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Abstract—As software programs, Virtual Network Functions
(VNFs) introduce new challenges to network availability due
to their potential software failures. Existing models on the
availability of VNF networks did not consider all the possible
hardware and software failures, making them incapable of
analyzing the end-to-end availability of a path. Furthermore,
they did not capture the correlation between repeating nodes and
links in the path, resulting in inaccurate analytical results. In this
paper, we propose a new analytical model, which considers all
hardware and software failures as well as the effect of repeating
components, to effectively analyze the end-to-end availability of
a flow path in VNF networks. On top of the analytical model, we
formulate the Highest Availability Path (HAP) problem that finds
the flow path with the highest end-to-end availability, and prove
its NP-hardness by reduction from the Node-Weighted Steiner
Tree problem. Next, we propose two algorithms for HAP: the
first one based on a Steiner Tree approximation algorithm, having
high time complexity and serving as a performance benchmark;
the second one using a dynamic programming approach to
search a multi-layer graph in polynomial time. Finally, we
present extensive evaluation data to demonstrate the effectiveness
of the Layered Search algorithm, which achieves comparable
performance as that of the Steiner Tree based algorithm and
runs faster by four orders of magnitude.

Index Terms—VNF, availability, failure

I. INTRODUCTION

Virtual Network Functions (VNFs) [42] implement network
functions as virtual machines (VMs) [6] (or containers [19]) on
commodity servers. By decoupling functions from underlying
physical hardware [35], VNFs bring many advantages over tra-
ditional hardware-based network appliances, such as reduced
cost, fast time-to-market, and elastic scalability [10]. VNFs
have been adopted in various networks, including 5G [4], [7],
Internet of things [17], [29], and smart communities [9], [33].

A Service Function Chain (SFC) [38] is a sequence of VNFs
that will be visited by a flow. Because VMs have limited
processing capabilities, a network is usually provisioned with
multiple VMs for a given VNF to meet the capacity require-
ment [15], [41]. Hence, the flow path selects one among the
multiple available VMs for each VNF in the SFC, and traverses
them following the order specified by the SFC.

VNFs introduce new challenges to the availability of a flow
path. A recent study on network reliability [31] found that 13%
of the data center network incidents at Facebook from 2011 to
2018 were caused by hardware failures, such as faulty memory

TABLE I: Failures considered by existing studies.
Hardware failures Software failures

Switch Link Server Hypervisor VNF VM
[13], [35] X

[34] X
[14], [16], [23],

[40] X

[32] X X
[8], [25] X X

[2], [11], [21],
[26], [37], [41],

[43]
X X

and ports, and 42% by software failures, such as software
upgrading, misconfiguration, and bugs (besides 11%, 5%, and
29% caused by accidents, capacity planning, and undetermined
reasons, respectively). As can be seen, software failures are
more common than hardware ones, and the software nature
of VNFs makes a flow path subject to additional potential
failures, such as those to VNF software or virtual switches
(running in hypervisors), which do not exist in traditional
networks.

There has been an emerging research interest [8], [11], [14],
[16], [21]–[23], [25], [26], [32], [37], [41], [43] to address the
availability challenges in VNF networks. The basic approach
is to utilize the flexibility of VNFs to be able to run at arbitrary
locations, and select the proper hosting servers to achieve a
high availability. Furthermore, backup VMs or replicas can be
set up for a VNF to enhance the recovery probability in case
of failures.

Existing studies on the VNF availability have several in-
sufficiencies. To start with, none of the existing studies have
considered all the possible hardware and software failures,
as shown in Table I that summaries the failures considered
by existing studies. However, a path fails if any node or
link on the path fails, and therefore it is crucial to take
all potential failures into consideration. As an example, if
a (buggy) virtual switch randomly drops packets to certain
hosted VNFs, existing solutions are incapable of modeling
such a failure. We will show in Section III how the analytic
model proposed in this paper models the failure.

Furthermore, existing studies [11], [25], [32], [40] calculate
the availability probability of a path by multiplying the avail-
ability probability of each hop on the path, and do not consider
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Fig. 1: Flow paths in VNF networks most likely contain
repeating nodes and links.

the potential correlation between different hops. However, a
path in NFV networks most likely contains repeating nodes
and links, whose failures are correlated, for the following two
reasons. First, since the hosting server is usually connected to
its adjacent switch by a single link, and the VM is connected
to the hosting server by a single (software) link, there is only
one route between the switch and VM that will be used by
the traffic to both accessing and leaving the VM. For example,
Fig. 1 shows the path (in red) of a flow whose SFC consists of
VNF-1 followed by VNF-2. The nodes x1 and s1, hardware
duplex link (x1, s1), and software duplex link (s1, v1) are
repeated in the path, because there is only one route between
x1 and v1. Second, the network topology may require the path
to traverse a path segment multiple times in order to visit the
VNFs in the specified SFC order. In the example of Fig. 1, the
nodes x2, r, and x1 and links (x2, r) and (r, x1) are traversed
three times to visit VNF-1 before VNF-2.

