
DAO2: Overcoming Overall Storage Overflow in
Intermittently Connected Sensor Networks

Bin Tang
Computer Science Department, California State University Dominguez Hills

btang@csudh.edu

Abstract—Many emerging sensor network applications oper-
ate in challenging environments wherein sensor nodes do not
always have connected paths to the base station. Data generated
from such intermittently connected sensor networks therefore
must be stored inside the network for some unpredictable period
of time before uploading opportunities become available. Con-
sequently, sensory data could overflow limited storage capacity
available in the entire network, making discarding valuable
data inevitable. To overcome such overall storage overflow in
intermittently connected sensor networks, we propose and study
a new algorithmic problem called data aggregation for overall
storage overflow (DAO2). Utilizing spatial data correlation that
commonly exists among sensory data, DAO2 employs data
aggregation techniques to reduce the overflow data size while
minimizing the total energy consumption. To solve DAO2, we
uncover a new graph theoretic problem called multiple traveling
salesman walks (MTSW), and show that with proper graph
transformation, the DAO2 is equivalent to the MTSW. We prove
that MTSW is NP-hard and design a (2 − 1

q
)-approximation

algorithm, where q is the number of nodes to visit (i.e., the
number of sensor nodes that aggregate their overflow data).
The approximation algorithm is based on a novel routing
structure called minimum q-edge forest that accurately captures
information needed for energy-efficient data aggregation. We
further put forward a heuristic algorithm and empirically show
that it constantly outperforms the approximation algorithm
by 15% − 30% in energy consumption. Finally, we propose a
distributed data aggregation algorithm that can achieve the same
approximation ratio as the centralized algorithm under some
condition, while incurring comparable energy consumption.

Keywords – Intermittently Connected Sensor Networks, Data
Aggregation, Approximation Algorithms, Graph Theory

I. Introduction

In recent years sensor networks have been adopted to tackle
some of the most fundamental problems facing human beings,
such as disaster warning, climate change, and renewable
energy. These emerging scientific applications include under-
water or ocean sensor networks [19, 35], wind and solar har-
vesting [25], and seismic sensor networks [33]. One common
characteristic of these applications is that they are all deployed
in challenging environments such as in remote or inhospitable
regions, or under extreme weather, to continuously collect
large volumes of data for a long period of time.

In those challenging environments, it is usually not possi-
ble to deploy high-power, high storage data-collecting base
stations in the field. Consequently, sensory data generated are
stored inside the network for some unpredictable period of
time and then collected by periodic visits of data mules [29],
or by low rate satellite link [27]. We refer to such sensor
networks wherein sensor nodes do not always have connected
paths to the base station as intermittently connected sen-
sor networks. Due to inadequate human intervention in the
inhospitable environments, intermittently connected sensor

networks must operate more resiliently than traditional sensor
networks (with base stations and in friendly environments).

In this paper we tackle data resilience in intermittently
connected sensor networks. Data resilience refers to the
ability of long-term viability and availability of data despite
insufficiencies of (or disruptions to) the physical infrastruc-
ture that stores the data. In intermittently connected sensor
networks, one such disruption and major obstacle is data
storage overflow. On one side, sensing a wide range of
physical properties in real world, above scientific applications
generate massive amounts of data, such as videos or high
resolution images. On the other side, storage is still a serious
resource constraint of sensor nodes despite the advances in
energy-efficient flash storage [19, 26]. As a consequence, the
massive sensory data could soon overflow data storage of
sensor nodes and cause data loss. Such storage overflow
problem is further exacerbated in intermittently connected
sensor networks, wherein most of the time the high-storage
base stations are not available to collect and store the data.

To avoid data loss, our previous work has designed a
suite of techniques to offload overflow data from storage-
depleted sensor nodes to nearby sensor nodes with available
storages [14, 30, 34]. However, if these offloaded data cannot
be collected and uploaded timely by data mules or satellite
links, they could soon overflow the available storage in
the entire network. This unfortunately can not be alleviated
by aforesaid data offloading techniques. We refer to this
more severe obstacle in the intermittently connected sensor
networks as overall storage overflow.

Consider a recent application of underwater exploration and
monitoring [3], wherein camera sensors take pictures of the
underwater scenes while an autonomous underwater vehicle
(AUV) is dispatched periodically to collect the pictures from
the camera sensors. Suppose there are 100 underwater camera
sensors, 10 of which are generating one 640×480 JPEG color
image per second. Even using the latest parallel NAND flash
technology with 16GB for sensor storage [16], it takes less
than one day to exhaust the storages of all the 100 camera
sensors, causing overall storage overflow. If the AUV cannot
be dispatched timely due to inclement and stormy weather,
discarding valuable data becomes inevitable. In this paper,
we attempt to answer following question: How to preserve
the data in intermittently connected sensor networks despite
the overall storage overflow?

Fortunately, we can take advantage of spatial correlation
that commonly exists among sensory data, and employ data
aggregation techniques to reduce the overflow data size in
order to overcome overall storage overflow. We formulate a
new algorithmic problem called data aggregation for overall
storage overflow (DAO2). At the core of DAO2 is a new

2

graph-theoretic problem called multiple traveling salesman
walks (MTSW), which has not been studied in any existing
literature. To solve DAO2, we design a suite of energy-
efficient optimal, approximation, heuristic, and distributed
data aggregation algorithms with detailed analytical analy-
sis of their performances. One novelty of our aggregation
techniques is a routing structure called minimum q-edge
forest, where q is the number of sensor nodes that aggregate
their overflow data. The minimum q-edge forest generalizes
minimum spanning tree, one of the most fundamental graph
structures, and accurately captures information needed for
energy-efficient data aggregation.

After being aggregated to the size accommodable by the
network, the overflow data can then be stored into sensor
nodes with available storage using data offloading techniques
proposed in [14, 30, 34] (we further illustrate this using Exam-
ple 1 in Section II). Note that in this paper we do not consider
how to upload data from sensor nodes to base station, which
has been studied extensively by using data mules or mobile
data collectors [10, 29].

The rest of the paper is organized as follows. Section II for-
mulates the DAO2 with an illustrative example. In Section III
we study the MTSW problem and design a suite of optimal,
approximation and heuristic algorithms. We show that with
proper graph transformation the DAO2 is equivalent to the
MTSW, therefore the algorithms for MTSW can be applied
to solve DAO2. In Section IV, we design a distributed data
aggregation algorithm for the DAO2 with time and message
analyses. In Section V, we compare all the algorithms under
different network dynamics and discuss the results. (Since
overall storage overflow has not been addressed at all in the
existing literature, and to the best of our knowledge this is
the first work to solve it, we could not find any existing work
suitable for comparison.) Section VI and VII review related
work and conclude the paper with possible future research.

II. Problem Formulation of DAO2

Problem Statement. Fig. 1 shows an intermittently connected
sensor network. In our model, some sensor nodes are close to
the events of interest thus are constantly generating sensory
data and have depleted their own storages. We refer to sensor
nodes with depleted storage spaces while still generating data
as data nodes. The newly generated data that can no longer
be stored at data nodes is called overflow data. To avoid
data loss, overflow data is offloaded to sensor nodes with
available storages (referred to as storage nodes). Note that
sensor nodes that have generated data but have not depleted
their storage spaces are considered as storage nodes, as they
can store overflow data from data nodes.

