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Data Caching under Number Constraint
Himanshu Gupta and Bin Tang

Abstract— Caching can significantly improve the efficiency of
information access in networks by reducing the access latency
and bandwidth usage. However, excessive caching can lead to
prohibitive system cost and performance degradation. In this
article, we consider the problem of caching a data item in a
network wherein the data item is read as well as updated by
other nodes and there is a limit on the number of cache nodes
allowed. More formally, given a network graph, the read/write
frequencies to the data item by each node, and the cost of
caching the data item at each node, the problem addressed in
this article is to selected a set of P nodes to cache the data
item such that the sum of the reading, writing (using an optimal
Steiner tree), and storage cost is minimized. For networks with
a tree topology, we design an optimal dynamic programming
algorithm that runs in O(|V |3P 2), where |V | is the size of
the network and P is the allowed number of caches. For the
general graph topology, where the problem is NP-complete, we
present a centralized heuristic and its distributed implementation.
Through extensive simulations in general graphs, we show that
the centralized heuristic performs very close to the exponential
optimal algorithm for small networks, and for larger networks,
the distributed implementation and the dynamic programming
algorithm on an appropriately extracted tree perform quite close
to the centralized heuristic.

I. Introduction

In recent years, with the advent of wireless technology and
file sharing applications, the traditional client-server model has
begun to lose its prominence. Instead, information sharing
by spontaneously connected nodes has emerged as a new
framework. In such networks, all network nodes are equal in
terms of capacity and functionality. Moreover, the ownership
of the files is not critical, and a file (data item) does not belong
to a specific node and hence, is read and written by multiple
nodes in the network. Caching an object at various network
nodes can play an important role in improving overall system
performance by drastically reducing the time to read an object.

In this article, we address the data caching problem in above
described multi-hop networks wherein the given data item may
be read and written by multiple other network nodes, and the
objective is to minimize the total reading, writing, and storage
cost by placing a limited number of caches. Here, the cost
of reading the data item by a node is defined as the distance
to the closest cache node times the read frequency, the cost
of writing is defined as the cost of the minimum Steiner tree
over the writing node and all the cache nodes times the write
frequency, and the storage cost is the given cost of caching
the data item at the node.

The rest of the paper is organized as follows. In Section II,
we present our network model, formulate the data caching
problem addressed in this article, and present an overview of
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the related work. Section III presents the optimal dynamic
programming algorithm for tree topology networks. In Sec-
tion IV, we design centralized and distributed heuristics for
general graph networks. Simulation results are presented in
Section V, and concluding remarks in Section VI.

II. Data Caching Problem Formulation

In this section, we present our model of the network, give
a formal definition of the problem, and present a discussion
on related work. We use the term cache node to refer to a
network node that caches the data item.

Network Model and Notations. We model the network as a
connected general graph, G(V, E), where V is the set of
nodes/vertices, and E is the set of edges. There is a single data
item in the network, which is to be cached at selected network
nodes. For each node i ∈ V , the frequency of reading the data
item is ri, the frequency of writing the data item is wi, and
the cost of caching (i.e., storing) the data item at node i is
si. Let dij denote the shortest distance (in number of hops)
between any two nodes i, j, and let d(i, M ) = minj∈M dij

be the shortest distance from i to some node in a set of nodes
M . Also, let S(X) be the optimal cost of a Steiner tree over
the set of nodes X . Given a set of cache nodes M where the
data item is cached, the total cost of reading the data item by
a node i is rid(i, M ), while the cost of writing by node i is
wiS(M ∪ {i}). Note that we do not assume a server for the
data item in the network, since in our model, a server can be
looked upon as a predetermined cache node.

