
Steady Status Study of Distributed Data Caching
in Ad Hoc Networks

Julinda Taylor1, Bin Tang2, Mehmet Bayram Yildirim3

1Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS, USA
2Department of Computer Science, Azusa Pacific University, Azusa, CA, USA

3Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, KS, USA
Email: {jltaylor, bayram.yildirim}@wichita.edu, btang@apu.edu

Abstract— There has been extensive research on distributed
data caching in ad hoc networks. However, most of them
focus on how to reduce the average delay of requests and
improve the packet delivery ratio, not much work has
been done to study the steady-state status achieved by the
distributed caching algorithms. Information related to steady-
state status includes the convergence time of the distributed
caching algorithms, the final data replica placement in the
network, and the performance comparison of distributed
caching algorithms with optimal centralized caching solution.
Previous theoretical results show that to minimize the average
access cost (or average search cost) in the network, the optimal
number of replica of each data object is proportional to the
square root (or two-third) of the data’s access frequency. In
this work, we empirically show that the optimal number
of replicas of each data depends on not only the access
frequencies of the data, but also the storage capacity of
each node. We evaluate the steady-states of both cooperative
distributed data caching technique and a selfish caching in
ad hoc networks, and compare them to that of the optimal
caching solution obtained using integer linear programming
(ILP). Via ns2 simulations, we gain some insights about the
steady-states of distributed data caching.

Keywords – Performance Evaluation, Distributed Data
Caching, Ad Hoc Networks

I. Introduction
Ad hoc networks are multi-hop wireless networks con-

sisting of small wireless computing devices such as conven-
tional computers (e.g., PDA, laptop, or PC), or embedded
processors such as tiny, low-cost, and low-power sensor
motes. Ad hoc networks are constructed mainly for the
information sharing and task coordination among a group
of people, without the support of any communication in-
frastructure. For example, in an ad hoc network established
for spontaneous meeting, several authors can meet and
coordinate to modify the same document (e.g., an article or
a powerpoint slides) in a distributed fashion. Similarly, in
interconnected distributed information systems, an object
(a web page, an image, a video clip, or a file) may
be accessed from multiple distributed locations (network
nodes) simultaneously.

Caching has been proposed to be an effective technique
to facilitate information access in ad hoc networks. Besides
the traditional advantages brought by caching such as less
data access delay, improved data reliability and fault tol-
erance, utilizing caching to optimize network performance
of ad hoc networks is further motivated by the following
two aspects. First, the ad hoc networks are multi-hop
networks. Thus, remote access of information typically
occurs via multi-hop routing, wherein access latency can

be particularly improved by data caching. Second, ad hoc
networks are generally resource constrained in terms of
wireless bandwidth, storage capacity and battery energy of
nodes. Data caching can help reduce communication cost
among nodes, which results in conserving battery energy
and minimizing bandwidth usage in ad hoc networks.

The data caching problem in ad hoc networks has its
theoretical root in the multi-facility location problem [2],
[1], which is NP-hard. The problem asks: given an ad hoc
network graph, the storage capacity of each node, the initial
data distribution in the network and the data sizes, the
data access pattern (the probability with which each node
accesses each data), how to find the optimal data placement
in the ad hoc network such that the average access cost of
each node is minimized?

There has been extensive research on designing co-
operative distributed data caching algorithms in ad hoc
and sensor networks (please refer to Section II for a
comprehensive literature review). Even though some of the
centralized caching algorithms (e.g. [20]) have endeavored
to achieve performance bounds, the distributed caching
algorithms (e.g. [20], [22]) are all heuristic based without
any performance guarantee. More specifically, none of the
existing distributed data caching algorithms studies the
final cache/replica placements produced in these algorithms
and compares to the optimal replica placement. Thus it
is unclear how they perform compare to the optimal data
caching algorithm.

Therefore, there is a need to study the “stable” cache
placement yielded by distributed caching algorithms and
to define the corresponding steady-state of data caching.
Steady-state is an important stage at which the quality of
the distributed data caching techniques is evaluated – by
defining and quantifying the steady-state of distributed data
caching, we can gain insight on how it performs compared
to the optimal caching algorithm. Specifically, we are
asking the following questions: a) Does the steady-state of
distributed caching always exist in ad hoc networks? How
to define and characterize steady-state of distributed data
caching? b) How fast does each caching algorithm achieve
such steady-state if it exists (i.e., how fast is the converge
time)? c) How do the distributed caching algorithms com-
pare to centralized optimal caching algorithm in terms of
average data access cost based on the cache placement in
steady-state?