Fig. 1. Illustrating DAO2.

To start the aggregation
process, one or more data
nodes (called initiators)
send their overflow data to
visit other data nodes in
multi-hop manner. When a
data node receives the data,
it aggregates its own over-
flow data and becomes an aggregator, and then forwards the
initiator’s entire overflow data to another data node. This data
node also becomes an aggregator and aggregates its overflow
data. This continues until enough aggregators are visited such

that total size of the overflow data after aggregation equals to
or is slightly less than total available storage in the network.
Note that during the aggregation process, it does not store
overflow data to the storage nodes since other aggregators
need the entire data in order to aggregate their own data.

Network Model. The sensor network is represented as
an undirected connected graph G(V,E), where V =
{1, 2, ..., |V |} is the set of |V | sensor nodes and E is the
set of |E| edges. There are p data nodes, denoted as Vd (the
other |V | − p nodes are storage nodes). Let R denote the
size of generated overflow data in bits at each data node,
and let m be the available storage space in bits at each
storage node. (We leave that data nodes have different sizes
of overflow data and storage nodes have different sizes of
storage spaces as future work.) Due to the overall storage
overflow, p×R > (|V | − p)×m, giving that p > |V |m

m+R .

Spatial Correlation Data Model. The model is as follows.
Let H(X) denote the entropy of a discrete random variable
X , and H(X|Y) denote the conditional entropy of a random
variable X given that random variable Y is known. If data
node i receives no side information (i.e., overflow data) from
other data nodes, its overflow data is entropy coded with
H(i|j1, ..., jp) = R bits, jk ∈ Vd ∧ jk 6= i, 1 ≤ k ≤ p. If
data node i receives side information from at least one data
node, the size of its overflow data is H(i|j1, ..., jp) = r ≤ R.
This correlation model has two advantages. First, it captures
the uniform data spatial correlation scenario, wherein data
generated at different data nodes have similar correlation with
each other (we leave the more challenging and realistic model
that different nodes have different data correlation as future
work). Second, it is an effective distributed coding strategy,
which works well in large scale sensor network applications.
We are aware of other distributed coding techniques such
as Slepian-Wolf coding [36]. However, they need global
correlation structure, which is impractical in large networks.

Our model is based on a well-known entropy-based model
proposed in [9], with one difference. The model in [9]
assumes that each sensor node generates a R-bit packet and
transmits it back to the base station. In our model, R is the
amount of overflow data generated only at data nodes. We
have two observations about the correlation model.

Observation 1: Each data node can be either an initiator,
or an aggregator, or none of them, but not both of them. An
initiator cannot be an aggregator because its data serves as
side information for other nodes to aggregate. An aggregator
cannot be an initiator since its aggregated data loses the side
information needed for others nodes’ aggregation. �

Observation 2: Each aggregator can be visited multiple
times by the same or different initiators (if that is more
energy-efficient). However, the data of an aggregator can only
be aggregated once, with size reduced from R to r. �

Energy Model. We adopt first order radio model [12] for
battery power consumption. When node u sends R-bit data to
its one-hop neighbor v over distance lu,v , transmission energy
cost at u is Et(R, lu,v) = Eelec × R + εamp × R × l2u,v ,
receiving energy cost at v is Er(R) = Eelec × R. Here,
Eelec = 100nJ/bit is energy consumption per bit on trans-
mitter and receiver circuits, and εamp = 100pJ/bit/m2

is energy consumption per bit on transmit amplifier. Let
W = {v1, v2, ..., vn} be a walk, a sequence of n nodes with

3

(vi, vi+1) ∈ E and v1 6= vn (if all nodes in W are distinct,
W is a path). Let w(R, u, v) = Et(R, lu,v) + Er(R), and
c(R,W) =

∑n−1
i=1 w(R, vi, vi+1) denote the aggregation cost

on W , the energy consumption of sending R-bit from v1 to
vn along W . We assume that there exists a contention-free
MAC protocol to avoid overhearing and collision (e.g. [5]).

Number of Aggregators q and Valid Range of p in
Overall Storage Overflow. We first calculate the number of
aggregators, denoted as q, that need to be visited for the data
reduction. Since each aggregator reduces its overflow data size
by (R−r), and the total anticipated data size reduction in the
network is p×R− (|V | − p)×m = p× (R+m)− |V | ×m,

q = dp× (R+m)− |V | ×m
R− r

e. (1)

To guarantee that the overflow data after aggregation can
fit in the available storage in the network, next we compute
the upper bound of number of data nodes p. As at least one
data node needs to be the initiator to start the aggregation
process, there can only be maximum of p − 1 aggregators
(Observation 1). We therefore have q = dp×(R+m)−|V |×m

R−r e ≤
p− 1, which gives p ≤ b |V |m−R+r

m+r c. As we have calculated
the lower bound of p in network model above, the valid range
of p for overall storage overflow to occur is therefore

|V |m
m+R

< p ≤ b|V |m−R+ r

m+ r
c. (2)

Problem Formulation of DAO2. Given a valid p value and
its corresponding q value, meaning q out of the p data nodes
need to be aggregators and the rest p−q data nodes can serve
as initiators (Observation 1), DAO2 determines:
• set of a (1 ≤ a ≤ (p− q)) initiators, denoted as I, and
• corresponding set of a aggregation walks: W1, W2, ..., Wa,
where Wj (1 ≤ j ≤ a) starts from a distinct initiator Ij ∈ I,
such that |

⋃a
j=1{Wj − {Ij} − Gj}| = q. Here, Gj is the

set of storage nodes in Wj thus Wj − {Ij} − Gj is the
set of aggregators in Wj . Since an aggregator can appear
multiple times in the same or different aggregation walks
(Observation 2),

⋃a
j=1{Wj − {Ij} −Gj} signifies a set of

q distinct aggregators in the network.
TABLE I

NOTATION SUMMARY

Notation Explanation
V , |V | Set and number of sensor nodes
Vd, p Set and number of data nodes
q Number of aggregators needed
m Storage capacity of a storage node in V − Vd

R Overflow data size at each data node before aggregation
r, r < R Overflow data size at each data node after aggregation
I, a Set and number of initiators, 1 ≤ a ≤ (p− q)
Ij jth initiator, 1 ≤ j ≤ a
Wj Aggregation walk starting with Ij
w(R, u, v) Aggregation cost of sending R bits from u to v
c(R,Wj) Aggregation cost of sending R bits along Wj

The goal DAO2 is to minimize the total aggregation cost∑
1≤j≤a c(R,Wj), the total energy consumption incurred in

the aggregation process. Table I lists all the notations.
EXAMPLE 1: Fig. 2 gives an example of DAO2 in a grid

sensor network of 9 nodes (we use grid only for illustration
purpose – the DAO2 and its solutions are designed for general
graph topologies). Nodes B, D, E, G, and I are data nodes,
while nodes A, C, F and H are storage nodes. Assume that

R = m = 1, r = 3/4, and energy consumption along any
edge is 1 for one unit of data. In this scenario overall storage
overflow exists, as there are 4 units of storage space while
there are 5 units of overflow data. Using Equation 1, the
number of aggregators q is 4, leaving one data node to be
initiator. One of the optimal solutions could be selecting B
as initiator and setting its aggregation walk as: B, E, D,
G, H , I , with total aggregation cost of 5. After aggregation,
the sizes of overflow data at B, E, D, G, and I are 0, 3/4,
3/4, 3/4, and 7/4, respectively, totaling 4 units. Note that 7/4
units of data at I now include 3/4 unit of I’s own aggregated
overflow data and one unit of initiator B’s overflow data. �

Fig. 2. A DAO2 example.