Data Caching Problem. The data caching problem in the
above network model can be defined as follows. Given a
network graph G(V, E) and a number P (1 ≤ P ≤ |V |), select
at most P cache nodes such that the total (reading, writing,
and storage) cost is minimized. For a given network graph
G and a set of cache nodes M , the total cost is denoted by
τ (G, M ) and is defined as:

τ (G, M ) =
∑

i∈V

rid(i, M ) +
∑

i∈V

wiS({i} ∪M ) +
∑

i∈M

si (1)

In the above equation, the terms on the right hand side
represent total read cost, total write cost, and total storage
cost respectively. Essentially, the data caching problem is to
select a set of cache nodes M (|M | ≤ P ) such that the total
cost τ (G, M ) is minimized.

Related Work. When there are no writers and P = |V |,
the data caching problem is exactly the same as well-known
facility-location problem. When there are only read costs, the
data caching problem is the well-known P -median problem.
Both the problems are NP-hard, and a number of constant-
factor approximation algorithms have been developed for each
of the problems [1], [6], [2], under the assumption that
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Fig. 1. Subtree Notations.

the edge costs in the graph satisfy the triangular inequality.
Without the triangular inequality assumption, either problem is
as hard as approximating the set cover [5], [10], and therefore
cannot be approximated better than O(log |V |) unless NP ⊆
P̃. Several papers in the literature circumvent the hardness of
the facility-location and P -median problems by assuming that
the network has a tree topology [9], [8], [11].

The related optimal residence set problem has been studied
extensively [3]. Wolfson and Milo [13] show that the optimal
residence set problem without storage cost is NP-hard for
general topologies. They provide efficient optimal algorithms
for complete, tree, and ring topologies. However, their write
policy uses the minimum spanning tree of the distance graph
of the replica nodes. In comparison, our problem formulation
considers storage cost and uses a write policy based on the
optimal Steiner tree over the writer and the set of cache nodes.

The work that is most closely related with ours is that by
Kalpakis et al. [7]. They considered the problem of finding
a Steiner-optimal P-replica set in a tree topology in order to
minimize the sum of reading, writing, and storing costs. They
developed a very complicated (more than 20 pages of case
analysis) optimal dynamic programming algorithm that runs
in O(|V |6P 2) time and finds a Steiner-optimal replica set of
size exactly P in tree topologies. In our understanding, their
work gives a O(|V |6P 3)-time algorithm for finding a Steiner-
optimal replica set of size at most P in trees. In this article,
we essentially address the same problem and design a much
simpler dynamic programming optimal algorithm that runs in
O(|V |3P 2) time and finds an optimal set of caches of size
at most P . In addition, we design centralized and distributed
heuristics to solve the problem in general graph topologies,
and show through extensive simulations that our proposed
algorithms perform well in general graph topologies.

III. Data Caching in Tree Topology

In this section, we address the data caching problem in
the special case of a tree topology, and present an optimal
dynamic programming algorithm. We start with some subtree
notations (as in [9]) that are needed to describe our dynamic
programming algorithm.

Subtree Notations. Let G(V, E) be a given network tree, and
let r be a network node (i.e., r ∈ V ). Let Tr denote the entire
network tree rooted at r. In general, we use Tu to denote the
subtree rooted at u in the tree Tr . We use Tu to also represent
the set of nodes in the subtree Tu. Now, consider two nodes
v and u in the network tree, such that v in an ancestor of
u in Tr . Let π(v, u) denote the unique path from node u to
node v in Tr . As shown in Figure 1, let Lv,u be the subtree
in Tv consisting of nodes on the left of the path π(v, u), but
excluding the nodes on the path π(v, u). Also, let Rv,u be the
subtree consisting of nodes on the right of the path π(v, u), but
including the nodes on the path π(v, u) except for u. Thus, the
tree Tv is partitioned into three disjoint subtrees, viz., Lv,u,
Tu, and Rv,u.

Dynamic Programming Algorithm. Our dynamic program-
ming approach changes the write frequencies of the subtree
nodes, but keeps the read and storage frequencies unchanged.
Thus, for presentation of our dynamic programming solution,
we need to represent nodes’ write frequencies in a given
subtree as a separate parameter.

