
FMDV: Dynamic Flow Migration in Virtual
Network Function-Enabled Cloud Data Centers

Phillip Aguilera, Christopher Gonzalez, Bin Tang
Department of Computer Science

California State University Dominguez Hills, Carson, CA 90747, USA
Email: {paguilera5,cgonzalez393}toromail.csudh.edu, btang@csudh.edu

Abstract—Virtual Network Functions (VNFs) are software
implementation of middleboxes (MBs) (e.g., firewalls and proxy
servers) that provide performance and security guarantees for
virtual machine (VM) cloud applications. In this paper, we study
a new VM flow migration problem for dynamic VNF-enabled
cloud data centers (VDCs). The goal is to migrate the VM flows
in the dynamic VDCs to minimize the total network traffic while
load-balancing VNFs with limited processing capabilities. We
refer to the problem as FMDV: flow migration in dynamic VDCs.
We propose an optimal and efficient minimum cost flow-based
flow migration algorithm and two benefit-based efficient heuristic
algorithms to solve the FMDV. Via extensive simulations, we show
that our algorithms are effective in mitigating dynamic cloud
traffic while achieving load balance among VNFs. In particular,
all our algorithms reduce dynamic network traffic in all cases and
our optimal algorithm always achieves the best traffic-mitigation
effect, reducing the network traffic by up to 28% compared to
the case without flow migration.

Keywords – Virtual Network Functions, Load-Balancing,
Flow Migration, Dynamic Cloud Data Centers

I. Introduction

Background. One of the building blocks of modern cloud
data centers is virtualization, wherein cloud user applications
previously running on multiple physical machines (PMs) can
now run as virtual machines (VMs) in a single PM [7]. The
benefits of virtualization include reduced IT expenses, en-
hanced resiliency of IT infrastructure, and increased efficiency
and productivity. Recently, Network Function Virtualization
(NFV) has become an effective virtualization technique that
achieves flexible cloud service management in the cloud
computing environment [15]. With NFV, proprietary hardware
middleboxes (MBs) such as firewalls and cache proxies can
now be implemented as virtual network functions (VNFs) run-
ning as lightweight containers on commodity hardware [14].
Being provisioned as different services in cloud data centers,
VNFs provide security and performance guarantees to cloud
user applications in a flexible and cost-effective manner. We
refer to the cloud data centers that implement VNFs to provide
network services as VNF-enabled data centers (VDCs).

While the hardware MBs have dedicated hardware resources
such as CPU, memory, or accelerators, software VNFs usually
have less packet processing capability and are more prone to
software bugs, malfunctions, and misconfiguration. As such,
VNFs can be more easily overloaded by the high VM cloud
traffic and cause packet loss and traffic delay in VDCs.

Therefore, how to load-balance the VNFs is an important
problem in VDCs.

Fortunately, the software implementation of VNFs makes it
possible to replicate and place multiple VNF instances easily
inside the VDCs [9]. With multiple instances of the same VNF,
the VM cloud traffic in VDCs just needs to visit one of the
instances to achieve the security and performance guarantees
brought by the VNF. By distributing VM network traffic
among multiple VNF instances, it not only achieves load-
balance to cloud network traffic thus reducing cloud network
congestions but also achieves load-balance to VNF instances
thus prolonging their functional lifetime.

Dynamic and Diverse Cloud Traffic. Recent reports about
Facebook and other production data centers observe that VM
traffic loads (i.e., transmission rates and bandwidth demands)
are highly diverse and dynamic among different cloud user
applications. It shows that the various and distinct services
in data centers exhibit different traffic patterns and the heavy
hitters are bound to bursty and rapidly changing [18]. Another
recent example is Zoom cloud conferencing [1], where one
Zoom Meeting Connector VM [2] could support conference
meetings from a few participants of low traffic rates to up
to 1000 participants of high traffic rates. Different Zoom
meetings could last from minutes to hours in the form of
videos, voices, or chat texts and consume dramatically differ-
ent amounts of network bandwidth. Such dynamic and diverse
traffic, if not dealt with well, could deteriorate the utilization
of cloud resources such as bandwidth and energy in VDCs.