Data Offloading After Data Ag-
gregation. In the example of Fig. 2,
as the total size of the overflow data
after aggregation is 4, they can be
offloaded and stored into the 4 units
of storage space available in the
network. In our previous work [30],
we have shown that offloading those
data (some are aggregated and some
not) from data nodes to storage
nodes with minimum energy consumption is a minimum cost
flow problem, which can be solved optimally and efficiently.
One optimal minimum cost flow solution is offloading E’s 1/4
unit of data to A (cost 1/2), E’s 2/4 unit of data to C (cost
1), D’s 3/4 unit of data to A (cost 3/4), G’s 3/4 unit of data
to H (cost 3/4), I’s 1/4 unit of data to H (cost 1/4), I’s 2/4
unit data to C (cost 1), and B’s one unit of data, now located
at I , to F (cost 1), totaling 5.25 offloading cost. In this paper
data aggregation and data offloading are separated stages, an
integrated, more energy-efficient solution is proposed in [1].

Since data offloading can be achieved optimally, we only
focus on data aggregation in this paper. We find that DAO2

gives rise to a new graph-theoretic problem, which we refer
to as multiple traveling salesman walks problem (MTSW). In
Section III we formulate MTSW, prove its NP-hardness, and
solve it by an efficient (2− 1

q)-approximation algorithm. We
then show that the DAO2 is equivalent to the MTSW therefore
the algorithms for MTSW can be applied to solve DAO2.

III. Multiple Traveling Salesman Walks (MTSW)

A. Problem Formulation and NP-Hardness.

Given an undirected weighted graph G = (V,E) with
|V | = n nodes and |E| edges, a cost metric (which represents
the distance or traveling time between two nodes), and that the
number of nodes that must be visited is q. The objective of the
MTSW is to determine a subset of at most b = n− q starting
nodes (i.e., the initiators in DAO2), from each of which a
salesman is dispatched to visit some nodes following a walk,
such that a) all together q nodes (i.e., the aggregators in
DAO2) are visited, and b) total cost of the walks is minimized.

Let w(u, v) denote weight of edge (u, v) ∈ E. We assume
that triangle inequality holds: for edges (x, y), (y, z), (z, x) ∈
E, w(x, y) + w(y, z) ≥ w(z, x). Given a walk W =
{v1, v2, ..., vn}, let c(W) =

∑n−1
i=1 w(vi, vi+1) denote its

cost. The objective of MTSW is to decide:
• the set of a (1 ≤ a ≤ b) starting nodes I ⊂ V , and
• the set of a walks W1,W2, ...,Wa: Wj (1 ≤ j ≤ a) starts

from a distinct node Ij ∈ I, and |
⋃a
j=1{Wj − {Ij}}| = q,

4

such that total cost
∑

1≤j∈a c(Wj) is minimized.

Theorem 1: The MTSW is NP-hard.
Proof: Given an undirected graph G(V,E), its metric comple-
tion, denoted as Gmc(V,Emc), is a complete graph with the
same set of nodes V, while for any pair of nodes u, v ∈ V , the
cost of (u, v) ∈ Emc is the cost of the shortest path connect-
ing u and v in G(V,E). Recall that traveling salesman path
problem (TSPP) [13] is to find a minimum-cost hamiltonian
path that visits each node exactly once in a complete graph.
MTSW in G(V,E) is thus a multiple traveling salesman
path (MTSPP) problem in Gmc(V,Emc). MTSPP selects at
most b starting nodes, from each of which a salesman is
dispatched to visit a distinct subset of nodes following one
of its hamiltonian paths, such that exactly q other nodes are
visited with minimum total cost. We therefore prove MTSPP
in Gmc(V,Emc) is NP-hard. In particular, we prove TSPP,
a special case of MTSPP, is NP-hard. Below we reduce the
well-known traveling salesman problem (TSP) [8] to TSPP.
Recall that TSP is to find a minimum-cost hamiltonian cycle
in a complete graph that visits each node exactly once.

G*	G	
C	

B	
C	

B	

D	

A’	 A	A	

D	

s	t	

Fig. 3. Proving TSPP is NP-hard.

As shown in Fig. 3, let
complete graph G be an
instance of TSP, we con-
struct an instance of TSPP,
G∗, as follows. We choose
an arbitrary node A in G
and add a copy of it, A

′
.

We connect A′ to all other
nodes except A, and assign
the same cost on each edge as the corresponding edge in G
(that is, (A

′
, B) has the same cost as (A,B), (A

′
, C) has the

same cost as (A,C), etc.). Then we introduce nodes s and t
and add edges (s,A) and (t, A

′
) with any finite edge costs.

Finally, as G∗ must be a complete graph, we add the rest edges
(not shown in Fig. 3) and assign their costs to be infinite. We
show that G contains a minimum-cost Hamiltonian cycle, say,
A, C, B, D, A, if and only if G∗ contains a minimum-cost
Hamiltonian path s, A, C, B, D, A

′
, t.

Suppose that G contains a minimum-cost Hamiltonian cy-
cle A, C, B, D, A. Then we get a minimum-cost Hamiltonian
path in G∗ when we start from s, follow the cycle back to
A

′
instead of A, and finally end in t. Conversely, suppose G∗

contains a minimum-cost Hamiltonian path. This path (with
finite cost) must end in s and t. We transform it to a cycle in
G by a) deleting s and t, which results in a path that end in
A and A

′
, and b) removing A

′
. The resulted path, instead of

going back to A
′
, goes back to A, forming a minimum-cost

Hamiltonian cycle in G.

B. Approximation Algorithm for MTSW.

We first introduce some definitions.
Definition 1: (Binary Walk (B-Walk).) Given a tree T

with a maximum-weight edge (u, v) (ties are broken ran-
domly), T is divided into (u, v) and subtrees Tu and Tv . The
B-walk on T , denoted as WB(T), starts from u and visits all
the nodes in Tu following depth-first-search (DFS) and comes
back, then visits v, from where it visits all the nodes in Tv
following DFS and stops when all the nodes are visited. �

Fig. 4(a) shows a tree T with w(u, v) = 2 and weights
of other edges being 1, and a B-walk of cost 16. In B-walk,
each edge in Tu is traversed twice, and each edge in Tv is

(a) B-Walk. (b) LP-Walk.