Notation Γ. Let us use Γ(Tv,Wv, p) to denote the optimal
(minimum) total cost for the subtree Tv using at most p caches
including v, wherein the parameter Wv = {(i, w̄i)|i ∈ Tv}
represents the write frequencies of nodes in Tv and p > 0.
Note that the write frequencies w̄i may be different from the
original write frequencies wi given for the network graph G,
while the nodes’ read frequencies and storage costs are the
same as original given values and are implicit in the notation
Tv . Also, since we have assumed that the root v is necessarily
a cache node, we can only place at most p − 1 additional
caches.

Below, we present a recursive dynamic programming equa-
tion for computing Γ(Tv,Wv, p) in terms of optimal cost Γ
over smaller subtrees contained in Tv . Note that the original
problem of determining the optimal cost due to placement
of at most P caches in the given network can be solved
by evaluating minr∈V Γ(Tr,WG, P ), where V is the set of
all nodes in the network and WG = {(i, wi)|i ∈ V } is
the complete set of original write frequencies. Our given
recursive equation can be easily modified to compute the
actual set of optimal cache nodes, but we present the equation
for computing the optimal cost for sake of simplicity of
presentation.

Recursive Equation. Given a set of selected cache nodes
(including v) in Tv , let u be the leftmost deepest cache node
(other than v) in Tv . More formally, let u be the cache node
in Tv such that there are no cache nodes in Lv,u or on
π(u, v) − {u, v}. Recall that π(u, v) is the path connecting
u and v in the given network tree. To optimally place upto p

caches in Tv , we try to optimally place upto q caches in Tu and
p−q caches in Rv,u, where q ≤ p−1. The recursive equation
below defines Γ(Tv,Wv, p) in terms of Γ(Tu,Wu, q) and
Γ(Rv,u,Wv,u, p−q) for appropriately defined Wu and Wv,u.
The equation is further explained in the following paragraph,
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and its correctness is formally proved in Theorem 1. Let

Wv = {(i, w̄i)|i ∈ Tv}, and

C1 =
∑

i∈Tv

(ridiv + w̄idiv) + sv.

Then, the recursive equation for computing Γ(Tv,Wv, p) is
given by:

Γ(Tv,Wv, p) =














































C1 if p = 1

min

(

C1, minu∈(Tv−{v}) min1≤q≤p−1

(

∑

i∈Lv,u
(ridiv + w̄idiv)

+Γ(Tu,Wu, q)
+Γ(Rv,u,Wv,u, p− q)

+
∑

i∈Tv

w̄idvu

))

if p > 1

(2)

Above,

Wu={(i, w̄i)|i ∈ (Tu − {u})} ∪ {(u,
∑

i∈(Tv−Tu)∪{u}

w̄i)} and

Wv,u={(i, w̄i)|i ∈ (Rv,u − {v})} ∪ {(v,
∑

i∈(Tv−Rv,u)∪{v}

w̄i)}.

Note that above recursive equation is for an arbitrary subtree
in the original graph, and hence, also applies to a subtree of
the kind Rv,u.

Explanation. We now explain the above recursive equation
(Equation 2) in more detail. When p = 1, no additional caches
can be placed since v is already a cache node. Thus, the
optimal total cost Γ(Tv,Wv, p) is C1, the total cost incurred by
the nodes in Tv when the only cache node is v. For the general
case (p > 1), either v is still the only cache node (in which
case the total optimal cost is still C1) or there are additional
cache nodes in Tv . In the latter case, the deepest leftmost cache
node u in Tv exists. Then, the optimal cost Γ(Tv,Wv, p) is
computed by iterating over all values of q (1 ≤ q ≤ p − 1)
and nodes u ∈ (Tv − {v}). The total read and storage costs
of nodes in Tv are fully embedded in the first three terms for
nodes in Lv,u, Tu, and Rv,u respectively. Since there are no
cache nodes in Lv,u, the storage cost of nodes in Lv,u is zero
and the read requests are satisfied by v. The storage and read
cost of nodes in Tu are subsumed in Γ(Tu,Wu, q), since the
storage cost of each node is independent of other caches and
the read requests of nodes in Tu are satisfied by cache nodes
(including u) in Tu only. Similarly, the storage and read cost
of nodes in Rv,u are subsumed in Γ(Rv,u,Wv,u, p − q).