Optimality of cache placement has been studied in
the context of mesh networks and peer-to-peer networks

2
[14], [4], [15]. Jin and Wang [14] find that to minimize
average access cost in multi-hop wireless mess networks,
the number of replicas of each object in optimal solution
is proportional to p2/3, where p is the access probability
of the object. The work by Cohen and Shenkar [4] and
by Lv et al. [15] are one of the first theoretical studies
of replication in unstructured peer-to-peer networks. They
show that to minimize search cost in unstructured peer-
to-peer networks, the optimal replication strategy is to
replicate objects in proportional to the square root of
their popularity (i.e. access probability). We refer to these
two caching strategies as p2/3caching and p1/2caching
throughout the paper. However, both work do not show how
storage capacity of each node affects the optimal number
of replicas. In this paper, we empirically show that the
number of each data’s replica not only depends on the
access frequencies of data, but also depends on the storage
capacity of each node.

On the other hand, the steady-state behaviors of cache
replacement schemes (such as LRU) have been evaluated
using either exponential time complexity or approximated
closed form expression [19], [12], [5]. In this paper we
focus on experimental study of the steady-states of a co-
operative data caching algorithm and a selfish data caching
technique. Specifically, we obtain the cache placements in
distributed caching algorithms and use them to calculate
the average data access cost, and compare to the optimal
cache placement and optimal average data access cost using
integer linear programming (ILP) approach. We have two
main observations. First, we empirically show that the
optimal number of replicas of each data in a network not
only depends on the access frequencies of data, but also
depends on the storage capacity of each node. Second, we
show that selfish caching, which was shown to perform
much worse than cooperative caching, perform comparable
with cooperative caching in terms of the average data
access cost based on the cache placement of the steady-
states. We give some analysis of this phenomenon. To the
best of our knowledge, our work is the first one to formally
formulate the data caching problem in ad hoc networks
using ILP and solve it optimally.

Paper Organization. The rest of the paper is organized
as follows. We discuss the related work in Section II. In
Section III, we present our network model and formulate
the data caching problem using ILP. Section IV presents the
cooperative and selfish caching schemes studied in this pa-
per. Section V proposes the model and defines the steady-
states for the distributed data caching. We present and
analyze the simulation results in Section VI. Section VII
concludes the paper and points out some future work.

II. Related Work
Data caching in ad hoc and sensor networks has been

an active research area. Below are a few work published
recently. Du et al. [7] propose COOP, a novel cooperative
caching scheme for on-demand data access applications in
MANETs. The objective is to improve data availability and
access efficiency by collaborating local resources of mobile
nodes. Montanari et al. [16] use probabilistic failure models
to adaptively create and maintain a number of replicas of

the data, to provide data availability in sensor networks.
Dimokas et al. [6] propose a new cache consistency and
replacement policy in a wireless multimedia sensor net-
works, with the goal of latency minimization. Wu et al.
[21] utilize the overhearing property of wireless commu-
nications for performance improvement of data caching in
ad hoc networks. Fan et al. [9] design distributed caching
heuristics, via which better performance can be achieved
by detecting the variation of contentions to evaluate the
benefit of selecting a node as cache node.

Hara and Madria [13] are among the first to propose
replica allocation methods in ad hoc networks, by taking
into account the access frequency from mobile hosts to
each data item and the status of the network connection.
Yin and Cao [22] design and evaluate three distributed
caching techniques, viz., CacheData which caches the
passing-by data item, CachePath which caches the path
to the nearest cache of the passing-by data item, and
HybridCache which caches the data item if its size is
small enough, else caches the path to the data. Fiore et
al. [11] design a cooperative caching scheme to create a
content diversity in ad hoc networks, so that a requesting
user likely finds the desired information nearby. Zhao et
al. [22] propose a novel asymmetric cooperative cache
approach, where the data requests are transmitted to the
cache layer on every node, but the data replies are only
transmitted to the cache layer at the intermediate nodes
that need to cache the data. Tang et al. [20] present a
polynomial-time centralized approximation algorithm to
replicate data, which reduces the total data access delay
at least half of that obtained from the optimal solution.
They also present a distributed caching technique, called
benefit-based data caching, derived from the centralized
approximation algorithm.