Fig. 4. (a) A binary walk (B-walk): u, 6, 7, 6, 8, 6, u, v, 1, 2, 1,
3, 1, v, 4, 5, with cost of 16. (b) A longest-path walk (LP-Walk):
2, 1, 3, 1, v, 4, 5, 4, v, u, 6, 7, 6, 8, with cost of 14. � and J– indicate
the first and last node in a walk, respectively. Here, w(u, v) = 2 and
weights of other edges are 1.

traversed once or twice. B-walk saves cost traversing a tree
since the maximum-weight (u, v) is traversed only once.

Lemma 1: c(WB(T)) ≤ (2 − 1
|T |) × c(T). Here c(T) =∑

e∈T w(e) and |T | is the number of edges in T .
Proof: Since (u, v) is the edge in T with maximum weight,
w(u, v) ≥ 1

|T | × c(T). In WB(T), since (u, v) is traversed
exactly once and other edges are traversed at most twice,
c(WB(T)) ≤

(
2× c(T)− w(u, v)

)
. Therefore c(WB(T)) ≤(

2× c(T)− 1
|T | × c(T)

)
= (2− 1

|T |)× c(T).
Definition 2: (Forest and q-Edge Forest) A forest F of G

is a subgraph of G that is acyclic (and possibly disconnected).
A q-edge forest Fq is a forest with q edges. �

Approximation Algorithm. Algorithm 1 works as follows.
Line 1 and 2 sort all the edges in E in non-descending order
of their weights, and initialize an edge set Eq to be empty.
The while loop in lines 3-9 finds the first q edges in E that
do not cause a cycle and store them in Eq . It then obtains a
q-edge forest G[Eq] (line 10). Each connected component of
G[Eq] is either linear or a tree as no cycles are introduced.
If it is linear, it starts from one end and visits the rest nodes
exactly once; if it is a tree, it does a B-walk to visit all the
nodes (lines 11-15).

Algorithm 1: Approximation Algorithm for MTSW.
Input: G(V,E) and number of nodes to visit q;
Output: a walks: W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj);

0. Notations:
Eq: set of q cycleless edges;
G[Eq]: a q-edge forest;
C(G[Eq]): set of connected components in G[Eq];
Cj : the jth connected component in C(G[Eq]);

1. Let w(e1) ≤ w(e2) ≤ ... ≤ w(e|E|);
2. Eq = φ (empty set), i = j = k = 1;
3. while (k ≤ q)
4. if (ei is a cycleless edge w.r.t. Eq)
5 Eq = Eq ∪ {ei};
6. k ++;
7. end if;
8. i++;
9. end while;
10. Let |C(G[Eq])| = a; /*a connected components*/
11. for (1 ≤ j ≤ a)
12. if (Cj is linear) Start from one end node of Cj and

visit the rest nodes in Cj once;
13. if (Cj is a tree) Do a B-walk on Cj ;
14. Let the resulted walk (or path) be Wj ;
15. end for;
16. RETURN W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj).

5

Discussions. Algorithm 1 takes O(|E|log|E|) and works alike
the well-known Kruskal’s minimum spanning tree (MST)
algorithm [7], except that instead of finding |V | − 1 edges
to connect all the nodes in V , it finds q ≤ |V | − 1 edges, to
“connect” some nodes in V . Algorithm 1 therefore general-
izes Kruskal’s MST algorithm, as MST is a special case of
G[Eq], a minimum q-edge forest formally defined below.

Definition 3: (Minimum q-Edge Forest) Let c(Fq) =∑
e∈Fq

we denote the cost of a q-edge forest Fq in G. Let
Fq be the set of all q-edge forests in G. A q-edge forest Fmq
is minimum iff c(Fmq) ≤ c(Fq),∀Fq ∈ Fq . �

Lemma 2: G[Eq] is a minimum q-edge forest.
Proof: Let E = {e1, e2, ..., e|E|}, with w(e1) ≤ w(e2) ≤
... ≤ w(e|E|). Let Eq = {eg1, e

g
2, ..., e

g
q}, with w(eg1) ≤

w(eg2) ≤ ... ≤ w(egq). By way of contradiction, assume that
another q-edge forest, Oq , is a minimum q-edge forest with
cost smaller than that of G[Eq]. Let Oq = {eo1, eo2, ..., eoq}
with w(eo1) ≤ w(eo2) ≤ ... ≤ w(eoq). Assume that egl ∈ Eq
and eol ∈ Oq , 1 ≤ l ≤ q, are the first pair of edges that differ
in Eq and Oq: e

g
l 6= eol and egi = eoi , ∀ 1 ≤ i ≤ l − 1.

According to Algorithm 1, w(egl) ≤ w(eol). Now consider
subgraph Oq ∪ {egl }.

Case 1: Oq ∪{egl } is a forest. Then c(Oq ∪{egl }−{eol }) ≤
c(Oq), contradicting that Oq is a minimum q-edge forest.

Case 2: Oq ∪{egl } is not a forest, i.e., there is a cycle in it.
egl must be in this cycle since there is no cycle in Oq . Besides,
among all the edges in this cycle that is not egl , at least one of
them is not in Eq; otherwise there will not be any cycle (as
they all belong to Eq , which is cycleless). Denote this edge
as e′. Let egl be the nth edge in E = {e1, e2, ..., e|E|}, that
is, egl = en, 1 ≤ n ≤ |E|.

Case 2.1: e′ ∈ {e1, e2, ..., en−1}. Thus w(e′) ≤ w(en−1) ≤
w(en) = w(egl) ≤ w(eol), contradicting that egl and eol are the
first pair of edges that differ in Eq and Oq .

Case 2.2: e′ ∈ {en+1, en+2, ..., e|E|}. Thus w(e′) ≥
w(en+1) ≥ w(en) = w(egl). c(Oq ∪ {e

g
l } − {e′}) ≤ c(Oq),

contradicting that Oq is a minimum q-edge forest.
Reaching contradiction in all the cases, it concludes that

c(G[Eq]) ≤ c(Fq),∀Fq ∈ Fq .
Let O be an optimal algorithm of MTSW with minimum

cost of O. Next we show c(G[Eq]) is a lower bound of O.
Lemma 3: c(G[Eq]) ≤ O.

Proof: Assume that all the edges selected in O induce λ
connected components, denoted as Oj (1 ≤ j ≤ λ). Assume
that there are lj nodes in Oj , and sj (lj > sj ≥ 1) of them
are starting nodes (therefore there are sj walks in Oj visiting
altogether lj − sj nodes). Denote the sj walks in Oj as W o

j

and let c(W o
j) be its cost. We have

∑λ
j=1 c(W

o
j) = O.

Let c(Oj) =
∑
e∈Oj

w(e). Denote any spanning tree of
Oj as T oj , and let c(T oj) =

∑
e∈T o

j
w(e). We have c(T oj) ≤

c(Oj) ≤ c(W o
j). The first inequality is because all the edges

in T oj are in Oj (but not vice versa); the second inequality
is because each edge in Oj is traversed at least once in O.
Therefore

∑λ
j=1 c(T

o
j) ≤

∑λ
j=1 c(W

o
j) = O.