The cost of the Steiner tree spanning over a writer node
i and the cache nodes M of Tv can be divided into the
cost of Steiner tree spanning over cache nodes in Tu, cost
of Steiner tree spanning over cache nodes in Rv,u, the cost of
the path π(v, u), and the cost of the shortest path connecting i

to the closest cache node. Thus, the total write cost over cache
nodes in Tv is embedded in multiple terms of Equation 2, viz.,
w̄idiv, Γ(Tu,Wu, q), Γ(Rv,u,Wv,u, p−q), and

∑

i∈Tv
w̄idvu.

The above claim of write cost division forms the core of the
proof of the following theorem.

Theorem 1: Equation 2 correctly represents the optimal
total cost Γ(Tv,Wv, p) for a given Tv , Wv and p.

Proof: It is easy to see that the Equation 2 is correct for
the case of p = 1. Below, we assume that p > 1.

Let Mv be a set of cache nodes in Tv , where v ∈ Mv . Let
|Mv| > 1; we will incorporate the case when |Mv| = 1 in the
end. Let u be the leftmost deepest (as defined before) cache in
Tv; since |Mv| > 1, the node u exists. Consider the Lv,u, Tu,
and Rv,u subtrees, as defined before. Let Mv = Mu ∪ Mv,u,
where Mu and Mv,u denote the cache nodes in Tu and Rv,u

respectively.
Given a subtree Tx, set of nodes’ write frequencies W , and

a set of cache node M . Let w(Tx,W, M ) denote the total
write cost incurred by nodes in Tx for writing to caches in M

(not necessarily contained in Tx) at write frequencies given
in W . Let r(Tx, M ) denote the total reading cost incurred by
the nodes in Tx using the caches in M , and s(Tx, M ) denote
the total storage cost of the caches nodes contained in Tx.

Now, the total cost τ (Tv,Wv, Mv) in Tv for a given set of
write frequencies Wv = {(i, w̄i)|i ∈ Tv} and a set of cache
nodes Mv is given by

τ (Tv,Wv, Mv) = w(Tv,Wv, Mv) + r(Tv, Mv) + s(Tv , Mv),

and can be further manipulated as below. Recall that S(M )
denotes the cost of the optimal Steiner tree spanning over a
set of nodes M , and d(i, M ) denotes the shortest distance
between i and a node in M .

τ (Tv,Wv, Mv)

= w(Tv,Wv, Mv) + r(Tv, Mv) + s(Tv , Mv)

= w(Tu,Wv, Mv) + r(Tu, Mu) + s(Tu, Mu)

+ w(Rv,u,Wv, Mv) + r(Rv,u, Mv,u) + s(Rv,u, Mv,u)

+ w(Lv,u,Wv, Mv) + r(Lv,u, {v})

=
∑

i∈Tu

w̄i(d(i, Mu) + S(Mv)) + r(Tu, Mu) + s(Tu, Mu)

+
∑

i∈Rv,u

w̄i(d(i, Mv,u) + S(Mv)) + r(Rv,u, Mv,u)

+ s(Rv,u, Mv,u)

+
∑

i∈Lv,u

w̄i(div + S(Mv)) +
∑

i∈Lv,u

ridiv

Substituting S(Mv) = S(Mu)+S(Mv,u)+duv (since, u is the
leftmost deepest cache node of Mv) into the above equation
and grouping terms of w̄i together, we get:

τ (Tv, Wv, Mv)

=
∑

i∈Tu

w̄id(i, Mu) +
∑

i∈Tv

w̄iS(Mu) + r(Tu, Mu) + s(Tu, Mu)