In this paper, we propose a theoretical model to effectively
analyze the end-to-end availability of a flow path in VNF
networks. Different from existing studies, the proposed model
considers all potential hardware and software failures, and is
thus capable of analyzing the end-to-end availability of a path.
Furthermore, the model captures the availability correlation
between repeating nodes and links, and therefore makes the
analytical results more accurate. To the best of our knowledge,
the proposed model is the first to consider all hardware and
software failures, and also the first to study the effect of
repeating components.

In addition, based on the proposed model, we formulate
the Highest Availability Path (HAP) problem as a graph opti-
mization problem to find the path with the highest availability
in a VNF network. We show that the problem is NP-hard
by reduction from the Node-Weighted Steiner Tree (NWST)
problem [20]. Next, we design two algorithms for the HAP
problem. The first one extends an approximation algorithm for
the NWST problem. It has exponential time complexity and
is used as a performance benchmark. The second algorithm
uses a dynamic programming approach to search a multi-layer
graph, which achieves comparable performance and runs faster
by four orders of magnitude.

Our main contributions are summarized as follows:

1) We propose a theoretical model to analyze the availability
of a path in VNF networks, which considers all potential

hardware and software failures and captures the availabil-
ity correlation between repeating components.

2) We formulate the HAP problem that finds the path with
the highest end-to-end availability, prove its NP-hardness,
and present two algorithms: one in exponential time com-
plexity as a benchmark, the other achieving comparable
performance in polynomial time complexity.

3) Finally, we evaluate the proposed algorithms with differ-
ent network topologies and sizes, and present extensive
results to show the effectiveness of our design.

The remaining of the paper is organized as follows. Section
II briefly reviews related work and highlights our differences.
Section III presents the analytical model, and formulates
the HAP problem. Section IV proves the NP-hardness of
the formulated problem. Section V presents a benchmark
algorithm based on an approximation algorithm for the NWST
problem, and Section VI proposes a dynamic programming
based algorithm. Finally, Section VII conducts performance
evaluation, and Section VIII concludes the paper.

II. RELATED WORK

In this section, we briefly review related work, and high-
light our differences. There are two areas of related work:
availability and routing in VNF networks.

In the area of VNF availability, existing studies focus on
two categories: deploying VNFs to ensure high availability
and setting up backup VMs for recovery in case of failures.
Our work on the one hand differs from the existing work
with a new analytical model that is more comprehensive and
accurate, and on the one hand complements it by studying a
new optimization problem. More specifically, the theoretical
model proposed in this paper considers all possible hardware
and software failures, and captures the correlation between
repeating nodes and links. In addition, while existing work
studies the deployment of VNFs and backup instances, the
problem studied in this paper to achieve a high end-to-
end availability with given VNF deployment has not been
investigated before.

The first category of existing work on VNF availability
studies the deployment of VNFs and backup VMs at selected
locations to achieve a high availability for an SFC. Beck et
al. [8] study how backup resources can be integrated into the
deployment of VNFs to protect network services from failures,
and propose to enhance link resilience with a link-disjoint
backup path and VNF resilience with backup nodes. Fan
et al. [16] define an optimal availability-aware SFC mapping
problem and present a novel online algorithm that minimizes
the physical resources consumption while guaranteeing the
required high availability. Kong et al. [25] propose a coor-
dinated protection mechanism with both link-disjoint backup
paths and VNF replicas. nodes on the working and backup
paths. Moualla et al. [32] propose a VNF placement algorithm
for SFCs in a fat tree to enhance availability by placing
VNF replicas in different pods. Wang et al. [39] study
the deployment of parallelized SFCs in data center networks
considering availability guarantee and resource optimization.



Mandal [30] compares VNF deployment with multiple host
nodes, a single host node, and in the mixed mode by ana-
lyzing the SFC availability. In addition, multiple efforts are
devoted to study VNF deployment for joint optimization of
availability with latency [11], [34], [41], cost [13], [14], [35],
[43], revenue [37], [40], resource utilization [26], [39], and
scalability [2].

The second category of existing work on VNF availability
assumes that primary VNF instances are already deployed, and
the objective is to maximize the availability in case of failures
by carefully selecting the backup instances. Taking advan-
tage of the flexibility and resource-sharing abilities of VNFs,
Kanizo et al. [22] propose to maintain only a few backup
servers, each serving as the backup for multiple VNFs. Under
this assumption, they define multiple optimization problems,
and propose algorithms based on a graph theoretical model.
Furthermore, they [23] develop VNF recovery schemes when
a small number of VNFs fail simultaneously, based on a novel
representation of solutions describing assignments of functions
to VMs. He et al. [21] consider importance of different VNFs
and failures for not only VNFs but also backup servers, and
formulate a backup VNF assignment problem to minimize
the worst weighted unavailability. They prove the problem to
be NP-complete, and develop three heuristic algorithms with
polynomial time.

In addition to VNF availability, the second area of related
work optimizes routing in VNF networks to address the
challenges of the SFC order and multiple available instances
for a given VNF. A variety of solutions [3], [15], [18], [27],
[36] are proposed in different contexts for different objectives.
They adopt the convention model where the weight of a path
is the sum of weights of all edges in the path. We consider a
completely new model where the availability of a path is the
production of the availabilities of unique vertices and edges
in the path, excluding repeating occurrences.