However, all the above work does not study the steady-
state of distributed data caching, which is the topic of this
work. Specifically, we experimentally study the steady-state
of the benefit-based caching [20] and a selfish caching
scheme, and compare their cache placements with that of
the optimal solution.

III. ILP Problem Formulation of the Data Caching
Problem

A multi-hop ad hoc network can be represented as an
undirected graph G(V,E) where V = {1, 2, ..., i, ...|V |}
represents the nodes in the network, and E is the set of
weighted edges in the graph. Two network nodes that can
communicate directly with each other are connected by
an edge in the graph. There are multiple data items in
the network, and each is served by its source node. Each
network node has limited storage space and can cache
multiple data items subject to the storage constraint. The
objective of the data caching problem is to minimize the
total (or average) access cost. Below, we give a formal
definition of the cache placement problem addressed.

Network Model. The set of data items in the network
is D = {1, 2, ..., p, ..., |D|}, where data item p ∈ D is
originally stored at its source node Sp ∈ V (it is possible
that a source node can have multiple data items). Source
nodes always keep their original data. The size of data item

3
p is sp units. Node i ∈ V has a storage capacity of mi units
(for source node i, mi is the available storage space after
storing its original data). Two nodes can communicate with
each other if they are within the transmission range of each
other. The edge weight may represent a link metric such
as loss rate, distance, delay, or transmission bandwidth. In
this paper, the edge weight represents the bandwidth and
we assume that all the edges have the same bandwidth B.

We use aip to denote the access frequency with which
node i requests data item p, i.e., the number of times
node i requesting the data item p within unit time. The
transmission time of sending data item p along any network
edge is sp/B. Let dij denote the number of transmissions
to transmit a data item from i to j, which equals to the
number of edges of the shortest path between these two
nodes. The total data access cost in ad hoc network before
caching is thus the total transmission time spent by all the
nodes to access all the initial copies of the data:

|V |∑
i=1

|D|∑
p=1

aip × diSp × sp/B.

We omit B for the rest of the paper. The objective of the
data caching problem is to minimize the total data access
cost by caching data items in the ad hoc network, under
the storage constraints of nodes. For ease of presentation,
we assume that a source node is also a cache node. Below,
we give a formal definition of the caching problem using
integer linear program (ILP).

ILP Problem Formulation. Let xip ∈ {0, 1} denote
whether data item p is cached in node i, and let yijp ∈
{0, 1} denote whether node i accesses data item p from
node j. Then the objective function is to minimize:∑

i∈V

∑
j∈V

∑
p∈D

aip × dij × yijp × sp, (1)

where ∑
j∈V

yijp = 1, ∀i ∈ V, p ∈ D (2)

xjp − yijp ≥ 0, ∀i, j ∈ V, p ∈ D (3)

∑
p∈D

sp × xjp ≤ mj , ∀j ∈ V (4)

Condition (2) guarantees that node i accesses data item p
from a node in the network. Condition (3) ensures that each
data item can only be accessed from a node which stores
that data. Condition (4) states that the total size of data
cached at node j can not exceed j’s storage capacity mj .
The data caching problem is NP-hard since essentially, it
is multi-facility location problem wherein each constructed
facility is a cache node. Multi-facility location problem is
NP-hard [2], [1].

An Example. Fig. 1 shows a simple example of a small
ad hoc network of four nodes (0, 1, 2, 3). There are two
data items (A and B) in the network – node 0 stores A,
node 1 stores B. Every node has one storage capacity, i.e.,
it can store one data item. For all the nodes, their access

Fig. 1. An illustrative example of optimal data caching.

frequency to data A is 10, access frequency to data B is 1.
The optimal data placement is that node 0 caches a copy
of data B, while node 1, 2, and 3 each caches a copy of
data A. The optimal total access cost is 2.

IV. Cooperative and Selfish Distributed Data Caching
In this section, we first present the data access model

of distributed caching. We then discuss two representative
algorithms of cooperative data caching and selfish data
caching, viz benefit-based caching and LRU-based caching.