Our Contributions. We propose migrating VM flows to
alleviate the dynamic traffic in cloud data centers. In particular,
we identify, formulate and solve a new VM flow migration
problem called FMDV: flow migration in dynamic VDCs.
The goal of FMDV is to migrate the VM flows in the
dynamic VDCs to minimize the total network traffic while
load-balancing VNFs with limited processing capability. We
propose an optimal minimum cost flow-based algorithm and
two benefit-based efficient heuristics to solve the FMDV. Via
extensive simulations, we show that our algorithms are effec-
tive in optimizing the network resources as well as achieving
load balance among VNFs. In particular, all our algorithms can
reduce dynamic network traffic in all cases and our optimal
algorithm always achieves the best traffic-mitigation effect,
reducing the network traffic by 28% compared to the case

without flow migration.

II. Related Work
Migrating active in-process flows among VNFs has been

active research in recent years. Some research focused on
guaranteeing loss-free and order-preserving flow states and
packets. For example, Wang et al. [22] designed a distributed
flow migration framework to decouple the state transfer and
packets migrations, which allows optimizing the two processes
separately and in parallel. Another issue is VNF elasticity
control, which studies how to scale out, scale in, and load-
balance VNFs depending on the traffic load. Sun et al. [19]
built a flow migration controller to achieve VNF elasticity
control by selecting flows for migrations with the goal of
minimizing the load variance of VNF instances. Qazi et al.
[16] proposed to minimize the maximum load of a VNF to
achieve VNF load-balancing and showed it to be NP-hard.

In contrast, our flow migration techniques are specially
designed to mitigate dynamic network scenarios wherein the
traffic rates of VM flows are changing. We achieve load-
balancing of VNFs by specifying that each VNF has a limited
processing capacity. Therefore, instead of minimizing the
maximum load or the load variance of VNF instances, our goal
is to migrate the flows among VNFs to minimize their total
communication cost while respecting the capacity constraint
of VNFs. We are able to propose a time-efficient minimum
cost flow-based optimal solution.

Qu et al. [17] presented a dynamic flow migration problem
for SDN/NFV-enabled 5G communication systems. It consid-
ered service function chains (SFCs) and formulated a multi-
objective mixed-integer optimization problem that addresses
the trade-off between load-balancing and reconfiguration over-
head of SFCs. As it is NP-hard, it presented an effective heuris-
tic algorithm that does not have a performance guarantee. In
contrast, by assuming each VM flow only accesses one VNF
instance, we are able to come up with an optimal and efficient
dynamic flow migration scheme that optimizes cloud resources
in a dynamic environment.

Alqarni et al. [6] proposed an MB assignment problem in
policy-driven data centers. The goal is to assign VM flows
to MBs to minimize the communication cost of all the VM
flows. However, it assumed that all VM flows have the same
traffic rates. More importantly, it did not consider the dynamic
cloud traffic addressed in this paper. We instead propose
migrating VM flows to mitigate the dynamic cloud traffic.
Some preliminary results of this work appeared in an under-
graduate research conference [3], in which only two benefit-
based flow migration techniques were proposed. However,
both algorithms are heuristic algorithms that do not provide
any performance guarantee. This paper proposes a minimum
cost flow optimal and efficient flow migration scheme that
always outperforms the two heuristics.

There are works that employed machine learning techniques
to estimate network traffic rates in order to adjust VNF
deployment [10], [23], [21]. Another line of work is by Cui et
al. [8] and Flores et al. [11], which proposed migrating VMs

instead of VNFs to ameliorate dynamic traffic in cloud data
centers. Our work instead focuses on migrating the VM flows
while addressing the load-balancing issue of VNFs, which is
different from all the existing work.

III. Problem Formulation of FMDV

Network Model. We model a VDC as an undirected general
graph G(V,E). V = Vp∪Vs includes a set Vp of PMs and a set
Vs of switches, and E is the set of edges. We use fat-trees [5]
to illustrate the problem and its solutions, but our problem and
solutions are applicable to any data center topology. There are
l communicating VM flows Q = {q1, q2, ..., ql}, where flow
qi = (vi, v

′
i) consists of two VMs viz. vi and v′i that commu-

nicate with each other following some traffic rates. The traffic
rate of a flow is the communication frequency or bandwidth
demand of this flow. Let V = {v1, v′1, v2, v′2, ..., vl, v′l} and
v ∈ V is located s(v) ∈ Vp.