III. PROBLEM STATEMENT

In this section, we describe the proposed model for avail-
ability analysis in VNF networks, and formulate the Highest
Availability Path (HAP) problem. Table II summarizes the list
of notations used in the paper for easy reference.

A. Availability Model for VNF Networks

Model the network as an undirected graph G = (V,E), in
which a vertex v ∈ V may be a switch, server, VNF VM, or
any hardware or software component whose availability needs
to be considered, and edge (u, v) ∈ E represents the link
between two nodes u, v ∈ V . The availability of a vertex v
or an edge (u, v) is denoted as av or a(u,v), which is the
percentage of time, or in other words the probability, that
the component is functional. The availability of a compo-
nent can be calculated based on the Mean Time Between
Failures (MTBF) and Mean Time To Repair (MTTR) [16],
[34], [43], i.e., availability = MTBF/(MTBF +MTTR).
The availabilities of different components are assumed to be
independent [26], [43], because the availability of a component

TABLE II: List of notations.
Notation Description
v, av vertex v, availability of v
(u, v), a(u,v) edge (u, v), availability of (u, v)
is(v, k) 1 if v is VM of VNF-k, 0 otherwise
s, d, C source, destination, SFC of flow
K number of VNFs in SFC
VNF-k k-th VNF in SFC
v ∈ path, (u, v) ∈ path vertex v or edge (u, v) is on path path
apath end-to-end availability of path
n number of hops on path
path(i, v) 1 if v is i-th hop on path, 0 otherwise
loc(k, i) 1 if VNF-k located at i-th hop, 0 otherwise
wv weight of vertex v in NWST
T set of terminals in NWST
v ∈ tree vertex v is in Steiner tree tree
wtree weight of Steiner tree in NWST
Vk set of VMs for VNF-k
uv dummy vertex in NWST for edge (u, v)
G∗ = (V ∗, E∗) multi-layer graph based on G = (V,E)

vk, (uk, vk) vertex, edge in layer k of G∗

P (vk), A(vk) path and availability from s1 to vk
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Fig. 2: The proposed model allows any vertex or edge to be
associated with an availability value.

is calculated based on only its own failures but not external
ones that may affect the component, such as power outages.
Availability data are available from manufacturers [1], third
party studies [31], or history statistics.

The above model is capable of representing all possible
hardware and software failures, because a network is ab-
stracted as a graph, and the model allows each vertex and
edge in the graph to be associated with an availability value.
The following example illustrates the difference between the
proposed model and existing ones. Consider a hosting server,
whose hardware box and hypervisor software have availabili-
ties of α and β, respectively. The virtual switch in the hypervi-
sor has an availability of γ when communicating with a hosted
firewall VNF VM and an availability of 1 with other VNF
VMs. The availability of such a server cannot be accurately
described by existing models, but can be represented using the
proposed model as shown in Fig. 2.

There are multiple different types of VNFs in the network.
As explained in Section I, a VNF may have multiple VMs
in the network for enhanced processing capacity. For easy
representation, we define a function is() to denote the VNF
type of a vertex: is(v, k) = 1 if the vertex v ∈ V is a VM of
the VNF type k, or VNF-k for short, and 0 otherwise.



A flow is a tuple (s, d, C) where s ∈ V and d ∈ V are
the source and destination vertices, respectively, and C is
the Service Function Chain (SFC) to be visited by the flow.
Without loss of generality, assume that the SFC C consists of
K VNFs in the order VNF-1 → VNF-2 → . . . → VNF-K.
A valid flow path path =< v0, v1, . . . , vn > starts and ends
with the source s and destination d, respectively, i.e., v0 = s
and vn = d, and in between traverses a VM for each VNF in
C in the specified order.

Since a path path is functional only if all the vertices and
edges on it are functional, the end-to-end availability apath is
the product of the availabilities of all vertices and edges on
the path. With slight abuse of notations, use v ∈ path and
(u, v) ∈ path to denote that the vertex v and edge (u, v) are
on path , respectively. The end-to-end availability apath can be
calculated as

apath =
∏

v∈path

av
∏

(u,v)∈path

a(u,v) (1)

Note that, in general, apath is not the product of availabilities
of consecutive vertices and edges on the path, i.e.

apath 6=
n∏

i=0

avi

n−1∏
i=0

a(vi,vi+1) (2)

because there may be repeating vertices and edges on the path.

B. Problem Formulation
Given a graph G = (V,E) and flow (s, d, C), the Highest

Availability Path (HAP) problem finds a flow path path that
achieves the highest end-to-end availability apath . There are
three decisions variables. The first one, n, determines the
number of hops on the path. The second one, path(i, v),
determines the vertex at each hop, and is defined as

path(i, v) =

{
1, if v ∈ V is i-th hop on path.
0, otherwise.

(3)

The third one, loc(k, i), determines the service location for the
k-th VNF in the SFC, and is defined as

loc(k, i) =

{
1, if VNF-k is located at i-th hop on path.
0, otherwise.