+
∑

i∈Rv,u

w̄id(i, Mv,u) +
∑

i∈Tv

w̄iS(Mv,u) + r(Rv,u, Mv,u)

+ s(Rv,u, Mv,u)

+
∑

i∈Lv,u

(ridiv + w̄idiv) +
∑

i∈Tv

w̄idvu (3)
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In the above Equation 3, let us manipulate the first four terms.
∑

i∈Tu

w̄id(i, Mu) +
∑

i∈Tv

w̄iS(Mu) + r(Tu, Mu) + s(Tu, Mu)

=
∑

i∈Tu

w̄id(i, Mu) +
∑

i∈Tu

w̄iS(Mu) +
∑

i/∈Tu

w̄iS(Mu)

+ r(Tu, Mu) + s(Tu, Mu)

= τ (Tu,Wv, Mu) +
∑

i/∈Tu

w̄iS(Mu)

= τ (Tu,Wu, Mu), (4)

where

Wu = {(i, w̄i)|i ∈ (Tu − {u})} ∪ {(u,
∑

i∈(Tv−Tu)∪{u})

w̄i)}.

Similarly, we get
∑

i∈Rv,u

w̄id(i, Mv,u) +
∑

i∈Tv

w̄iS(Mv,u) + r(Rv,u, Mv,u)

+ s(Rv,u, Mv,u)

= τ (Rv,u,Wv,u, Mv,u), (5)

where

Wv,u = {(i, w̄i)|i ∈ (Rv,u − {v})} ∪ {(v,
∑

i∈(Tv−Rv,u)∪{v}

w̄i)}.

Now, substituting Equation 4 and Equation 5 into Equation 3,
we get

τ (Tv,Wv, Mv)

= τ (Tu,Wu, Mu)

+ τ (Rv,u,Wv,u, Mv,u)

+
∑

i∈Lv,u

(ridiv + w̄idiv) +
∑

i∈Tv

w̄idvu (6)

Now, for a given v and u, the last two terms in Equation 6
are independent of Mv . Thus, the optimal set Mv (where
1 < |Mv| ≤ p) that minimizes τ (Tv,Wv, Mv) can be chosen
by considering all possible values of u and q = |Mu|,
and for each such pair of values, selecting optimal sets of
cache nodes Mu and Mv,u that minimize τ (Tu,Wu, Mu)
and τ (Rv,u,Wv,u, Mv,u) in Tu and Rv,u respectively. Finally,
pick the pair of values u and q that minimizes the total cost
τ (Tv,Wv, Mv) using Equation 6 and optimal cache sets Mu

and Mv,u. The recursive equation (Equation 2) does exactly
the above to compute the optimal cost, except it also considers
the case |Mv| = 1 when the total cost incurred in C1.

Time Complexity. As mentioned before, to compute the
minimum total cost of placement of P caches in the original
given graph G, we need to compute minr∈V Γ(Tr,WG, P )
where V is the set of all vertices and WG = {(i, wi)|i ∈ V }
represents the original given write frequencies. To compute
Γ(Tr ,WG, P ) for all r, we precompute all Γ(Tx,Wx, p) and
Γ(Rx,y,Wx,y, p) as defined below.

Each edge (x, x′) of the network tree divides the graph into
two subtrees. Consider the subtree Tx that contains x, and
define Wx as

Wx = {(i, wi)|i ∈ (Tx − {x})} ∪ {(x,
∑

i∈(V−Tx)∪{x})

wi)}.

We precompute Γ(Tx,Wx, p) for all values of p and edges
(x, x′) in the network graph. In addition, we also precompute
Γ(Rx,y,Wx,y, p) for all values of p and y ∈ Tx, where

Wx,y = {(i, wi)|i ∈ (Rx,y−{x})}∪{(x,
∑

i∈(V−Rx,y)∪{x})

wi)}.