Let λi denote the traffic rate of qi at some moment and−→
λ = 〈λ1, λ2, ..., λl〉 the traffic rate vector of the l VM flows.
In a dynamic VDC, the traffic rate of a VM flow changes over
time,

−→
λ is thus not a constant. Fig. 1 shows a fat-tree with

16 PMs and two VM flows: q1 = (v1, v
′
1) and q2 = (v2, v

′
2)

with initial traffic rates
−→
λ = 〈100, 1〉.

VNF Model. There are m VNF instances M =
{vnf1, vnf2, ..., vnfm} in the VDC. For security and perfor-
mance purposes, each communicating VM flow qi must visit
one of the VNF instances. We assume that each switch is
attached with a server that can install VNFs [24]. We also
assume that the VNFs are installed on servers of different
switches; that is, vnfj is installed on switch w(j) ∈ Vs and
w(j) 6= w(j′) if j 6= j′. The processing capacity of vnfj
is κj , meaning it can process at most κj VM flows at the
same time. Obviously, we have

∑m
j=1 κj ≥ l. Fig. 1 shows a

fat tree-based VDC graph with two VNF instances: vnf1 and
vnf2 with κ1 = κ2 = 1. Table I shows all the notations.

TABLE I
NOTATION SUMMARY

Notation Explanation
Vp The set of PMs in a VDC
Vs The set of switches in a VDC
Q The set of l VM flows in a VDC, qi = (vi, v

′
i)

λi Traffic rate of qi, 1 ≤ i ≤ l
M The set of m VNF instances, vnfj , 1 ≤ j ≤ m
s(v) The PM where VM v is located
w(j) The switch where vnfj is installed
κj The processing capacity of vnfj
w(u, v) The weight of edge (u, v) ∈ E
c(u, v) The cost between any two nodes u and v in a VDC
ci,j The communication cost of qi when traversing vnfj
τ(i, f(i)) The total migration and communication cost of qi

under flow migration scheme f
Cp

c The total communication cost of all VM pairs at
initial VNF assignment p

Cf
c The total communication cost after flow migration f

Cf
m The total flow migration cost under migration f

Cf
t The total comm. and migra. cost; Cf

t = Cf
m + Cf

c

: PM

: VM

1 2 53 4 7 8 9 10 11 126 15 1613 14

v2
’v1

’ v2v1

: VNF
instance

vnf2vnf1

1 2 53 4 7 8 9 10 11 126 15 1613 14

v2
’v1

’ v2v1

vnf2vnf1

1 2 53 4 7 8 9 10 11 126 15 1613 14

v2
’v1

’ v2v1

vnf2vnf1

(a) (b) (c)

Fig. 1. A VDC graph G(V,E), which is a k-ary fat tree with k = 4 and 16 PMs. There are two communicating VM flows: (v1, v′1) and (v2, v′2) with
initial traffic rate vector 〈100, 1〉, and two VNF instances: vnf1 and vnf2. The capacities of VNFs κ1 = κ2 = 1.

Cost Model. Each edge (u, v) ∈ E has a cost wu,v , indicating
either the delay or energy cost on this edge for one unit of VM
communication or flow migration. Given any PM or switch u
and v, let c(u, v) denote the cost of the shortest path between u
to v. Let ci,j be the communication cost for VM flow qi when
it visits vnfj ; ci,j = λi ·

(
c
(
s(vi), w(j)

)
+ c
(
w(j), s(v′i)

))
.

The flow migration cost of migrating any VM flow from
vnfi to vnfj is µ · c

(
w(i), w(j)

)
. Here µ is flow migration

coefficient, which is the ratio between costs of VM flow mi-
gration and VM communication. It represents the relative size
of memory or data packet transferred in VM flow migration
and VM communication.