Data Access Model of Distributed Caching. Data access
model includes data access pattern, which indicates the
popularity of the data, and data access interval, which
determines the query traffic in the ad hoc network.
• Data Access Pattern. We consider Zipf data access pat-
tern. In this pattern, the data is ranked by their access pop-
ularity following Zipf-like distribution [23], [3], where the
access frequency of ith popular data item is 1/iθ∑|D|

h=1 1/hθ
,

where 0 ≤ θ ≤ 1. When θ = 1, the above distribution
follows the strict Zipf distribution; while for θ = 0, it
follows the uniform distribution, in which all |D| data
items are equally popular and randomly accessed by the
|V | nodes.

• Data Access Interval. Each node in the network sends
out a single stream of read-only queries, each of them
requesting for a data item following above data access
pattern. The data access interval (or the query generate
time) is the time interval between two consecutive queries
and follows exponential distribution with some mean
value Tq.
Before each node sends out a data request, it checks

if the data is already cached locally. If so, this request
is then satisfied locally; if not, it sends out the request.
After receiving the data, whether it caches the data locally
depends on whether the distributed caching scheme is
cooperative or selfish, as explained below.

Cooperative Data Caching [20]. Benefit-based caching is
a cooperative data caching algorithm that works as follows.
Each node maintains a nearest cache table, which records
for each data item, the closest cache node (including the
source node) that has a copy of the data. If the node
itself is a cache node of the data item (i.e., it is the
closest cache node for this data item), it records the
second-nearest cache node that has a copy of the data. By
maintaining the accurate nearest cache table (please refer
to [20] for its maintenance mechanism), each node can
not only directly access the closest copy of the data item
without searching it, but also make intelligent local caching

4
decision with the knowledge of data placement information
in its neighborhood. On the other hand, each node observes
all the data request messages passing through it. These
data request messages include the node’s own data requests
being a data requestor, the data request messages that the
node forwards being a relay node, and data requests it
receives being a cache (or source) node of the requested
data.

With above nearest cache table and message observation,
each node can constantly compute the local benefit of each
data item. For each data item p not cached at node i, i
calculates the local benefit gained by caching p, while for
each data item p cached at node i, i computes the local
benefit lost by removing it. In particular, the local benefit
Bip of caching (or removing) p at node i is the reduction
(or increase) in access cost given by

Bip = tipδp,

where tip is the number of request messages observed by
node i for data item p, and δp is the distance from i to the
nearest-node other than i that has the copy of the data item
p (obtained from nearest cache table). Using its nearest-
cache table, each node can compute the local benefits of
data items using traffic information observed locally.

Cooperative Cache Replacement Policy. When there is
free storage space, a node caches the passing-by or re-
quested data item. Otherwise, the caching decision is based
on the local benefit calculation – if the benefit of caching
the newly passing-by or requested data item is larger than
that of the cached data item with the smallest benefit,
cache replacement takes place. Note that cooperative cache
replacement scheme differs significantly from most existing
cache schemes (such as LRU below), since data item most
beneficial to the network (not just the data item most
beneficial to the node itself) is cached.

Selfish Data Caching. In selfish caching, each node
accesses the source node for each data item. It caches
any passing-by or requested data item when it has free
storage space. When its storage space is full, it uses Least
Recently Used (LRU) policy [10] to replace cached data.
Each node’s request can also be satisfied on the way to the
source node if one of the intermediate nodes caches the
requested data. We call this caching scheme selfish because
each node caches its requested data item and passing-by
data items to benefit its own data access, not others.

V. Heuristics Model of Distributed Data Caching

Let M t
p be the set of network nodes that store a copy of

data p at time t. We assume that a source node is also a
cache node, i.e., Sp ∈ M t

p. Given the cache placement of
the network at time t, the total access cost of the network
is the sum of the access costs of all the nodes, each of
which goes to the nearest cache node to access each data
item. Denote the total access cost of the network at time t
as τ(t), then

τ(t) =

|V |∑
i=1

|D|∑
p=1

aip × minl∈Mt
p
dil × sp. (5)

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 A

cc
es

s
C

os
t (

nu
m

be
r

of
 h

op
s)

Simulation Time (x1000s)

Cooperative - Query Generate Time 30s
Selfish - Query Generate Time 30s

Fig. 2. Convergence time of cooperative and selfish caching.

Equation 5 is similar to Equation 1, with one difference.
Equation 1 is used to find a centralized optimal caching
strategy to minimize the total (or average) access cost,
while Equation 5 is used to calculate the total access
cost (which is not optimal) based upon a specific cache
placement resulted from a distributed caching strategy at
a specific time. Below we formally define steady-state and
convergence time of a distributed data caching algorithm.