Let q′ =
∑λ
j=1 |T oj |, where |T oj | is the number of edges in

T oj . We have q′ =
∑λ
j=1(lj − 1). The subgraph induced by

all T oj (1 ≤ j ≤ λ) is therefore a q′-edge forest. Since all
together q nodes are visited,

∑λ
j=1(lj−sj) = q. Since sj ≥ 1,

we have q ≤
∑λ
j=1(lj − 1) = q′. Therefore, c(G[Eq]) ≤

c(G[Eq′])
Lemma 2
≤

∑λ
j=1 c(T

o
j) ≤ O.

Theorem 2: Algorithm 1 is a (2 − 1
q)-approximation al-

gorithm.
Proof: In Algorithm 1, each of the a connected components
Cj (1 ≤ j ≤ a) is either linear or a tree. Let qj and c(Cj)
denote the number of edges in Cj and the sum of weights
of edges in Cj , respectively. We have q =

∑a
j=1 qj and

c(G[Eq]) =
∑a
j=1 c(Cj). Let Wj be a B-DFS walk of Cj .

a∑
j=1

c(Wj)
Lemma 1
≤

a∑
j=1

(
(2− 1

qj
)× c(Cj)

)

<

a∑
j=1

(
(2− 1

q
)× c(Cj)

)
= (2− 1

q
)× c(G[Eq])

Lemma 3
≤ (2− 1

q
)×O.

Corollary 1: If Cj (1 ≤ j ≤ a) resulted from Algorithm 1
are all linear, Algorithm 1 is optimal.
Proof: In this case,

∑
1≤j∈a c(Wj) =

∑
1≤j∈a c(Cj) =

c(G[Eq])
Lemma 3
≤ O. Since

∑
1≤j∈a c(Wj) ≥ O, we have∑

1≤j∈a c(Wj) = O.

Smaller-Tree-First-Walk (STF-Walk). When a B-Walk tra-
verses Tu first and then Tv , each edge in Tu is traversed twice
while each edge in Tv is traversed once or twice. A simple
improvement is to traverse, between Tu and Tv , the one with
smaller cost first. We refer to this as smaller-tree-first-walk
(STF-walk). The walk in Fig. 4(a) is indeed an STF-walk.

A Heuristic Algorithm. Next we present another heuristic
algorithm. It differs with Algorithm 1 only in line 13: Instead
of a B-walk along each tree, it does a longest-path walk.

Definition 4: (Longest-Path Walk (LP-Walk).) Let P =
{v1, v2, ..., vn} be a longest path in tree T . A LP-walk starts
from v1, visiting all the nodes in T following DFS, and ends
at vn, such that every edge in P is traversed once. �

In LP-walk, since more edges are traversed only once, the
cost of a walk can be further reduced. Finding longest path in
a tree is to find the shortest path among all pair of leaf nodes
and choose the longest one, which takes O(|V |3). Fig 4(b)
shows a LP-walk with cost of 14. Because the maximum-
weight edge (u, v) is not necessarily on the longest path P ,
we are not able to obtain performance guarantee for LP-
walk. However, we show empirically in Section V that it
outperforms Algorithm 1 by 15% − 30% in terms of energy
consumption under different network parameters.

Fig. 5. (a) Aggregation network G′ of sensor network G in Fig. 2. (b) 4-edge
forest Fq . (c) B-walk on Fq . (d) Aggregation walk with total aggregation
cost of 6. The numbers on edges are their weights.

6

C. Equivalency Between MTSW and DAO2

Now we transform the original sensor network G(V,E)
into an aggregation network G′(V ′, E′), and prove that solv-
ing DAO2 in G is equivalent to solving MTSW in G′.

Definition 5: (Aggregation Network G′(V ′, E′)) V ′ is
the set of p data nodes in V , V ′ = Vd. For any two data
nodes u, v ∈ V ′, there exists an edge (u, v) ∈ E′ if and only
if all the shortest paths between u and v in G do not contain
any other data nodes. For edge (u, v) ∈ E′, its weight w(u, v)
is the cost of the shortest path between u and v in G. �

Fig. 5(a) shows the aggregation network G′ of sensor
network G in Fig. 2. Fig. 5(b) shows a 4-edge forest Fq
of G′ obtained from Algorithm 1. Fig. 5(c) shows the B-
walk on Fq . Finally, we obtain the aggregation walk in
G, shown in Fig. 5(d), by replacing each edge (u, v) in
Fq with a shortest path between u and v in G. The total
aggregation cost following this walk is 6, one more than the
optimal cost shown in Example 1. The B-walk in this example
happens to be a LP-walk. Note that aggregation network is
not necessarily a complete graph, therefore is different from
the metric completion of a graph defined in Section III-A.

Theorem 3: DAO2 in G is equivalent to MTSW in G′.
Proof: To prove their equivalence, it is sufficient to show that
the data, energy consumption, and topology information that
are used for computing energy-efficient aggregation in sensor
network G(V,E) are all preserved in aggregation network
G′(V ′, E′). Below we show that this is achieved during the
construction of G′ from G. First, as all the data nodes in G are
now nodes in G′, data information is preserved. Second, if all
the shortest paths between a pair of data nodes X and Y do
not contain any other data nodes, then in G′ all those shortest
paths are replaced by one single edge (X,Y), whose weight
is the cost of any of such shortest paths. Therefore the energy
consumption information is preserved. Third, if there exists
at least one shortest path between data nodes X and Y in G
that includes at least another data node as its intermediate
node, there is no edge (X,Y) in G′. This mandates that
if X and Y participate in the same aggregation walk, they
should take a shortest path between them with data nodes as
intermediate nodes as part of the aggregation walk. Therefore
the topological requirement of DAO2 to ”visit as many data
nodes (aggregators) as possible while using as least amount
of energy as possible” is preserved (Otherwise, less number
of aggregators are visited with the same amount of energy
consumption, which is against the goal of DAO2). Therefore,
solving MTSW in G′ is equivalent to solving DAO2 in G.

IV. Distributed Data Aggregation Algorithm
We design a distributed data aggregation algorithm, referred

to as Distributed DAO2. It is based on the classic GHS
algorithm, a distributed, asynchronous algorithm by Gallager,
and Humblet, and Spira [11] that finds the optimal minimum
spanning tree (MST) of a graph. There is work [6] that
constructs distributed MST in wireless ad hoc networks with
less energy consumption. However, it is a O(|V |log|V |)-
approximation instead of optimal.

Distributed DAO2. Our distributed algorithm has two stages.
First, it finds the aggregation network G′(V ′, E′) using
distributed Bellman-Ford algorithm [24]. In particular, each
data node sends to its one hop neighbor about its cost to
reach all other data nodes. This takes place iteratively and

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 26 28 30 32 34 36 38 40 42 44 46 48

q

p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(a) q vs. p.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 26 28 30 32 34 36 38 40 42 44 46 48

p
-q

p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(b) p− q vs. p.

Fig. 6. Valid range of p while varying ρ (R = m).

asynchronously until all the data nodes update accurately
such information. Second, it finds the minimum q-edge forest
in G′(V ′, E′) distributedly. Most steps in second stage are
similar to those in original GHS algorithm. We therefore
review GHS algorithm first.