(4)

The problem to find the path with the highest end-to-end
availability can thus be formulated as below.

maximize apath (5)

subject to:

path(s, 1) = 1 (6)
path(d, n) = 1 (7)

∀0 ≤ i ≤ n− 1,
∑

(u,v)∈E

path(i, u)path(i+ 1, v) = 1 (8)

∀1 ≤ k ≤ K,
n∑

i=0

∑
v∈V

path(i, v)is(v, k)loc(k, i) = 1 (9)

∀1 ≤ k ≤ K − 1,
n∑

i=0

i · loc(k + 1, i) ≥
n∑

i=0

i · loc(k, i) (10)

Brief explanation of the constraints is as follows. Equa-
tions (6) and (7) ensure that the path starts from the source s
and ends at the destination d, respectively. Equation (8) states
that two consecutive hops must be connected by an edge in the
graph. Equation (9) guarantees that one VM for each VNF-k
is located on the path. Finally, Equation (10) enforces the SFC
order between VNFs.

As can be seen, our availability model considers hardware
and software failures, such as faulty components, misconfig-
uration, and bugs, which are mostly not related with traffic
volumes. Hence, the above problem formulation applies to
multiple flows as well, as different flows do not affect the
availability of each other.

IV. NP-HARDNESS

In this section, we show that the HAP problem is NP-hard
by reduction from the Node-Weighted Steiner Tree (NWST)
Problem [20].

Given a graph G = (V,E), in which each vertex v ∈ V has
an associated weight wv ≥ 0, and a set of terminal vertices
(abbreviated as terminals thereafter) T ⊆ V , the NWST
problem computes a minimum weight tree that includes all
the terminals in T , where the weight of the tree is the sum of
the weights of all the vertices in the tree. The tree may include
other vertices not in T as well.

Theorem 1. The Highest Availability Path problem is NP-
hard.

Proof. For an instance of the NWST problem with a graph
G = (V,E), terminals T , and node weights w, an instance
of the HAP problem can be constructed in polynomial time
as follows. Without loss of generality, assume T has two or
more terminals, i.e., |T | = n+1 ≥ 2, and denote the terminals
as T = {t0, . . . , tn} where the order between the terminals is
arbitrary.

1) The graph in the HAP problem instance is also G =
(V,E). The availability of each vertex is the exponen-
tiation of the negative vertex weight in NWST, i.e.,
∀v ∈ V, av = e−wv . Since wv ≥ 0, 0 < av ≤ 1. The
availability of each edge is 1, i.e., ∀(u, v) ∈ E, a(u,v) =
1.

2) For the flow in HAP, let its source and destination be t0
and tn, respectively, i.e., s = t0 and d = tn.

3) The SFC C of the flow consists of K = n−1 VNFs in the
order VNF-1 → · · · → VNF-K, and each VNF-k has a
single VM located at tk, i.e., ∀1 ≤ k ≤ n−1, is(tk, k) =
1.

Next, it can be shown that if the NWST instance has a
Steiner tree, denoted as tree, with a weight of wtree , then
HAP instance has a path with an availability of e−wtree , and
reversely, if the HAP instance has a path path with an end-
to-end availability of apath , the NWST instance has a Steiner
tree with a weight of − ln apath . The detail is omitted due to
space limitations.



V. STEINER TREE BASED ALGORITHM

In this section, we present an algorithm for the HAP
problem based on an approximation algorithm [20] for the
NWST problem. The algorithm is expected to work only as a
performance benchmark, as it has high time complexity.

The NWST problem is a classical NP-hard problem, and
there have been a series of efforts [20], [24], [28] to develop
approximation algorithms for it. The latest work [20] proposes
three approximation algorithms with worst-case approximation
factors of 1.5 ln |T |, (1.35+ε) ln |T |, and 1.6103 ln |T |, respec-
tively. Among the three algorithms, we focus on the third one
with an approximation factor of 1.6103 ln |T |, since it is the
only one in polynomial time complexity. We do so because
our approach solves a HAP problem instance by converting it
into many instances of the NWST problem, and applying an
algorithm in non-polynomial time complexity to each of the
many instances requires a prohibitive amount of time to finish
the simulations in Section VII. Nevertheless, it still works as
a reasonable performance benchmark, as its approximation
factor differs from the best approximation factor by only a
constant.

In brief, the third approximation algorithm in [20] calculates
the Steiner tree by iteratively merging the minimum ratio
“spider” into a single terminal, where a spider is a tree with
at most one vertex of degree more than two, and its ratio is
the ratio between the total weight of all the vertices in the
spider and the number of terminals in it. The time complexity
of the algorithm is O((|V | log |V | + |E|)|T |2), because there
are up to |T | iterations, and the complexity of each iteration is
determined by the operation to find the minimum ratio spider,
which involves computing the distances from each terminal to
other terminals in O((|V | log |V | + |E|)|T |) [24] time. More
efficient implementation is possible for a large |T | by using
Johnson’s all-pairs shortest paths algorithm [12].