Definition 1: (Steady-state and convergence time of a
distributed data caching.) The distributed caching is in its
steady-state at time ts if and only if for any time t′s > ts,
|τ(ts) − τ(t′s)| ≤ τth, where τth is a prefixed threshold
value. Convergence time is the smallest time elapse for a
caching scheme to reach its steady-state. �

Therefore, whether a distributed caching scheme reaches
its steady-state depends on the choice of τth (in the simula-
tion, we choose τth to be small enough in order to quantify
steady-state). Below we empirically study the convergence
time of above two distributed caching algorithms.

Empirical Study of the Convergence Time. We take the
cache placement at some different times of the caching pro-
cess and calculate the total access cost of the network using
Equation 5. Figure 2 shows that the cooperative algorithm
stabilizes very well (it reaches its steady-state at around
30, 000 seconds), while selfish caching does not. This can
the explained by the different cache replacement policies
adopted in each algorithm. In cooperative caching, nodes
only cache data which are beneficial (i.e., reducing the
access cost in the network). In selfish caching, nodes adopts
LRU cache replacement policy, which always caches the
new data even it is not a beneficial one to the network.
In an extreme case where each node’s storage can only
store one data, in selfish caching, node always stores the
latest requested data, which is changing dynamically all
the time. However, the cooperative one will stick with the
beneficial data and do not replace it if the newly requested
data is less beneficial. For the rest of the paper, we adopt
the simulation run time of 100,000 seconds to study the
steady-states of both algorithms.

Comparison Between Cooperative Caching and Selfish
Caching at Steady-States. In cooperative caching, nodes
cache data based on whether it is beneficial to the whole
network. Meanwhile, since the selfish caching uses LRU
as its cache replacement policy, it eventually keeps its
popular data in its local memory, even though such data

5

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 40 30 20 10 5 3

A
ve

ra
ge

 D
el

ay
 (

s)

Mean Query Generate Time (s)

Cooperative - Storage Capacity 50
Selfish - Storage Capacity 50

Cooperative - Storage Capacity 100
Selfish - Storage Capacity 100

Fig. 3. Average delay comparison between cooperative and selfish
caching.

could be available in its close neighborhood. Therefore,
cooperative caching achieves smaller average access cost
than selfish caching does. Figure 3 shows the comparison
of the average query delay of both caching schemes by
varying the mean query generate time from 3 to 40 seconds,
under difference storage capacity (50 and 100 data items).
It shows that when node storage capacity is 100 data
items, cooperative caching performs about twice as better
as the selfish caching does. The performance differential
gets larger in more challenging scenarios, such as higher
query traffic (when query generate time is 3 seconds) and
smaller node storage (50 data items).

VI. Performance Evaluation
We demonstrate through simulations the performance of

our designed cache placement algorithms over randomly
generated network topologies. We first compare the relative
quality of the cooperative and selfish caching schemes
using the ns-2 simulator [8].

Simulation Setup. We simulated our algorithms on a net-
work of randomly placed 40 nodes in an area of 1000 ×
1000m2. We adopt DSDV [17] as the underlying ad hoc
routing protocol. The transmission range for two directly
communicating nodes in the ns2 simulator is 250 meters.
The wireless bandwidth is 2 Mb/s. In our network, there are
500 data items, each of 750 bytes. There are two randomly
placed source nodes S0 and S1 where S0 stores the data
items with even IDs and S1 stores the data items with
odd IDs. Each ad hoc node sends out a single stream
of read-only queries following the Zipf distribution. We
choose θ to be 0.8 based on real web trace studies [3]. The
access frequency of data item 0 is set as 10, while other
data’s access frequency is calculated accordingly using Zipf
function. In the cooperative caching scheme, the query
to a data item is forwarded to the nearest cache of that
data item (based on the nearest-cache table). In the Selfish
scheme, the query is forwarded to the source nodes. In
both schemes, if the query encounters a node with the
requested data item cached, then the query is answered
by the encountered node itself.