The algorithm maintains a spanning forest of trees. It
starts with each node being considered as a fragment, which
has level 0 initially. In each “round” of the algorithm, each
fragment independently finds its minimum weight outgoing
edge (MWOE) and uses this edge to combine with other
fragments. Specifically, each fragment has its leader to man-
age the combining operations, which are either “merge” or
“absorb” operations. Absorb operation doesn’t change the
maximum level among all fragments while merge operation
may increase the maximum level by 1.

To find the MWOE, the leaders of two fragments, which
are adjacent to the edge added immediately in the previous
step, send initiate message to the members of the fragment.
Upon receipt of the initiate message, each member node finds
its outgoing edge and reports it to the leaders. Upon receipt
of reports, the leaders select a new leader, the node that is
adjacent to the MWOE for the entire fragment, and then
begins a new round. During the execution of the algorithm,
an edge that becomes part of the MST is a branch edge.
The only difference between Distributed DAO2 and GHS is
the termination condition: for GHS, it is when a fragment is
unable to find a MWOE; for Distributed DAO2, it is when
the number of branch edges reaches q.
Time and Message Complexity. For the first stage of Dis-
tributed DAO2, both its time and message complexities
are O(p|E|). For the second stage, its time complexity is
O(p·logp) while its message complexity is O((p+|E|)·logp).
Therefore, both the time and message complexities of Dis-
tributed DAO2 are O(p|E|).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

26 27 28 29 30 31 32 33

T
o

ta
l
A

g
g

re
g

a
ti
o

n
 C

o
s
t

(J
)

p

STF-Walk
B-Walk

(a) Total aggregation cost.

-5 %

0 %

5 %

10 %

15 %

 26 27 28 29 30 31 32 33P
e

rf
o

rm
a

n
c
e

 I
m

p
ro

v
e

m
e

n
t

 P
e

rc
e

n
ta

g
e

p

(b) Performance improvement.

Fig. 7. Performance improvement of STF-Walk over B-Walk.

Theorem 4: When there is one initiator allowed, Dis-
tributed DAO2 finds an optimal aggregation cost.
Proof: When there is only one initiator, finding minimum
q-edge forest in data aggregation is equivalent to finding a
MST in the aggregation network. Consequently, Distributed

7

(a) Sensor network of 50 nodes. (b) Aggregation network. (c) 32-edge forest. (d) B-Walk (381.2KJ). (e) LP-Walk (290.6KJ).

Fig. 8. Visually comparing B-Walk with LP-Walk with one initiator. Black nodes are data nodes and white nodes are storage nodes, with
node ID shown inside. Here, ρ = 0.5, p = 33, and q = 32. � and J– indicate the first and last node in a walk, respectively.

DAO2 is equivalent to GHS algorithm. Due to the optimality
of finding MST by the GHS algorithm, the optimality of
Distributed DAO2 also sustains.

V. Performance Evaluation
A. Centralized Algorithms.

We implemented a Java-based simulator in which 50
and 100 sensors are uniformly distributed in a region of
1000m × 1000m. Transmission range is 250m. Unless oth-
erwise mentioned, R = m = 512MB. We define correlation
coefficient as ρ = 1−r/R. ρ = 0 means no spatial correlation
at all, while ρ = 1 means perfect correlation (i.e., data at
aggregators are duplicate copies of data at initiators thus can
be completely removed). Each data point is an average over
10 runs and the error bars indicate 95% confidence interval,
wherever applicable. Since the comparison results are similar
for 50 and 100 nodes, we only present the results for 50
nodes, because they can be more clearly visualized.

Valid Range of p. Fig. 6(a) shows the valid range of p for
different correlation coefficient ρ. When ρ = 0.1, the valid
range of p is a single value of 26, with corresponding value
of q, the number of aggregators, as 20. When increasing ρ,
the valid range of p expands, from 26 − 29 for ρ = 0.3, to
26− 33 for ρ = 0.5, to 26− 37 for ρ = 0.7, to 26− 49 for
ρ = 1. This is because strong data correlation leads to more
data being aggregated, thus allowing more data nodes to exist
under overall storage overflow. It also shows that for each ρ, q
increases when increasing p. This is because more data nodes
means more overflow data and less available storage, therefore
more aggregators are needed to achieve enough data size
reduction. Finally it shows that for the same p, q decreases
when increasing ρ. This is implied by Equation 1, which can
be rewritten as: q = dp×(1+m/R)−|V |×m/R

ρ e. Fig. 6(b) shows
the maximum number of initiators p−q for each valid p value.
There are two cases in which one initiator is allowed: ρ = 0.5
and p = 33, and ρ = 1 and p = 49, while multiple initiators
are allowed for other cases.

Performance Improvement of STF-Walk Over B-Walk.
We first study the performance improvement of STF-Walk
over B-Walk. We choose ρ = 0.5, which is a representative
correlation coefficient, and vary p from 26 to 33. Fig. 7(a)
shows that when p is 26, 27, or 28, both STF-Walk and B-
Walk yield the same total aggregation costs. This is because
when the number of data nodes p is small, the number of
aggregators q is small, causing that the connected components
of the resulted q-edge forests are all linear. In linear topolo-
gies, aggregation takes place by simply traversing from one
end of the linear topology to the other end, resulting the same
performances for both STF-Walk and B-Walk. However, when

p gets larger, STF-Walk yields less cost and performs better
than B-Walk does, because STF-Walk always traverses the
smaller subtree twice while B-Walk could possibly traverse
the bigger subtree twice. Fig. 7(b) shows that the performance
improvement of STF-Walk over B-Walk is around 5%−10%.
Therefore, for the rest of the simulations we choose STF-Walk
instead of B-Walk, but still refer to it as B-Walk.

 0

 100

 200

 300

 400

 500

 600

 700

 25 30 35 40 45 50

Number of Data Nodes p

ρ=1, B-Walk
ρ=1, LP-Walk

ρ=0.7, B-Walk
ρ=0.7, LP-Walk

ρ=0.3, B-Walk
ρ=0.3, LP-Walk

(a) Total aggregation cost (KJ).

0 %

5 %

10 %

15 %

20 %

 25 30 35 40 45 50

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.3

(b) Performance improvement.

Fig. 9. Comparing B-Walk with LP-Walk by varying p and ρ.

Comparing B-Walk with LP-Walk Visually. Before we
perform a comprehensive comparison between B-Walk and
LP-Walk, we first compare them visually to gain some
insights. We consider ρ = 0.5 and p = 33, which has
32 aggregators and one initiator. Fig. 8(a) and (b) show
such a sensor network and its corresponding aggregation
network, respectively. Fig. 8(c) shows the corresponding 32-
edge forest. Fig. 8(d) and (e) show the aggregation walks from
B-Walk and LP-Walk, respectively. B-Walk visits 32 edges
twice, resulting in a total aggregation cost of 381.2 kilojoules
(KJ); while LP-Walk only visits 12 edges twice, with a total
cost of 290.6KJ, a 23.8% of improvement upon B-Walk.