It can be shown that the above set of Γ values can all
be computed in the order of subtree sizes in a dynamic
programming manner using Equation 2. Once the above values
have been computed, Γ(Tr ,WG, P ) for each r ∈ V can
then be computed using the same Equation 2. Thus, we need
to compute P |V |2 values, where computation of each value
takes O(|V |P ) time. Here, we assume that the first and last
terms of Equation 2 are already precomputed (using O(|V |2)
preprocessing time). Thus, the total time complexity of our
dynamic programming algorithm is O(P 2|V |3) where |V | is
the size of network and P is the number of cache nodes
allowed.

IV. General Graph Topology

In this section, we address the data caching problem in a
general graph topology. In a general graph, the data caching
problem is NP-hard, since it reduces to the facility-location
problem when the write frequencies are zero. Here, we first
design a centralized greedy algorithm, and then present a
distributed implementation of the centralized algorithm. We
have used similar techniques in our recent work [12] on a
related problem of data caching under update cost constraint.
We will show through simulations that the centralized heuristic
developed in this section perform close to the optimal solution
in small general graph networks.

A. Centralized Greedy Algorithm

We now present a polynomial-time Centralized Greedy
Algorithm for the data caching problem. We start with defining
the concept of a benefit of a set of nodes.

Definition 1: (Benefit of Node) Let M be the set of nodes
that have been already selected as cache nodes by the Cen-
tralized Greedy Algorithm at some stage. The benefit of an
arbitrary node A, denoted as β(A, M ), is the reduction in total
cost due to selection of A as a cache node. More formally,
β(A, M ) = τ (G, M ) − τ (G, M ∪ {A}), where τ (G, M ) is
the total cost of selecting a set of cache nodes M in graph G,
as defined in Equation 1. �

Note that since the minimum-cost Steiner tree problem is
NP-hard, we adopt the 2-approximation Steiner tree algo-
rithm [4] to compute writing costs.

Based on the above definition of benefit, our proposed
Greedy Algorithm can be described as follows. Let M be the
set of cache nodes selected at any given stage. Initially, M is
empty. At each stage of the Greedy Algorithm, we add to M

the node A that has the highest benefit with respect to M at
that stage. The process continues until P caches nodes have
been selected or there is no node with positive benefit. The
running time of the above described algorithm is O(P |V |5),
since the time to compute a 2-approximation Steiner tree over
a set of s nodes is O(s|V |2).
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B. Distributed Greedy Algorithm

In this subsection, we present a distributed localized imple-
mentation of the Centralized Greedy Algorithm.

To facilitate communication between nodes, we assume
presence of a coordinator in the network. Our Distributed
Greedy Algorithm consists of rounds. During each round, each
non-cache node A estimates the benefit (as described in the
next paragraph) of caching the data item at A. If the benefit
estimate at a node A is positive and is the maximum among
all its non-cache neighbors, then A decides to cache the data
item. At the end of a round, the coordinator node gathers in-
formation about the cache nodes newly added. The number of
cache nodes that can be further added is then broadcast by the
coordinator to the entire network. The algorithm terminates,
when either more than P cache nodes have already been added
or no more cache nodes were added in a round.

Estimation of β(A, M ). A non-cache node A considers only
its “local” traffic and estimation of distance to the nearest
cache node, to estimate β(A, M ), the benefit with respect to
an already selected set of cache nodes M . In particular, a node
A observes its local traffic, i.e., the data access requests that A

forwards to other cache nodes. Of course, the local traffic of
a node includes its own data requests. We estimate the benefit
of caching the data item at A as

β(A, M ) = fd − sa − d
∑

i∈V

wi,

where f is the frequency of the local data access traffic
observed at A, d is the distance to the nearest cache from
A (which is computed as shown in the next paragraph), sa

is the storage cost at A, and wi is the write frequency at
a node i in the network. In the above equation, we have
estimated the increase in total writing cost due to caching at
A as d

∑

i∈V wi. The local traffic f can be computed if we
let the normal network traffic (using only the already selected
cache nodes in previous rounds) run for some time between
successive rounds.