Total Access Cost in Steady-States. Figure 4 shows the
total access cost comparison between ILP optimal, coop-
erative, and selfish caching, by varying storage capacity
of nodes. The total access cost is calculated based on the
cache placement at the steady states using Equation 5.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 150 100 50

T
ot

al
 A

cc
es

s
C

os
t (

nu
m

be
r

of
 h

op
s)

Storage Capacity

Selfish
Cooperative

Optimal

Fig. 4. Total access cost comparison based on the cache placement
obtained at steady-states (simulation time is 100, 000 seconds). Here, the
query generate time is 30s.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 300 250 200 150 100 50 10 0
N

um
be

r
of

 C
op

ie
s

of
 E

ac
h

D
at

a
Ite

m
Data Item Popularity Rank

p^(2/3)
p^(1/2)
Selfish

Cooperative
Optimal

Fig. 5. Number of replicas for data with different access frequencies in
steady-states (simulation time is 100, 000 second). Here, storage capacity
is 100 data items.

In this figure, each data point represents an average of
five runs on different network topologies, and the error
bars indicate the 95% confidence interval (we only show
confidence intervals in Figure 4 since other figures are clear
to our claim).

We have the following observations. First, it shows that
both cooperative and selfish perform worse than optimal
ILP solution, with 25% of difference; however, the selfish
caching performs comparably with the cooperative one.
This seems contradicting with Figure 3, which shows that
cooperative caching performs about twice as better as
the selfish caching. This is because for distributed selfish
caching scheme, the data access is usually not from the
closest cache since each node is not aware other close-
by cache nodes, while in total access cost calculation,
both selfish and cooperative caching assumes that data
accesses from the closest cache following Equation 5.
This demonstrates one important difference between the
theoretical root (multi-facility location problem) and the
distributed implementation of the caching schemes: even
though a distributed caching scheme yields a good cache
placement, it could still perform poorly in terms of the user-
perceived access delay. Second, when storage capacity is
small at 50, cooperative does perform better than selfish,
showing its superiority to selfish caching in challenging
scenarios. However, their performance difference is only
around 15%, which is much smaller than the two-time
difference if we use the average delay shown in Figure 3.
Number of Copies of Data Items in Steady-States. Next
we study the number of copies of data items in steady-

6

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 300 250 200 150 100 50 10 0

N
um

be
r

of
 C

op
ie

s
of

 E
ac

h
D

at
a

Ite
m

Data Item Popularity Rank

p^(2/3)
p^(1/2)
Selfish

Cooperative
Optimal

Fig. 6. Number of replicas for data with different access frequencies in
steady-states (simulation time is 100, 000 seconds). Here, storage capacity
is 200 data items.

states of distributed caching. We compare with the
previous results, viz. p2/3caching and p1/2caching [14],
[4], [15]. Figure 5 and 6 show the varying of number
of copies of data items with respect to their popularity
rankings, under storage capacity of 100 data items and
200 data items respectively. We only show the number of
copies for data items 0, 10, 50, 100, and 300. We have the
following observations. First, when node storage capacity
is small (100 data items), both cooperative and selfish
schemes correspond with the ILP optimal well. However,
when the storage capacity increases to 200 data items
(Figure 6), their performance difference becomes obvious
– comparing to cooperative and selfish, ILP optimal
caches more copies for the more popular data and less
copies for less popular data. In both cases, seems selfish
caching performs a little better than cooperative caching in
terms of number of copies of more popular data cached.
Second, as shown in Figure 5 and 6, both p2/3 and p1/2

caching perform worse compared to ILP optimal, and in
large storage capacity case, the performance difference
is more significant. This shows that the two existing
analytical results do not take into account the effect of
storage capacity upon the optimal replica numbers.

VII. Conclusions and Future Work
In this paper we study the steady-states of distributed

data caching in wireless ad hoc networks. Unlike previous
results showing the superiority of cooperative caching
to the selfish caching, this work demonstrates that the
average data access cost based on the cache placement at
steady-states are comparable for the selfish and cooperative
caching. Besides, we formulate and solve the data caching
problem optimally using integer linear programming, and
compare the optimal solution with the distributed caching
techniques. We empirically show that the optimal replica
number not only depends on the access frequencies of data,
but also depends on the storage capacity of each node.
We plan to augment our finding and the existing results
(viz., p2/3 and p1/2) by deriving an analytical model for
the steady-states with the storage capacity incorporated.
Recently, Rosensweig et al. [18] demonstrate the non-
ergodic behavior of cache networks, in that their steady-
state characterization depends on the initial state of the sys-
tem such as the initial placement of the files at the caches.
Our simulation setup only assumes fixed placement of data

items on two fixed source nodes. It would be interesting
to study if ergodicity or non-ergodicity exists in ad hoc
networks for different distributed caching algorithms, and
study how their performances are affectedly accordingly.