The basic idea of our Steiner Tree based algorithm is to
create from the HAP problem instance multiple instances of
the NWST problem, solve each individually using the NWST
approximation algorithm, and select among the results the
best one. From the proof of Theorem 1, it can be seen that
when each VNF has only a single VM, a HAP instance
can be converted to an NWST instance. Therefore, based on
the given HAP instance, multiple sub-instances are generated,
each having a single VM for each different VNF. Use Vk to
denote the set of VMs for VNF-k, i.e., Vk = {v|is(v, k) = 1}.
There will be |V1| × |V2| × · · · × |VK | possible ways to select
one VM from each VNF, and correspondingly so many HAP
sub-instances will be created. Each of the sub-instances will
then be converted to an NWST instance, which will be solved
by the approximation algorithm from [20]. Finally, the results
of all the HAP sub-instances will be summarized to obtain
the highest end-to-end availability. For the example in Fig. 3,
since the HAP instance has V1 = {v, w} and V2 = {u},
|V1| × |V2| = 2 NWST instances are created.

Two challenges arise when converting a HAP instance to an
NWST one. First, the vertex availability in HAP is additive

Source
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VNF‐2 VM
u, au = 0.6

VNF‐1 VM
w, aw = 0.7

VNF‐1 VM
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Fig. 3: Based on the input HAP instance, |V1| × |V2| × · · · ×
|VK | NWST instances are created to apply the approximation
algorithms.

and is a probability between 0 and 1, while the vertex weight
in NWST is multiplicative and is a non-negative number. For
conversion, the weight wv of vertex v ∈ V in NWST is set
to be the negative logarithm of its availability av in HAP,
i.e., wv = − ln av . Second, HAP considers availabilities for
not only vertices but also edges, but NWST considers weights
only for vertices. Thus, we need to convert an edge availability
in HAP to a vertex weight in NWST. To do so, for each edge
(u, v) ∈ E, a dummy vertex uv is created and is connected
with u and v, so that a path traversing (u, v) will now traverse
uv. The weight of the dummy vertex wuv is set to be the
negative logarithm of the availability a(u,v) of the original
edge (u, v), i.e., wuv = − ln a(u,v). For the example in Fig.
3, we assume that all edges except (w, d) have availabilities
of 1 for illustration purposes, and hence can be ignored. For
the edge (w, d), a dummy vertex wd and corresponding edges
(w,wd) and (wd, d) are added to the NWST instances.

Algorithm 1 shows the pseudo code of the Steiner Tree
based algorithm, which is explained as follows. The first step
is to transform the graph in the HAP problem to one in the
NWST problem. In detail, lines numbered 1 to 3 initialize
the vertices, and lines 4 to 8 initialize the edges. Finally,
line 9 initializes the currently known highest end-to-end path
availability to be zero.

The next step is to generate the multiple instances of the
NWST problem and apply the approximation algorithm to
each. In detail, lines 10 to 13 specify a HAP sub-instance in
which v1, . . . , vK are the only instances for VNF-1, . . . , VNF-
K, respectively, and based on it create an NWST instance with
the terminals T = {s, d, v1, . . . , vK}. Then, line 14 obtains the
tree weight wtree of the created NWST instance by applying



the approximation algorithm. Finally, lines 15 to 17 convert the
NWST tree weight wtree to the HAP path availability e−wtree ,
and replace the current highest availability apath if e−wtree is
higher.

Algorithm 1 Steiner Tree based Algorithm

Input: G = (V,E), (s, d, C),∪Kk=1Vk = {v|is(v, k) = 1}
Output: path availability apath

1: for v ∈ V do
2: wv = − ln av
3: end for
4: for (u, v) ∈ E do
5: V = V ∪ {uv}
6: E = (E \ {(u, v)}) ∪ {(u, uv), (v, uv)}
7: wuv = − ln a(u,v)
8: end for
9: apath = 0

10: for v1 ∈ V1 do
11: · · ·
12: for vK ∈ VK do
13: create NWST instance with graph G and terminals

T = {s, d, v1, . . . , vK}
14: wtree = weight returned by NWST approximation

algorithm
15: if apath < e−wtree then
16: apath = e−wtree

17: end if
18: end for
19: end for

The time complexity of the Steiner tree based algorithm is
O((|V |/K)K((|V | + |E|) log(|V | + |E|))K2), which is not
polynomial due to the K in the exponent. In the worst case,
each of the K VNFs may have |V |/K VMs, so there are up to
(|V |/K)K possible ways to select one VM from each VNF, or
so many instances of the NWST problem will be created. The
time complexity to solve each NWST instance by applying the
NWST approximation algorithm is O(((|V | + |E|) log(|V | +
|E|))K2), because there are |V | + |E| vertices including the
dummy ones and |T | = K + 2.

VI. LAYERED SEARCH ALGORITHM

In this section, we propose a practical heuristic algorithm
in polynomial time complexity, whose performance is compa-
rable to that of the Steiner Tree based algorithm as will be
demonstrated in Section VII.

The basic idea is to generate a graph with multiple layers,
each of which is a copy of the original graph and contains the
VMs of one VNF in the SFC. Dynamic programming is then
applied to calculate a high-availability path across the layers.
Finally, the path in the layered graph will be mapped back to
the original graph, resulting in a path traversing each required
VNF.

Our algorithm is inspired by the shortest path algorithm
in [15], but has the following two major differences. First, the
shortest path algorithm considers only edge weights, while

our algorithm considers both vertex and edge availabilities.
Second, the shortest path algorithm adds weights of all edges,
including those of repeated edges, on the path, but our algo-
rithm multiplies the availabilities of unique components only,
i.e., excluding those of repeated vertices and edges.