Estimation of d – the distance to the nearest cache from A.
Let A be a non-cache node, and TA be the shortest path tree
from the coordinator to the set of communication neighbors
of A. Let C ∈ M be the cache node in TA that is closest to
A. In the above Distributed Greedy Algorithm, we estimate d

to be d(A, C), the distance from A to C . The value d(A, C)
can be computed in a distributed manner at the start of
each round as follows. As mentioned before, the coordinator
initiates a new round by broadcasting a packet containing
the remaining number constraint to the entire network. If
we append to this packet all the cache nodes encountered
on the way, then each node should get the set of cache
nodes on the shortest path from the server to itself. Now,
to compute d(A, C), each node only needs to exchange the
above information with all its immediate neighbors.

V. Performance Results

In this section, we evaluate the relative performances of the
various cache placement algorithms proposed in our article.
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Fig. 2. Comparison of Centralized Greedy Algorithms with the optimal
algorithm. Here, the network size is 50, R (the ratio of average write to
average read frequency) as 0.1, and percentage of readers and writers is 50%.

Experiment Setup. We use a network of 50 to 400 nodes
placed randomly in a square region of size 30 × 30. We
consider unit-disk graphs wherein two nodes can communi-
cate with each other if the distance between them is less
than a given number (called the transmission radius). For
our simulations, we use a transmission radius of 9, which
is the minimum to keep even small networks of size 50
connected. We vary various parameters such as network size,
the maximum number of cache nodes P , percentage of readers
and writers in the network, and the ratio R of average write
frequency to average read frequency. Note that in practical
settings we expect R to be low. The read frequency of a reader
node is chosen to be a random number between 0 and 100,
the write frequency of a writer node is chosen to be a random
number between 0 and 100R, and the storage cost at a node
is chosen to be a random number between 0 and 100.

In our simulations, we compare the performance of various
data caching placement algorithms, viz., Centralized Greedy
Algorithm, Distributed Greedy Algorithm, and Dynamic Pro-
gramming Algorithm (DP) on the shortest path tree rooted at
v that results in the minimum total cost τ (G, {v}). Each data
point in the graph plots is an average over five different random
graph topologies. We start with comparing our Centralized
Greedy Algorithm with the optimal algorithm in small size
networks.

Comparison with Optimal Algorithm in Small Networks.
An optimal solution for the data caching problem can be
computed by looking at all O(|V |P ) subsets of nodes of size
at most P , and picking the subset of nodes that gives the
minimum total cost as the solution. Due to the high time
complexity of the above algorithm, we choose the network size
|V | = 50 and vary P from 1 to upto 6. We pick R (the ratio of
average write frequency to the average read frequency) as 0.1,
since it was just small enough to result in maximum number
of cache nodes being selected. We observe in Figure 2 that
the Centralized Greedy Algorithm performs very close to the
optimal cost. Thus, in the following experiments, we use the
Centralized Greedy Algorithm as a benchmark of comparison.
We also observe that the DP algorithm performs only about
15% worse than the optimal algorithm.

Varying R. In this experiment, we vary R (the ratio of average
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Fig. 3. Varying R, the ratio of average write to average read frequency.
Here, the network size is 200, P = 25, percentage of readers and writers is
50.