Let p : [1, 2, ..., l] → [1, 2, ...,m] denote the initial VNF
assignment, indicating that qi ∈ Q is currently visiting
vnfp(i) ∈ M while the capacity constraints of VNFs are
satisfied: |{1 ≤ i ≤ l|p(i) = j}| ≤ κj , 1 ≤ j ≤ m.
The communication cost of qi with p is then ci,p(i) =

λi ·
(
c
(
s(vi), w(p(i))

)
+ c
(
w(p(i)), s(v′i)

))
. Denote the total

communication cost of all the l VM flows with p as Cp
c .

Cp
c =

∑l
i=1 λi ·

(
c
(
s(vi), w(p(i))

)
+ c
(
w(p(i)), s(v′i)

))
.

EXAMPLE 1: In Fig. 1(a), with initial traffic rate vector of
〈100, 1〉, the optimal VNF assignment is that (v1, v

′
1) traverses

vnf1 following dark blue line while (v2, v
′
2) traverses vnf2

following light red line, resulting in minimum total cost of
100 × 4 + 1 × 8 = 408. Next, in Fig. 1(b), due to dynamic
traffic, the traffic rate vector changes to 〈1, 100〉. The resultant
VM communication cost becomes 1 × 4 + 100 × 8 = 804, a
dramatic and an almost 100% increase. �

Therefore, there is a need to migrate the VM flows from
one VNF instance to another in order to reduce the network
traffic while still satisfying the capacity constraints of VNFs.
As migrating flows incurs network traffic and cost, we need to
find an optimal flow migration scheme to minimize the total
VM flow migration and communication cost, as defined below.

Problem Formulation of FMDV. We define a flow migration
function as f : [1, 2., ...l]→ [1, 2, ...,m], meaning that the flow
qi will be migrated from its current VNF vnfp(i) to another
VNF vnff(i). f(i) = p(i) means the flow of (vi, v

′
i) does

not migrate. Let Cf
m = µ ·

∑l
i=1 c

(
p(i), f(i)

)
be the total

migration cost of all the l VM flows with flow migration f .
Let Cf

c be the total communication cost of all VM flows after

VM flow migration f . Let Cf
t be the total cost of VM flow

migration and communication after flow migration f . Then,

Cf
t = Cf

m + Cf
c

= µ ·
l∑

i=1

c
(
p(i), f(i)

)
+

l∑
i=1

(
c
(
s(vi), w(p(i))

)
+ c
(
w(p(i)), s(v′i)

))
.

(1)

Let τ(i, f(i)) = µ · c
(
p(i), f(i)

)
+
(
c
(
s(vi), w(p(i))

)
+

c
(
w(p(i)), s(v′i)

))
, which is the total migration and com-

munication cost of flow qi with migration scheme f . Then
Cf

t =
∑l

i=1 τ(i, f(i)). The objective of FMDV is to find
a flow migration f such that Cf

t is minimized under the
processing capacity constraint of VNFs: |{1 ≤ i ≤ l|f(i) =
j}| ≤ κj , 1 ≤ j ≤ m.

EXAMPLE 2: Continuing with Example 1, Fig. 1(c)
shows that if we migrate (v1, v

′
1) to visit vnf2 and (v2, v

′
2) to

visit vnf1, the total communication cost reduces to 1 × 8 +
100×4 = 408. Assuming µ = 10, the incurred flow migration
cost is 10× 2 + 10× 2 = 40. So total cost is 408 + 40 = 448,
a 44.3% decrease compared to 804 before flow migration. �

IV. Algorithmic Solutions of FMDV
In this section, we present one optimal and efficient algo-

rithm and two efficient heuristic algorithms for FMDV.

A. Optimal Algorithm.

First, we show that FMDV in a VDC graph is equivalent to a
minimum cost flow problem (MCF) [4] in a properly converted
flow network. Given a directed graph G′ = (V ′, E′) with a
source node s and a sink node t, each edge (u, v) ∈ E′ has
a capacity c(u, v) as well as a cost d(u, v), and f(u, v) is the
flow on an edge (u, v) ∈ E′. The goal of MCF is to find a flow
function f to minimize the total cost of transmitting y amount
of flow from s to t, i.e. Σ(u,v)∈E′

(
d(u, v) · f(u, v)

)
, subject

to (a) capacity constraint: f(u, v) ≤ c(u, v),∀(u, v) ∈ E′, (b)
flow conservation constraint:

∑
u∈V f(u, v) =

∑
u∈V f(v, u),

for each v ∈ V − {s, t}, and (c) the net flow out of s and
the net flow into t are both y. MCF can be solved efficiently
by many combinatorial algorithms [4]. We adopt the scaling

Q

s t

q1 vnf1

M

(1, 0)

(1, 0)

(1, 0)

(κ1, 0)

(κm, 0)

(1, τ(1,1))

(1, τ(l,m))

(1, τ(i,j))qi

ql

(κj, 0)
vnfj

vnfm

G’(V’ ,E’)

Fig. 2. The flow network G′(V ′, E′) converted from G(V,E) in Fig. 1.

push-relabel algorithm proposed by Goldberg [12], as it has
the highest performance codes available for such network op-
timization. It has the time complexity of O(A2 ·B ·log(A·C)),
where A, B, and C are the number of nodes, number of edges,
and maximum edge capacity of G′(V ′, E′).

Fig. 2 shows how to convert the VDC graph G(V,E) in
Fig. 1 into a new flow network G′(V ′, E′). Let V ′ = {s} ∪
Q∪M ∪{t}, where s and t are the new source and sink node,
and E′ = {(s, qi) : qi ∈ Q} ∪ {(qi, vnfj) : qi ∈ Q, vnfj ∈
M} ∪ {(vnfj , t) : vnfj ∈ M}. For each edge (s, qi), set its
capacity as 1 and cost as 0. For each edge (vnfj , t), set its
capacity as κj and cost as 0. For each edge (qi, vnfj), set its
capacity as 1 and cost as τ(i, j). Finally, we set the supply at s
and the demand at t as l, indicating that there could be l VM
flow migrations. This conversion technique and MCF-based
solution are similar to those used in [6].

Theorem 1: The FMDV is equivalent to MCF in G′.
Proof: We show that by applying MCF upon G′(V ′, E′), it
achieves all three requirements needed for optimal VM flow
migration. First, each of the l VM flows is migrated to exactly
one VNF instance. As the amount of supply at s is l while
the capacity of each edge (s, qi) is one, a valid flow of l
amount from s to t must have one amount on each edge (s, qi),
1 ≤ i ≤ l. Due to flow conservation at any node qi, one
amount of flow thus comes out of qi and goes into exactly
one of the VNF instances vnfj . This results in each VM flow
is migrated to exactly one VNF instance. Second, as the edge
capacity of (vnfj , t) is κj , it guarantees that vnfj does not
take more than κj VM flows. Third, such a migration scheme
achieves the minimum total communication and migration cost
for all the l VM flows. As the cost on edge (qi, vnfj) is τ(i, j),
the total communication and migration cost of flow qi when
it is migrated to VNF vnfj , applying MCF algorithm upon
G′(V ′, E′) thus gives the minimum total cost.

B. Benefit-based Heuristic Algorithms.

We first introduce a key concept used in our algorithms.
Definition 1: (Benefit of Flow Migration.) Given a VDC

graph G(V,E) and initial flow assignment p(i), the benefit of
migrating qi from vnfp(i) to another VNF vnfj , denoted as
Bji , is the total cost reduction resulted from this flow migration.

 0

 500000

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

 3×10
6

 3.5×10
6

 4×10
6

100 300 500 700 900

T
o

ta
l
C

o
s
t

Number of VM Flows

NoMigration
Benefit2
Benefit1
MinCost

Fig. 3. Varying number of VM flows l; k = 8, m = 5, and µ = 100.

That is, Bji equals qi’s communication cost reduction due to
its migration minus its incurred flow migration cost. Bji =
ci,p(i) − ci,j − µ · c(w(p(i)), w(j)). �

Benefit-based Algorithm 1. Algo. 1 works as follows. First,
we sort all the VM flows in the non-ascending order of their
traffic rates. Then, we migrate each VM flow to a VNF that
gives the largest benefit without violating this VNF’s capacity.
This continues until all the VM flows are migrated. Note that
as the VM flows are initially assigned to the VNFs thus VNFs
could be in their full capacity, we assume that the VNFs are
initially empty in order to migrate the flows. However, this
does not affect the correctness of our algorithm as finally each
flow is migrated to only one VNF and the number of flows
migrated to any VNF instance does not exceed its processing
capacity. Finding the minimum communication cost between
of all flows take O(l · |V |2 · log|V |). Migrating VM flows to
VNF instances takes O(l ·m), where m is bounded by |V |.
Therefore the time complexity of Algo. 1 is O(l ·|V |2 ·log|V |).