A. Generating Layered Graph

Before applying the algorithm, the first step is to generate
a graph G∗ = (V ∗, E∗) with K + 1 layers. Each of the first
K layers contains the instances of the corresponding VNF in
the SFC, and the (K + 1)-th layer contains the destination.

In detail, K +1 copies of the original graph G are created,
each being one of the K + 1 layers. For easy representation,
we add a superscript k to denote the vertices in the k-th layer.
For example, vk and (uk, vk) denote the vertex and edge in
layer k corresponding to v and (u, v) in the original graph G,
respectively. The availability of a vertex vk or edge (uk, vk) is
equal to that of its counterpart in the original graph, i.e., avk =
av and a(uk,vk) = a(u,v). Hence, V k

k = {vk ∈ V ∗|is(v, k) =
1} is the set of VMs of VNF-k that are located in the k-th
layer, and the path must traverse one of them to access the
VNF-k service.

Next, the layers are connected by vertical edges with an
availability of one. In detail, the k-th layer is connected with
the (k+ 1)-th layer via the edges (vk, vk+1) where vk ∈ V k

k ,
and their availabilities are one, i.e., ∀vk ∈ V k

k , a(vk,vk+1) = 1.
Thus, only after a path visits one of the vertices in V k

k , it can
proceed to the next layer.

For the example in Fig. 4, since K = 2, a 3-layer graph is
generated. Given V1 = {v, w}, the vertical edges (v1, v2) and
(w1, w2) connect the layers 1 and 2. Similarly, as V2 = {u},
the vertical edge (u2, u3) connects the layers 2 and 3.

B. Dynamic Programming based Search Algorithm

Once the multiple-layer graph G∗ = (V ∗, E∗) has been
created, a dynamic programming based search algorithm will
be applied to calculate the high-availability path.

Algorithm 2 shows the pseudo code of the Layered Search
algorithm, in which P (vk) denotes the current path from the
source s1 to the vertex vk and A(vk) denotes the availability
of the path. Explanation of the pseudo code is as follows.
The first step, lines 1 to 16, creates the (K + 1)-layer graph
G∗ = (V ∗, E∗). In detail, lines 3 to 5 generate the vertices,
lines 6 to 8 generate the edges, and lines 9 to 15 generate the
vertical edges.

The next step, lines 17 to 28, conducts initialization. In
detail, line 17 initializes the source vertex s1 in the first layer,
by setting the path P (s1) to reach it as [s] and the path
availability A(s1) to be as1 . As the highest availability to s1 is
known, line 18 removes it from the vertex set V ∗. Lines 19 to
28 initialize other vertices vk ∈ V ∗. There are three possible
scenarios. First, lines 20 to 21 deal with the scenario where
s = v or in other words (s1, vk) is a vertical edge, and the
path and availability of vk are set to those of s1. Second, lines
22 to 24 deal with the scenario where there is a non-vertical
edge between s1 and vk, in which case the path to vk is set



Algorithm 2 Layered Search Algorithm

Input: G = (V,E), (s, d,K)
Output: high-availability path P (dK+1)

1: V ∗ = ∅, E∗ = ∅
2: for k = 1 to K + 1 do
3: for v ∈ V do
4: V ∗ = V ∗ ∪ {vk}, avk = av
5: end for
6: for (u, v) ∈ E do
7: E∗ = E∗ ∪ {(uk, vk)}, a(uk,vk) = a(u,v)
8: end for
9: if k > 1 then

10: for vk−1 ∈ V ∗ do
11: if is(v, k − 1) = 1 then
12: E∗ = E∗ ∪ {(vk−1, vk)}, a(vk−1,vk) = 1
13: end if
14: end for
15: end if
16: end for
17: P (s1) = [s], A(s1) = as1
18: V ∗ = V ∗ \ {s1}
19: for vk ∈ V ∗ do
20: if (s1, vk) ∈ E∗ and s = v then
21: P (vk) = P (s1), A(vk) = A(s1)
22: else if (s1, vk) ∈ E∗ then
23: P (vk) = P (s1).append(v)
24: A(vk) = A(s1)a(s1,vk)avk

25: else
26: A(vk) = 0
27: end if
28: end for
29: while dK+1 ∈ V ∗ do
30: select ul from V ∗ with highest availability, i.e., ∀vk ∈

V ∗, A(ul) >= A(vk)
31: V ∗ = V ∗ \ {ul}
32: for (ul, vk) ∈ E∗ do
33: if u = v then
34: if A(vk) < A(ul) then
35: P (vk) = P (ul), A(vk) = A(ul)
36: end if
37: else if (u, v) ∈ P (ul) then
38: if A(vk) < A(ul) then
39: P (vk) = P (ul).append(v), A(vk) = A(ul)
40: end if
41: else if v /∈ P (ul) then
42: if A(vk) < A(ul)a(ul,vk)avk then
43: P (vk) = P (ul).append(v)
44: A(vk) = A(ul)a(ul,vk)avk

45: end if
46: end if
47: end for
48: end while
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(w, d), a(w, d) = 0.9

Fig. 4: Based on the input graph G = (V,E), the Layered
Search algorithm generates a (K + 1)-layer graph G∗ =
(V ∗, E∗).

by appending v to P (s1), and the path availability A(vk) is
set by multiplying A(s1) with the availability a(s1,vk) of the
edge and the availability avk of vk. Finally, lines 25 to 26 deal
with the scenario where there is no edge between s1 and vk,
and the availability of vk is set to zero, i.e., not yet reachable.