REFERENCES

[1] I. Baev and R. Rajaraman. Approximation algorithms for data
placement in arbitrary networks. In Proc. of ACM-SIAM SODA,
2001.

[2] I. Baev, Rajmohan Rajaraman, and Chaitanya Swamy. Approxima-
tion algorithms for data placement problems. SIAM J. Comput.,
38(4):1411–1429, 2008.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In Proc. of
INFOCOM, 1999.

[4] E. Cohen and S. Shenkar. Replication strategies in unstructured
peer-to-peer networks. In Proc. of ACM SIGCOMM, 2002.

[5] Asit Dan and Dan Towsley. An approximate analysis of the lru and
fifo buffer replacement schemes. In Proc. of ACM SIGMETRICS,
1990.

[6] N. Dimokasa, D. Katsarosb, and Y. Manolopoulosa. Cache consis-
tency in wireless multimedia sensor networks. Ad Hoc Networks,
8(2):214–240, 2010.

[7] Yu Du, Sandeep K. S. Gupta, and Georgios Varsamopoulos. Improv-
ing on-demand data access efficiency in manets with cooperative
caching. Ad Hoc Netwetworks, 7(3):579–598, 2009.

[8] K. Fall and K. Varadhan (Eds.). The ns manual. available from
http://www-mash.cs.berkeley.edu/ns/.

[9] Xiaopeng Fan, Jiannong Cao, and Weigang Wu;. Contention-aware
data caching in wireless multihop ad hoc networks. In Proc. of IEEE
6th International Conference on Mobile Adhoc and Sensor Systems
(MASS ’09), pages 1–9, 2009.

[10] Ribel Fares, Brian Romoser, Ziliang Zong, Mais Nijim, and Xiao
Qin. Performance evaluation of traditional caching policies on a
large system with petabytes of data. In Proc. of the IEEE Seventh
International Conference on Networking, Architecture, and Storage
(NAS 2012), pages 227–234.

[11] Marco Fiore, Francesco Mininni, Claudio Casetti, and Carla-Fabiana
Chiasserini. To cache or not to cache. In Proc. of IEEE INFOCOM
2009.

[12] Philippe Flajolet, Daniele Gardy, and Loys Thimonier. Birthday
paradox, coupon collectors, caching algorithms and self-organizing
search. Discrete Applied Mathematics, 39:207–229, 1992.

[13] Takahiro Hara and Sanjay K. Madria. Data replication for improving
data accessibility in ad hoc networks. IEEE Transactions on Mobile
Computing, 5(11):1515–1532, 2006.

[14] Shudong Jin and Limin Wang. Content and service replication
strategies in multi-hop wireless mesh networks. In Proc. of the
ACM MSWiM 2005, pages 79–86.

[15] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search
and replication in unstructured peer-to-peer networks. In Proc. of the
16th international conference on Supercomputing (ICS ’02), pages
84–95, 2002.

[16] Mirko Montanari, Riccardo Crepaldi, Indranil Gupta, and Robin
Kravets. Using failure models for controlling data availability in
wireless sensor networks. In Proc. of IEEE Infocom Minisymposium,
2009.

[17] C. E. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers.
In Proc. of ACM SIGCOMM, 1994.

[18] Elisha J. Rosensweig, Daniel S. Menasche, and Jim Kurose. On the
steady-state of cache networks. In Proc. of the IEEE Infocom 2013.

[19] David Starobinski and David N. C. Tse. Probabilistic methods for
web caching. Performance Evaluation, 46(2-3):125–137, 2001.

[20] Bin Tang, Samir Das, and Himanshu Gupta. Benefit-based data
caching in ad hoc networks. IEEE Transactions on Mobile Com-
puting, 7(3):289–304, 2008.

[21] Weigang Wu, Jiannong Cao, and Xiaopeng Fan. Overhearing-aided
data caching in wireless ad hoc networks. In Proc. of the 2009 29th
IEEE International Conference on Distributed Computing Systems
Workshops (ICDCSW ’09), pages 137–144, 2009.

[22] Liangzhong Yin and Guohong Cao. Supporting cooperative caching
in ad hoc networks. IEEE Transactions on Mobile Computing,
5(1):77–89, 2006.

[23] G. K. Zipf. Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Addison-Wesley, 1949.

