calculated demand number of each storage node
therefore replicating more wisely.

Effect of R = 5m and R = 10m. Next, we study and compare
the algorithms for R = 5m and R = 10m. First it shows when
inFig. 8 and 9 clearly show that Localized performs better
than Global, which performs better than Naive. In most cases,
performance improvement of Localized upon Naive is around
30%. With the increase of the ratio R/m, more data needs
to be aggregated in order to fit into the available storages,
making the aggregation process more challenging. In partially,
with the increase of R/m, both the range and the number of
valid p decrease (according to Inequality 5), therefore there
are less number of storage nodes on each aggregation path.
Compared to Fig. 7, Fig. 8 and 9 show that the performance
differences between Localized and Naive further increases.
This demonstrates that our replication algorithms works even
better in these challenging scenarios.

Effect of Varying r. Fig. 10 shows the performance compar-
ison by varying r with R = 5m and p = 20. It shows that
the offloading cost of all three algorithms generally increase
with the increase of r. This can be explained by the non-
uniform distribution of overflow data after data aggregation
when increasing r, whereas uniformly distributed data can be
offloaded more easily by costing less energy. Initially, overflow
data are uniformly spread inside the network (as data nodes
are uniformly distributed). Now by increasing r, q increases
(Equation 2) thus the aggregation paths get longer in order to
visit more aggregators. This results in that more data nodes get
their overflow data reduced. Therefore after data aggregation,
overflow data are no longer uniformly distributed with increase
of q. Such non-uniform distribution of overflow data incurs
more energy cost for data offloading. Fig. 10 also shows that
when r is increased from 0.5 to 0.7, the offloading costs for
both Global and Localized slightly decrease. This is due to the
effect of data replication. As aggregation paths get longer due
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Fig. 9. Performance comparison when R = 10m.
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Fig. 10. Performance comparison by varying r. Here, R = 5m and p = 20.

to the fact that more aggregators are visited when increasing r,
there are potentially more storage nodes on each aggregation
path. Data replication thus can benefit from this by having
more of the initiators’ overflow data replicated on aggregation
path, reducing the amount of initiators’ overflow data that need
to be offloading during data offloading stage.

Effect of Varying R/m. Fig. 11 investigates the effect
upon the algorithm performances by varying R/m. For fair
comparison, we first need to find a common valid range of p
for R/m = 5 and R/m = 10. It turns out that when r = 0.3R,
they have the same valid range of p, 17 ≤ p ≤ 23. We thus
vary p from 17, 19, 21, to 23, and compare the offloading
cost of the algorithms by varying R/m from 5 to 10. First we
observe that the offloading cost for Naive is always higher in
R/m = 10 than in R/m = 5. This can be explained as below.
R is doubled from R/m = 5 to R/m = 10. However, since
the total available storage, being (|V | − p) ×m is fixed, the
same amount of overflow data after aggregation are offloaded.
Therefore, more amount of overflow data needs to be reduced
for R/m = 10, resulting in increased q (q equals 6 and 18 in
R/m = 10 and R/m = 5, respectively). Therefore after data
aggregation, it causes more non-uniformity of data distribution
for R/m = 10, increasing data offloading cost. However,

when increasing from R = 5m to R = 10m, the offloading
cost for Localized always decreases while could be either way
for Global. This again demonstrates the effectiveness of our
replication algorithms – with increased q, longer aggregation
paths exist, allowing more storage nodes to store replicated
data.

VII. Conclusion and Future Work

In this paper we tackled the overall storage overflow
problem in sensor networks that are deployed in challenging
environments, wherein the generated sensory data overflows
the storage capacity available in the entire network due to the
absence of base stations. This is an important problem since
many of the emerging sensor network applications fall into
this scenario. To solve this problem, previous research treated
data aggregation and data offloading as two independent and
separate stages, and did not explore the interactions and syn-
ergies between them. In this paper, we propose DAO-R, which
instead employed data replication to integrate data aggregation
and data offloading, and achieved energy-efficiency while
solving the overall storage overflow problem. We designed two
energy efficient data replication algorithms for DAO-R. We
also gave a sufficient condition to solve DAO-R optimally. We
show via simulations that DAO-R data replication algorithms
outperform the existing approach DAO-N by around 30% in
terms of energy consumption. As future work, we will first
consider that different data nodes could have different amount
of overflow data as well as different storage nodes could have
different storage capacity. Second, we will extend the uniform
data size reduction by considering that different sensor nodes
could have different correlation coefficients. Finally, we will
consider more dynamic scenarios, for example, some nodes
could deplete their battery power, and design energy-efficient
distributed algorithm.
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