The final step, lines 29 to 48, enters a loop to find the
highest-availability path to one vertex in V ∗ at a time. In
detail, line 30 selects from V ∗ the vertex ul that has the
highest availability, i.e., ∀vk ∈ V ∗, A(ul) ≥ A(vk), and line
31 removes ul from V ∗. Next, lines 32 to 47 conduct the
relaxation process. In other words, for each adjacent vertex vk

of the previously selected vertex ul, if the new path of P (ul)
appended with v has a higher availability, the path P (vk) and
its availability are updated accordingly. There are also three
possible scenarios. First, lines 33 to 36 deal with the scenario
where u = v or in other words (ul, vk) is a vertical edge, and
the path and availability of vk are set to those of ul directly.
Second, lines 37 to 40 deal with the scenario where the edge
(v, u) is already in the path P (ul), in which case appending
vk to the path will not change the availability, since the edge
(v, u) and vertex u are repeating components. Finally, lines 41
to 46 deal with the scenario where u is not in the path P (ul).

For the example in Fig. 4, the path returned by the Layered
Search algorithm is s-u-v-u-v-d with an end-to-end availabil-
ity of 0.48, as shown by the red line. In detail, when the path
is projected in the layered graph G∗, it starts from s1 in layer
1, traverses u1, and visits v1 to access VNF-1 service. After
that, it advances to layer 2 via the vertical edge (v1, v2), and



continues from v2 to u2 to access VNF-2 service. Finally,
the path advances to layer 3 via the vertical edge (u2, u3),
traverses v3, and reaches the destination d3.

C. Time and Optimality Analysis
The time complexity of the Layered Search algorithm is

O(|V |K log(|V |K) + |E|K), as it has the same time com-
plexity as the Dijkstra’s algorithm, and the layered graph
G∗ = (V ∗, E∗) has O(|V |K) vertices and O(|E|K) edges.

Because Theorem 1 shows that the HAP problem is NP-
hard, the Layered Search algorithm in polynomial time com-
plexity will not be able to always deliver the optimal result.
The reason is that the sub-problems in the dynamic program-
ming process are not independent but correlated. Specifically,
whether the path from the source s1 to an intermediate vertex
vk is part of an optimal solution also depends on the remaining
path from vk to the destination dK+1, because an optimal path
from s1 to vk may provide fewer repeating components for the
remaining path, and hence results in a sub-optimal end-to-end
availability.

For the example in Fig. 4, if the VNF-1 VM w has an
availability of aw = 0.85, the Layered Search algorithm will
return a sub-optimal solution s-w-s-u-s-w-d, because the sub-
path from s to u via w, i.e., s1-w1-w2-s2-u2 as projected in
G∗, has a higher availability than the alternative via v, i.e.,
s1-u1-v1-v2-u2. However, after multiplying the availability of
the remaining path from u to d, the entire path via w has a
lower end-to-end availability than that of the alternative via v,
because the latter can take advantage of repeating components
in the remaining path.

VII. PERFORMANCE EVALUATION

In this section, we present extensive evaluation data to
demonstrate the effectiveness of the Layered Search algorithm,
which achieves comparable performance to that of the Steiner
Tree based algorithm with much reduced running time, and
outperforms other compared algorithms.

A. Benchmark Algorithms
The following five algorithms are evaluated and compared

against each other.
1) The Steiner Tree based algorithm in Section V breaks the

input into many NWST instances, and applies the NWST
approximation algorithm [20] to each instance.

2) The Layered Search algorithm in Section VI uses dy-
namic programming to search a multi-layer graph.

3) Greedy uses a greedy approach to determine the VM
for the next VNF in the SFC, i.e., applying Dijkstra’s
algorithm from the current vertex, and selecting the first
visited VM of the next VNF, which is also the VM with
the highest availability from the current vertex.

4) Random Steiner Tree (RST) selects a random VM for
each VNF in the SFC, and applies the NWST approxi-
mation algorithm [20] to determine the path.

5) Random calculates the path by randomly selecting the
next hop until the path has visited one VNF for each
VNF in the SFC.

B. Topologies

To comprehensively evaluate the algorithms, we consider
three different topologies as described below.

1) The Fat Tree topology [5] is widely used in data center
networks due to its large bi-section bandwidth and multi-
path connectivity. We consider an 8-pod fat tree with 128
servers (all at the leaves), 80 switches, and 272 links.

2) The 75-node US mesh, abbreviated as US-75, topol-
ogy [25] represents a real-world network across the US
continent. Each of the 75 nodes is an interconnecting
switch, and has one or two servers connected to it.

3) The Binary Tree topology is a classical topology that
abstracts the tree structure used by traditional networks.
We consider an 8-layer binary tree with 128 servers (all
at the leaves), 127 switches, and 254 links.