Comparing B-Walk with LP-Walk by Varying p and ρ.
Next we compare B-Walk and LP-Walk while considering the
whole ranges of p ∈ [26, 49] and ρ = 0.1, 0.3, 0.5, 0.7, 1.0.
Fig. 9(a) shows that for each ρ, with the increase of p, the
total aggregation costs of both B-Walk and LP-Walk increase.
However, LP-Walk constantly performs better than B-Walk.
It also shows that for the same p, with the increase of ρ, the
aggregation costs for both B-Walk and LP-Walk decrease.
This is because more correlation means that less number of
aggregators are visited, thus reducing aggregation costs.

Fig. 9(b) shows the performance improvement percentage
of LP-Walk over B-Walk is generally 10%−20%. Combining
the 5%−10% performance improvement of STF-Walk over B-
Walk, the performance improvement of LP-Walk over B-Walk
is therefore around 15% − 30%. Furthermore, we observe
the smaller the ρ, the larger the performance improvement
percentage is. For example, when p = 26 (the only valid
value for ρ = 0.1), the performance improvement percentage

8

 0

 100

 200

 300

 400

 500

1 2 3 4 5

R/m

p=26,B-Walk
p=26,LP-Walk

p=30,B-Walk
p=30,LP-Walk

(a) Total aggregation cost (KJ).

0 %

5 %

10 %

15 %

20 %

25 %

 1 1.5 2 2.5 3 3.5 4 4.5 5

R/m

p=26
p=30

(b) Performance improvement.

Fig. 10. Comparing B-Walk with LP-Walk by varying R/m.

for ρ = 0.1 is 14% while zero for ρ = 0.3, 0.5, 0.7, 1.0. When
ρ = 0.5, in its valid p range (26 − 33), it almost always
has a larger performance improvement percentage compared
to ρ = 0.7, 1. When less data correlation exists, more
aggregators are visited, making the sizes of the resulted q-
edge forest as well as its constituent trees larger. By traversing
the longest paths of larger trees once, LP-Walk can thus save
more aggregation cost compared to traversing smaller trees.

Comparing B-Walk with LP-Walk by Varying R/m. We
compare B-Walk with LP-Walk on different R/m. When
increasing R/m, the overall storage overflow situation gets
more challenging since there are relatively more overflow data
compared to available storage spaces. We choose ρ = 0.5 and
vary R/m from 1 to 5, under which the common valid range
of p is [26, 30]. Therefore we pick p = 26 and p = 30 for
comparison. Fig. 10(a) shows again that LP-Walk yields less
total aggregation cost under different R/m. Fig. 10(b) further
shows that the performance improvement percentage of LP-
Walk upon B-Walk generally increases when increasing R/m.
This shows LP-Walk performs even better in more challenging
overall storage overflow scenarios. When increasing R/m, the
resulted q-edge forests get larger. This favors LP-Walk, which
travels large amount of edges only once.

B. Distributed Algorithm.

Distributed DAO2 is implemented in DistAlgo [20], a
Python-based high-level language for programming dis-
tributed algorithms. 100 nodes are randomly placed in a
2000m× 2000m region. The transmission range is 250m and
m = R = 512MB. We set the size of each overhead message
as 20B. We adopt ρ = 0.6 and vary p from 51 to 71, at which
point it allows for one initiator.

p 55 60 65 70 71
q 17 34 50 67 70

Number of Initiators 38 26 15 3 1
Centralized (KJ) 78.79 251.76 494.12 787.07 876.29
Distributed (KJ) 209.52 479.12 680.93 827.76 876.29

TABLE II
AGGREGATION COSTS IN CENTRALIZED AND DISTRIBUTED

ALGORITHMS.

To show the solution quality, Table II first compares the
aggregation costs on the q-edge forests resulted from the
Distributed DAO2 as well as the centralized approximation
algorithm (Algorithm 1), while varying number of data nodes
p in its valid range [55,71]. It shows that when p is small,
the centralized algorithm performs much better than Dis-
tributed DAO2. However, Distributed DAO2 performs closer
to the centralized algorithm when increasing p. When it gets
to the case of one initiator (p = 71), Distributed DAO2

yields the same aggregation cost as the centralized algorithm
does, since they both result in a minimum spanning tree.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

51 55 60 65 70 71

T
o
ta

l
E

n
e
rg

y
 C

o
s
t
(K

J
)

Number of Data Nodes p

Centralized
Distributed

Fig. 11. Total energy costs in centralized and
distributed algorithms.

Finally, Fig. 11
compares the total
energy costs of the
two algorithms by
varying number of
data nodes. The en-
ergy cost for Dis-
tributed DAO2 in-
cludes the energy
consumption for the
aggregation network
construction using distributed Bellman-Ford algorithm, the
energy consumption of all the overhead messages, as well
as the aggregation cost. We observe that while centralized
algorithm obviously costs less energy than Distributed DAO2,
their energy consumptions are generally comparable.

VI. Related Work

MSTW is different from well-known multiple traveling
salesman problem (mTSP) [4] and vehicle routing problem
(VRP) [32] studied in theory community. In mTSP, a group of
traveling salesmen are given, and it needs to decide a tour for
each salesman such that the total tour cost is minimized and
that each city is visited exactly once. MSTW, however, needs
to first decide how many salesmen can be dispatched (and
from which cities), then to find the tour for each. Besides,
not necessarily all the nodes will be visited in MSTW. In
VRP, the set of vehicle nodes and the set of customer nodes
are usually disjoint. There is no such distinction in MTSW –
each node can either dispatch a salesman or be visited.

In sensor network community, there are extensive re-
search that focused on disconnection-tolerant operations in
the absence of the base station. Some system research were
conducted to design cooperative distributed storage systems
and to improve the utilization of the network’s data storage
capacity [22, 23]. Other research instead took an algorithmic
approach by focusing on the optimality of the solutions [14,
30, 34]. However, all above works assumed that there is
enough storage space available to store the overflow data,
thus not addressing the overall storage overflow problem.

Intermittently connected sensor networks are different from
delay tolerant sensor networks (DTSN) [18]. In DTSNs,
mobile nodes are intermittently connected with each other due
to their mobility and low density, and data is opportunistically
forwarded to destination nodes. In intermittently connected
sensor networks, however, all the static sensors are connected
with each other while being disconnected from the base
station, and data is uploaded to the base station only when
uploading opportunities such as data mules become available.

There is vast amount of literature of data aggregation in
sensor networks [2, 15, 17, 21, 31]. Tree-based routing struc-
tures were often proposed to either maximize network lifetime
(the time until the first node depletes its energy) [21], or
minimize total energy consumption or communication cost
[15, 17], or reduce delay of data gathering [2]. Some other
works were based on non-tree routing structures, using mobile
base stations to collect aggregated data in order to maximize
the network lifetime [28, 31]. Data aggregation in DAO2,

9

however, significantly differs from existing data aggregation
techniques in both goals and techniques. First, existing data
aggregation is to reduce number of transmissions by com-
bining data from different sensors en route to base station,
thus saving energy. The goal of data aggregation in DAO2,
however, is to aggregate the overflow data so that they can fit
into storage available in the network, thus preventing data loss
caused by overall storage overflow. Second, the underlying
routing structures in most of the existing data aggregation
techniques are trees rooted at the base station covering all
sensor nodes. In DAO2, however, since the base station is
not available, those routing structures are no longer suitable.
Instead, DAO2 introduces minimum q-edge forest, a routing
structure that serves as the building block of our techniques.