Algorithm 1: Benefit-Based Algorithm 1.
Input: A VDC G(V,E) with l VM flows and m VNFs.
Output: Flow migration scheme f(i) that qi is migrated

from vnfp(i) to vnff(i), and the resulted total
communication and flow migration cost Cf

t .
Notations: p(i): qi’s initial assigned VNF vnfp(i);
f(i): (vi, v

′
i) migrates to VNF vnff(i);

loadj : the current load of vnfj , initially 0;
Bi: the largest benefit of migrating qi, initially −∞;

1. Compute Cp
c , the total communication cost under initial

VNF assignment p(i);
2. Sort all VM flows in the non-ascending order of their

traffic rates. WLOG, assume λ1 ≥ λ2, ...,≥ λl;
3. for (i = 1 to l)
4. Bi = −∞;
5. for (j = 1 to m)
6. if (loadj < κj)
7. Bji = ci,p(i) − ci,j − µ · c(w(p(i)), w(j));
8. if (Bji > Bi)
9. Bi = Bji , f(i) = j;
10. end if;
11. end if;

12. end for;
13. Cp

c = Cp
c − Bi;

14. loadf(i)++;
15. end for;
16. Cf

t = Cp
c ;

17. RETURN {f(1), f(2), ...f(m)} and Cf
t .

Benefit-Based Algorithm 2. In Algo. 2, for VNF instance
vnfj , we migrate κj VM flows to vnfj that have not been
migrated and that those migrations give the top κj maximum
benefits when visiting vnfj . The running time of Algo. 2 is
again O(l · |V |2 · log|V |).

Algorithm 2: Benefit-Based Algorithm 2.
Input: A VDC G(V,E) with l VM flows and m VNFs
Output: Flow migration scheme f(i) that qi is migrated

from vnfp(i) to vnff(i), and total communication
and flow migration cost Cf

t .
Notations: p(i): qi’s initial assigned VNF vnfp(i);
f(i): (vi, v

′
i) migrates to VNF vnff(i);

F j : the set of VM flows migrated to vnfj ;
migratedi: true if qi has already migrated, initially false;

1. Compute Cp
c , the total communication cost under initial

VNF assignment p(i);
2. for (j = 1 to m)
3. F j = φ;
4. for (i = 1 to l)
5. if (migratedi == false)

6. Bji = ci,p(i) − ci,j − µ · c(w(p(i)), w(j));
7. F j = {

(
i,Bji

)
} ∪ F j ;

8. end if;
9. end for;
10. Sort F j in the non-ascending order of Bji ;
11. F j = {(x1,Bjx1

), (x2,Bjx2
), ...}, where Bjx1

≥ Bjx2
...;

12. for (k = 1 to κj)
13. Cp

c = Cp
c − B

j
xk

;
14. f(xk) = j;
15. migratedxk

= true;
16. end for;
17. end for;
18. Cf

t = Cp
c ;

19. RETURN {f(1), f(2), ...f(m)} and Cf
t .

V. Performance Evaluation
Simulation Setting. We investigate the performances of
benefit-based algorithms viz. Algo. 1 and Algo. 2 (referred to
as Benefit1 and Benefit2), and minimum cost flow algorithm
(referred to as MinCost). We compare their total costs of VM
flow migration and communication with the case without flow
migration, which is referred to as NoMigration. We consider
small k = 8 VDCs with 128 PMs and large k = 16 VDCs
with 1024 PMs. The VMs are randomly placed on the PMs
and the VNF instances are randomly placed on the switches.
Each data point in all the plots is an average of 10 runs, and
the error bars indicate 95% of the confidence interval. For the

 0

 500000

 1×10
6

 1.5×10
6

 2×10
6

 2.5×10
6

 3×10
6

1 5 10

T
o

ta
l
C

o
s
t

Number of VNFs

NoMigration
Benefit2
Benefit1
MinCost

Fig. 4. Varying number of VNF instances m; k = 8, l = 500, and µ = 100.

small k = 8 VDC, we set the VNF processing capacity κj as
d l
me, a most stressful flow migration scenario wherein each

VNF is operating around its full processing capacity. For the
large k = 16 VDC, we set κj as 2× d l

me as more resources
are available in large VDCs.