read frequency to the average write frequency) from 0.001 to
0.1 in a network of size 200 with P (the maximum number of
cache nodes allowed) as 25. We keep the percentage of readers
and writers in the network at 50%. Figure 3 plots the total cost
τ (G, M ) corresponding to the set M of cache nodes delivered
by various algorithms for given parameters. We see that
the Centralized Greedy outperforms the Distributed Greedy
Algorithm only by about 15%. However, when R is small,
the centralized and distributed greedy algorithms perform
very closely, but their relative performance becomes almost
constant after R = 0.02. This implies that the estimation of
writing costs done by the Distributed Greedy Algorithm is not
as accurate as the estimation of reading costs. In contrast, we
see that the DP algorithm actually outperforms the Centralized
Greedy for very low values of R. For higher values of R,
the DP algorithm performs close to the Distributed Greedy.
Thus, the strategy of extracting the shortest path tree rooted
at an appropriate node seems very effective when the writing
cost is relatively very low. For R = 0.1, we observed that
the number of cache nodes selected by any algorithm was
very low (1 or 2). Thus, we did not increase the value of
R beyond 0.1. Based on Figure 3, we fix R as 0.02 for all
the remaining experiments, since for R = 0.02 the number
of cache nodes is large enough (around 10) and the relative
performance observed at R = 0.02 is representative of the
general trend.

Varying Network Size. In Figure 4, we vary the network
size from 100 to 400 and plot τ (G, M ) corresponding to
the solution M delivered by various algorithms. As suggested
before, we fix P = 25 and R = 0.02. Also, the percentage of
readers and writers in the network is kept as 50%. In Figure 4,
we can that the Centralized Greedy Algorithm outperforms
the Distributed Greedy Algorithm and DP algorithms only
narrowly. More importantly, we observe that the relative per-
formance of the various algorithms remains relatively stable,
and hence, in all other simulations, we fix the network size to
be 200.

Varying Percentage of Readers and Writers. In Figure 5 and
Figure 6, we vary the percentage of reader and writer nodes
respectively in the network and plot the values of τ (G, M )
for the solution delivered by various algorithms. As suggested
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Fig. 4. Varying network size. Here, P = 25,R (the ratio of average write
to average read frequency) is 0.02, and percentage of readers and writers is
50.
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Fig. 5. Varying percentage of reader nodes in the network. Here, the network
size is 200, P = 25, R = 0.02, and the percentage of writer nodes is 50%.

in previous paragraphs, we fix R as 0.02 and the network size
as 200. In addition, we use P as 25. In Figure 5, we vary the
percentage of reader nodes from 10 to 100, while keeping the
percentage of writer nodes fixed at 50%. Similarly, in Figure 6,
we vary the percentage of writer nodes from 0 to 100%, while
keeping the percentage of reader nodes fixed at 50%. We
observe that the relative performance of the various algorithms
remains largely unchanged with the change in percentages of
readers or writers. In generally, we see the performance gap
between various algorithm to be limited by 10-15%.

Varying P . In Figure 7, we vary P , the maximum number of
cache nodes allowed, and plot τ (G, M ) for various algorithms.
We see that with the increase in P , the relative performance
gap between the Centralized and Distributed Greedy Algo-
rithms reduces. After P = 10, the performance of the various
algorithms remains unchanged since for the given parameter
values all algorithms place at most 10 caches. Again, we see
the performance gap between various algorithm to be limited
by 10-15%.

VI. Conclusions

In this paper, we addressed the problem of selection on
nodes to cache a data item in a network, wherein multiple
nodes can read or update the data items, individual nodes have
storage limitations, and there is a limit on the number of nodes
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Fig. 6. Varying percentage of writer nodes in the network. Here, the network
size is 200, P = 25, R = 0.02, and percentage of reader nodes is 50%.
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Fig. 7. Varying P . Here, the network size is 200, R = 0.02, and percentage
of readers and writers is 50%.

that can be selected to cache the data item. The objective of
our problem was to minimize the sum of appropriately defined
total reading cost, writing cost, and storage cost. For the
above data caching problem, we designed an optimal dynamic
programming algorithm for tree networks. In addition, for
general network graphs, we proposed Centralized Greedy and
Distributed Greedy heuristics, and evaluated the performance
of our proposed algorithms through extensive simulations. We
observe that the Centralized Greedy performs very close to the
optimal algorithm for small networks, and for larger networks,
the Distributed Greedy and the dynamic programming algo-
rithm on an appropriately extracted tree perform very close to
the Centralized Greedy.
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