VII. Conclusion and Future Work
This paper introduced DAO2, an architectural and algo-

rithmic framework that tackles the overall storage overflow
problem in intermittently connected sensor networks. We
modeled the DAO2 as a new graph-theoretic problem called
multiple traveling salesman walks problem, and designed a
suite of energy-efficient optimal, approximation, heuristic,
and distributed data aggregation algorithms to solve it. The
building block of our algorithmic techniques is minimum
q-edge forest, a routing structure that generalizes minimum
spanning tree and achieves energy-efficient data aggregation
with performance guarantees. Because of this general and
theoretical root, the techniques proposed in this paper could
possibly be applicable to any applications wherein data cor-
relation and resource constraints coexist.

As it is an architectural framework, there are a few future
extensions. We will consider that overflow data generated
from different data nodes could have different sizes, and that
different storage nodes could have different storage capacities.
We will also consider that different data nodes could have
different correlation coefficients. Currently data aggregation
and data offloading are treated as two separate stages – as
ongoing [1] and future work, we will integrate these two
stages and explore a more unified energy-efficient solution
for the overall storage overflow problem.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant CNS-
1419952. We thank Yan Ma and Basil Alhakami for many
discussions and simulations.

REFERENCES

[1] B. Alhakami, B. Tang, J. Han, and M. Beheshti. Dao-r: Integrating data
aggregation and offloading in sensor networks via data replication. In
Proc. of GLOBECOM, 2015.

[2] B. Alinia, M. Hajiesmaili, and A. Khonsari. On the construction of
maximum-quality aggregation trees in deadline-constrained wsns. In
Proc. of INFOCOM, 2015.

[3] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and
D. Turgut. Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle. In
Proc. of INFOCOM, 2014.

[4] T. Bektas. The multiple traveling salesman problem: an overview of
formulations and solution procedures. Elsevier Omega, 34:209–219,
2006.

[5] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. Contention-
free mac protocols for wireless sensor networks. In Proc. of DISC,
2004.

[6] Y. Choi, M. Khan, V. A. Kumar, and G. Pandurangan. Energy-optimal
distributed algorithms for minimum spanning trees. IEEE Journal on
Selected Areas in Communications, 27(7):1297–1304, 2009.

[7] T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2009.

[9] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer.
Network correlated data gathering with explicit communication: Np-
completeness and algorithms. IEEE/ACM Transactions on Networking,
14:41–54, 2006.

[10] M. Di Francesco, S. K. Das, and G. Anastasi. Data collection in wireless
sensor networks with mobile elements: A survey. ACM Trans. Sen.
Netw., 8(1):7:1–7:31, 2011.

[11] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst.,
5(1):66–77, 1983.

[12] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks.
In Proc. of HICSS, 2000.

[13] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are
more difficult than cycles. Operations Research Letters, 10:291 – 295,
1991.

[14] X. Hou, Z. Sumpter, L. Burson, X. Xue, and B. Tang. Maximizing data
preservation in intermittently connected sensor networks. In Proc. of
MASS, 2012.

[15] T. Kuo and M. Tsai. On the construction of data aggregation tree with
minimum energy cost in wireless sensor networks: Np-completeness
and approximation algorithms. In Proc. of INFOCOM, 2012.

[16] H. Li, D. Liang, L. Xie, G. Zhang, and K. Ramamritham. Flash-
optimized temporal indexing for time-series data storage on sensor
platforms. ACM Trans. Sen. Netw., 10(4):1565–1572, 2012.

[17] J. Li, A. Deshpande, and S. Khuller. On computing compression trees
for data collection in wireless sensor networks. In Proc. of INFOCOM,
2010.

[18] Y. Li and R. Bartos. A survey of protocols for intermittently connected
delay-tolerant wireless sensor networks. Journal of Network and
Computer Applications, 41:411–423, 2014.

[19] L. Liu, R. Wang, D. Guo, and X. Fan. Message dissemination for
throughput optimization in storage-limited opportunistic underwater
sensor networks. In Proc. of SECON, 2016.

[20] Y. Liu, S. Stoller, B. Lin, and M. Gorbovitski. From clarity to efficiency
for distributed algorithms. In Proc. of OOPSLA, 2012.

[21] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for the
shortest path aggregation tree in wireless sensor networks. In Proc. of
INFOCOM, 2011.

[22] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and J. Stankovic.
Design, implementation, and evaluation of enviromic: A storage-centric
audio sensor network. ACM Transactions on Sensor Networks, 5(3):1–
35, 2009.

[23] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic. Envirostore:
A cooperative storage system for disconnected operation in sensor
networks. In Proc. of INFOCOM, 2007.

[24] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[25] D. Mosse and G. Gadola. Controlling wind harvesting with wireless

sensor networks. In Proc. of IGCC, 2012.
[26] L. Mottola. Programming storage-centric sensor networks with squirrel.

In Proc. of IPSN, 2010.
[27] F. Shahzad. Satellite monitoring of wireless sensor networks. Procedia

Computer Science, 21:479 – 484, 2013.
[28] Y. Shi and Y.T. Hou. Theoretical results on base station movement

problem for sensor network. In Proc. of INFOCOM, 2008.
[29] R. Sugihara and R. K. Gupta. Path planning of data mules in sensor

networks. ACM Trans. Sen. Netw., 8(1):1:1–1:27, 2011.
[30] B. Tang, N. Jaggi, H. Wu, and R. Kurkal. Energy efficient data redis-

tribution in sensor networks. ACM Transactions on Sensor Networks,
9(2):11:1–11:28, May 2013.

[31] S. Tang, J. Yuan, X. Li, Y. Liu, G. Chen, M. Gu, J. Zhao, and G. Dai.
Dawn: Energy efficient data aggregation in wsn with mobile sinks. In
Proc. of IWQoS, 2010.

[32] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Society
for Industrial and Applied Mathematics, 2001.

[33] B. Weiss, , H.L. Truong, W. Schott, A. Munari, C. Lombriser, U. Hun-
keler, and P. Chevillat. A power-efficient wireless sensor network for
continuously monitoring seismic vibrations. In Proc. of SECON, 2011.

[34] X. Xue, X. Hou, B. Tang, and R. Bagai. Data preservation in
intermittently connected sensor networks with data priorities. In Proc.
of SECON, 2013.

[35] H. Zheng and J. Wu. Data collection and event detection in the deep
sea with delay minimization. In Proc. of SECON, 2015.

[36] J. Zheng and P. Wang C. Li. Distributed data aggregation using
slepianwolf coding in cluster-based wireless sensor networks. IEEE
Transactions on Vehicular Technology, 59:2564 – 2574, 2010.