Varying Number of VM Flows l. Fig. 3 varies l from 100,
300, ..., to 900 while fixing the number of VNF instances m
as 5 and the flow migration coefficient µ as 100. The traffic
rates of all the VM flows are random numbers in [0, 1000].
The total cost of each algorithm increases with the increase
of l, as more VM flows in general incur more network traffic.
We also observe that all the three algorithms viz. Benefit1,
Benefit2, and MinCost yield less total network cost compared
to NoMigration, demonstrating that our VM flow migration
algorithms are effective in reducing network traffic.

Varying Number of VNF Instances m. Fig. 4 investigates
the effect of m on the total network cost. We have several
observations. First, when there is only one VNF instance, the
three algorithms perform the same as the NoMigration, as all
the VM flows must visit the same VNF independent of the
algorithms. Second, when m = 5 and 10, our three algorithms
perform better than NoMigration by yielding lower network
cost, with MinCost performing the best. With the increase
of m, the performance improvement of our algorithms upon
NoMigration increases, showing that our algorithms are indeed
effective in reducing network traffic. Finally, the total costs of
all algorithms decrease with the increase of m. Although the
VNFs are operating in their full processing capacity in all
cases, as VNFs are randomly placed into the network, there
are more VNFs (with fewer capacities) in the network when m
is large. This gives VM flows more options to choose which
VNFs to migrate to in order to reduce the traffic costs.

Dynamic Cloud Traffic in VDCs. Next, we investigate how
our algorithms perform in a dynamic scenario where the
traffic rates of VM flows are constantly changing. As MinCost
works best among the three algorithms, we compare MinCost
with NoMigration for 10 epochs. At the beginning of each
epoch, all the VM flows randomly change their traffic rates
to new values in [0,1000]. Then, MinCost executes and finds
an optimal flow migration scheme while NoMigration simply
recalculates the total communication cost of all the VM flows.
We set migration coefficient µ as 100 and 200. Fig. 5 shows

 1.55×10
6

 1.6×10
6

 1.65×10
6

 1.7×10
6

 1.75×10
6

 1.8×10
6

 1.85×10
6

 1.9×10
6

 1.95×10
6

 2×10
6

 2.05×10
6

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l
C

o
s
t

Epoch

NoMigration
MinCost, µ =100
MinCost, µ =200

Fig. 5. Dynamic network traffic in 10 epochs; k = 8, l = 500, m = 5.

that MinCost outperforms NoMigration constantly in all the
epochs. Further, it is able to reduce more network costs at
µ = 100 compared to µ = 200, due to smaller overhead
cost of flow migration at µ = 100. MinCost is able to reduce
network cost by around 20% compared to NoMigration.

Performances in Large-Scale VDCs. Finally, Fig. 6 in-
vestigates the performances of our algorithms in large-scale
VDCs with large numbers of PMs, VM flows, and VNFs. We
consider k = 16 VDCs of 1024 PMs and vary l from 1000
to 3000 while fixing m as 20 and µ as 100. It shows that
all our three designed algorithms are able to reduce network
traffic compared to NoMigration. In particular, the MinCost
reduces up to 28% of network cost compared to NoMigration.
This shows that our VM flow migration algorithms achieve
efficient traffic mitigation in large-scale VDCs as well.