C. Simulation Settings

The simulations parameters are set up as follows. There are
a total of ten different VNFs, and every VNF has three to five
VMs in the network. Each VNF VM is hosted by a random
server. Each flow has a random source and destination, and an
SFC consisting of four to six VNFs randomly selected from
the available ones. For comprehensive evaluation at different
availability levels, the simulations are conducted with four
component availability ranges [20]: [0.9, 0.99], [0.99, 0.999],
[0.999, 0.9999], and [0.9999, 0.99999], and the availability of
any node or link is a random number from the selected range.
The simulations are conducted on computers each configured
with four Intel Xeon E5-2650L CPUs with a max frequency at
2.5 GHz and 503 GB memory. The presented data are collected
from 1000 simulation runs.

D. End-to-End Availability Data

First, we compare the end-to-end availability results of
different algorithms. Fig. 5(a) shows the mean and 99%
confidence interval for the availability of different algorithms
with the component availability range of [0.9, 0.99]. As can
be seen, the Steiner Tree based algorithm achieves the highest
end-to-end availability at 20.1%, 12.6%, and 5.2% in the
fat tree, US-75, and binary tree topologies, respectively. The
Layered Search algorithm achieves a comparable availability at
19.4%, 11.7%, and 4.6%, respectively, with a difference equal
to or less than 1%, but at much reduced time complexity as will
be shown by the running time data in Fig. 6. On the other hand,
the Layered Search algorithm outperforms all the remaining
algorithms: Greedy, RST, and Random. As an extreme case,
the availability of Random is close to zero in the fat tree and
US-75 topologies due to its inefficient path search strategy.

Fig. 5(b), (c), and (d) show the end-to-end availability
results with the component availability ranges of [0.99, 0.999],
[0.999, 0.9999], and [0.9999, 0.99999], respectively. As the
availability of each component increases, the end-to-end avail-
ability increases for all the algorithms, and the confidence
interval becomes tighter. The performance rank among dif-
ferent algorithms is mostly consistent that the Steiner Tree
algorithm achieves the highest availability, and the Layered
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Fig. 5: Mean and 99% confidence interval for end-to-end
availability with different component availability ranges.

Search algorithm achieves a comparable result, followed by
Greedy, RST, and Random.

Next, we compare the end-to-end availability results under
different topologies. As shown by all the figures in Fig. 5,
in general, the availability of an algorithm in the fat tree is
higher than that in the US-75 mesh, which is higher than
that in the binary tree, all other things being equal. This can
be explained by the different levels of connectivity between
servers enabled by the different topologies. The fat tree has
the best connectivity because multiple paths exist between any
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Fig. 6: Mean and 99% confidence interval for running time
with component availability range of [0.9, 0.99].

pair of servers. Similarly, the US-75 mesh is well connected
with multiple available paths. The binary tree has the worst
connectivity with only a single path between any pair of
servers. Better connectivity enables more potential paths, and
hence an efficient algorithm is more likely to find a shorter
path, which translates to a higher end-to-end connectivity.
However, the Random algorithm is an exception, whose end-
to-end availability in the fat tree is lower than that in the US-75
mesh, which is lower than that in the binary tree. Ironically,
with the in efficient random search strategy, better connectivity
leads to a longer random walk, and hence a lower end-to-end
availability.

E. Running Time Data

Fig. 6 compares the simulation running time of different
algorithms with the component availability range of [0.9,
0.99]. Although the Steiner Tree based algorithm achieves the
best end-to-end availability, it has the longest running time as
well due to its high time complexity, which are 68251, 41344,
and 63102 seconds on average in the fat tree, US-75 mesh,
and binary tree, respectively. The Layered Search algorithm
runs much faster by four orders of magnitude, at 1.24, 0.75,
and 1.03 seconds, respectively. The Greedy algorithm has the
shortest running time without the need to search multiple
layers. Except Greedy, the Layer Search algorithm is faster
than RST and Random by one and two orders of magnitude,
respectively. Different component availability ranges do not
affect the algorithm running time, and hence the data for other
ranges are omitted.

VIII. CONCLUSIONS

The software nature of VNFs introduces new challenges to
the availability of flow paths. Existing research on VNF avail-
ability is not capable of analyzing all the possible hardware
and software failures, and has not considered the correlation
between repeating components in a path. In this paper, we
propose a theoretical model to effectively analyze the end-to-
end availability of a path in VNF networks. To the best of our
knowledge, the proposed model is the first to comprehensively
consider all possible hardware and software failures, and the
first to model repeating components. On top of the model,
we formulate the Highest Availability Path problem to find



the path with the highest availability in a VNF network, and
prove its NP-hardness by reduction from the Node-Weighted
Steiner Tree problem. Next, we propose two algorithms, one
based on an NWST approximation algorithm, the other using a
dynamic programming approach to search a multi-layer graph.
Finally, we present extensive evaluation data to demonstrate
the effectiveness of the Layered Search algorithm, which
achieves a high end-to-end availability in polynomial time. In
our future work, we plan to enhance the availability analytical
model by considering failures caused by traffic congestion to
make it more realistic, in which case the capacity of a node
and link will also be constraints for optimization.
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