VI. Conclusion and Future Work
We proposed a new flow migration problem called FMDV

in dynamic and VNF-enabled cloud data centers. The goal of
FMDV is to optimize network resources such as bandwidth
and energy consumption by reducing the network traffic via
VM flows migration among different VNFs. We proposed an
optimal and efficient minimum cost flow-based algorithm and
two benefit-based efficient heuristics to solve the FMDV. We
showed via extensive simulations that they are all effective
traffic-mitigation techniques, reducing the network traffic by
up to 28% compared to the case without flow migration. For
future work, we will consider SFCs wherein VM traffic must
traverse a chain of VNFs with different functions. We will also
consider that the processing capacities of VNFs are in terms
of total traffic rates they can process, not the number of VM

 0

 2×10
6

 4×10
6

 6×10
6

 8×10
6

 1×10
7

 1.2×10
7

 1.4×10
7

1000 1500 2000 2500 3000

T
o
ta

l
C

o
s
t

Number of VM Flows

NoMigration
Benefit2
Benefit1
MinCost

Fig. 6. Performances in large-scale VDCs of k = 16, m = 20, µ = 100.

flows assumed in the current work. How to design an efficient
flow migration scheme to minimize network traffic becomes a
new and challenging problem.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants 1911191,
1923956, 2034030, and 2036143.

REFERENCES

[1] Zoom cloud meetings. https://zoom.us/.
[2] Zoom meeting connector core concepts. https://support.zoom.us/hc/en-

us/articles/201363113-Meeting-Connector-Core-Concepts.
[3] P. Aguilera, C. Gonzalez, and B. Tang. Achieving virtual network

function load-balanced flow migration in dynamic cloud data centers
centers. In Proc. of the First Computer Science Conference for CSU
Undergraduates (CSCSU 2021).

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, 2008.

[6] M. Alqarni, A. Ing, and B. Tang. Lb-map: Load-balanced middlebox
assignment in policy-driven data centers. In Proc. of IEEE ICCCN 2017.

[7] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, 2010.

[8] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Plan: Joint
policy- and network-aware vm management for cloud data centers. IEEE
Transactions on Parallel and Dis. Sys., 28(4):1163–1175, 2017.

[9] A. Jukan F. Carpio, S. Dhahri. Vnf placement with replication for load
balancing in nfv networks. In Proc. of IEEE ICC 2017.

[10] X. Fei, F. Liu, H. Xu, and H. Jin. Adaptive vnf scaling and flow routing
with proactive demand prediction. In Proc. of IEEE INFOCOM 2018.

[11] H. Flores, V. Tran, and B. Tang. Pam & pal: Policy-aware virtual
machine migration and placement in dynamic cloud data centers. In
Proc. of IEEE INFOCOM 2020.

[12] A. V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. J. Algorithms, 22:1–29, 1997.

[13] P. Khani, B. Tang, J. Han, and M. Beheshti. Power-efficient virtual
machine replication in data centers. In Proc. of IEEE ICC 2016.

[14] R. J. Martins, C. B. Both, J. A. Wickboldt, and L. Z. Granville. Virtual
network functions migration cost: from identification to prediction.
Computer Networks, 181(9), 2020.

[15] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and re-
search challenges. IEEE Communications Sur. and Tut., 18(1), 2015.

[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
Simplefying middlebox policy enforcement using sdn. In Proc. of ACM
SIGCOMM 2013.

[17] K. Qu, W. Zhuang, Q. Ye, X. Shen, X. Li, and J. Rao. Dynamic flow
migration for embedded services in sdn/nfv-enabled 5g core networks.
IEEE Transactions on Communications, 68(4):2394–2408, 2020.

[18] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In Proc. of SIGCOMM 2015.

[19] C. Sun, J. Bi, Z. Meng, T. Yang, X. Zhang, and H. Hu. Enabling
nfv elasticity control with optimized flow migration. IEEE Journal on
Selected Areas in Communications, 36(10):2288–2303, 2018.

[20] B. Tang, N. Jaggi, and M. Takahashi. Achieving data k-availability in
intermittently connected sensor networks. In Proc. of the International
Conference on Computer Communications and Networks (ICCCN’14).

[21] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen. Virtual network
function migration based on dynamic resource requirements prediction.
IEEE Access, 7:112348–112362, 2019.

[22] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian. Transparent flow
migration for nfv. In Proc. of the ICNP, 2016.

[23] X. Zhang, C. Wu, Z. Li, and F. C.M. Lau. Proactive vnf provisioning
with multi-timescale cloud resources: Fusing online learning and online
optimization. In Proc. of IEEE INFOCOM 2017.

[24] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula. Steering: A software-defined networking for inline
service chaining. In Proc. of IEEE ICNP 2013.

