
Traffic-Optimal Virtual Network Function Placement
and Migration in Dynamic Cloud Data Centers

Vincent Tran∗, Jingsong Sun∗(first two authors have equal contribution), Bin Tang∗, Deng Pan†
∗Department of Computer Science, California State University Dominguez Hills

vincentvtran17@gmail.com, jsung18@toromail.csudh.edu, btang@csudh.edu
†School of Computing and Information Sciences, Florida International University, pand@fiu.edu

Abstract—We propose a new algorithmic framework for
traffic-optimal virtual network function (VNF) placement and
migration for policy-preserving data centers (PPDCs). As dy-
namic virtual machine (VM) traffic must traverse a sequence of
VNFs in PPDCs, it generates more network traffic, consumes
higher bandwidth, and causes additional traffic delays than a
traditional data center. We design optimal, approximation, and
heuristic traffic-aware VNF placement and migration algorithms
to minimize the total network traffic in the PPDC. In particular,
we propose the first traffic-aware constant-factor approximation
algorithm for VNF placement, a Pareto-optimal solution for
VNF migration, and a suite of efficient dynamic-programming
(DP)-based heuristics that further improves the approximation
solution. At the core of our framework are two new graph-
theoretical problems that have not been studied. Using flow
characteristics found in production data centers and realistic
traffic patterns, we show that a) our VNF migration techniques
are effective in mitigating dynamic traffic in PPDCs, reducing the
total traffic cost by up to 73%, b) our VNF placement algorithms
yield traffic costs 56% to 64% smaller than those by existing
techniques, and c) our VNF migration algorithms outperform
the state-of-the-art VM migration algorithms by up to 63% in
reducing dynamic network traffic.

Index Terms—Policy-Preserving Data Centers, Dynamic Cloud
Traffic, VNF Placement and Migration, Algorithms

I. INTRODUCTION

Background and Motivation. Network Function Virtual-
ization (NFV) is an effective technique to achieve flexible
management and reduce cost in a cloud computing envi-
ronment [40]. With NFV, proprietary hardware middleboxes
(MBs) such as firewalls and cache proxies can now be im-
plemented as virtual network functions (VNFs) running as
lightweight containers on commodity hardware [38]. Being
instantiated and deployed dynamically, VNFs provide per-
formance and security guarantees to cloud user applications
flexibly and cost-effectively. In particular, cloud operators
create service function chains (SFCs) (or data center policies)
that require virtual machine (VM) application traffic to traverse
a sequence of VNFs to achieve aforesaid guarantees [28]. We
refer to the cloud data centers that implement and enforce data
center policies as policy-preserving data centers (PPDCs).

Fig. 1(a) shows a linear PPDC with two host servers h1 and
h2, five switches s1-s5, and an SFC consisting of a firewall
f1 installed at s1 and a cache proxy f2 at s2. There are two
communicating VM flows: (v1, v′1) and (v2, v

′
2), with v1 and

v′1 stored at h1 and v2 and v′2 at h2. As the VM traffic between

v1 and v′1 (and traffic between v2 and v′2) traverses f1 and f2
in that order, this SFC first filters out malicious traffic and then
caches the content to share with other cloud users, improving
both security and performance of the cloud user applications.

However, for the same reason that the VM traffic must
traverse the SFC in the PPDC, it generates more network
traffic, consumes more network bandwidth, and causes addi-
tional network delay among the VMs compared to traditional
data centers without SFCs. For example, for the two VM
pairs in Fig. 1(a), without SFC requirement, v1 can locally
communicate with v′1 (and v2 with v′2) without incurring any
network traffic and consuming any network bandwidth at all.

f2f1h1 h2

(a) VNF placement

v1
v1’

v2
v2’s1 s2 s3 s4 s5

f2f1h1 h2

(b) Dynamic VM traffic

v1
v1’

v2
v2’s1 s2 s3 s4 s5

f2f1h1 h2

(c) VNF migration

v1
v1’

v2
v2’s1 s2 s3 s4 s5

f2f1h1 h2

(d) Reduced VM traffic

v1
v1’

v2
v2’s1 s2 s3 s4 s5

Heavy VM traffic VNF migration Light VM traffic

Fig. 1. An example illustrating VNF placement and migration in a PPDC.

Meanwhile, recent findings from Facebook and other pro-
duction data centers [43] show that VM traffic rates (e.g.,
transmission rates and bandwidth demands) are highly diverse
and dynamic, further exacerbating the above SFC traffic storm
problem. One example is Zoom cloud conferencing [4], where
one Zoom Meeting Connector VM [2] could support 200
meetings simultaneously with up to 1000 participants in a
meeting. Different Zoom meetings could have a dramatically
different number of participants. They could last minutes to
hours with communication varied from video, voice, to text,
resulting in diverse and dynamic cloud traffic. Such diverse
and dynamic traffic further escalates the network traffic and
increases the consumption of network resources (e.g., energy
and bandwidth), as illustrated by the below example.

An Illustrative Example. Let’s assume that in Fig. 1(a), the
initial traffic rate of (v1, v′1) is much larger than that of (v2, v′2)
due to diverse cloud traffic. The traffic optimal VNF placement
is then to install f1 on s1 and f2 on s2 as shown in Fig. 1(a).
This way, by traversing f1 and f2, the heavy traffic route of

(v1, v
′
1) is “shorter” than the light traffic route of (v2, v

′
2),

resulting in least amount of network traffic.
Due to dynamic traffic in PPDCs, however, if the traffic rate

of (v2, v′2) next emerges as much larger than that of (v1, v′1),
above VNF placement is no longer traffic-optimal. As shown
in Fig. 1(b), since v2 communicates with v′2 via a route much
longer than that of (v1, v′1), the heavy network traffic generated
by (v1, v

′
1) now goes through the entire PPDC and consumes

much of its network bandwidth.
Our key observation is that VNFs, implemented as software,

can be easily migrated to different parts of the PPDC to
alleviate its dynamic network traffic adaptively. As shown in
Fig. 1(c) and (d), by migrating f1 to s4 and f2 to s5, the
policy preserving network traffic is greatly reduced as the
heavy traffic of (v2, v′2) is now confined in a short route while
the light traffic of (v1, v′1) taking a longer one.

Our Contributions. We propose a new framework of VNF
placement and migration to specifically address the diverse and
dynamic network traffic in the PPDCs. The framework consists
of two new problems in sequence viz. TOP: traffic-optimal
VNF placement and TOM: traffic-optimal VNF migration.
Given a PPDC with VM flows of diverse traffic rates and
an SFC that they must traverse, TOP studies how to place
the VNFs inside the PPDC to minimize the total traffic
incurred by policy-preserving VM communications. As this
initial optimal VNF placement may become suboptimal due to
dynamic traffic, TOM then adaptively migrates VNFs around
the PPDC to minimize the network traffic incurred by VNF
migration and VM communication. We formulate both as new
graph-theoretical problems that have not been studied before.
Considering VNF migration itself incurs traffic overhead and
a large scale PPDC typically has hundreds of thousands of
VMs with a wide range of changing traffic rates [43], both
TOP and TOM are challenging problems.

In contrast, existing traffic aware VNF placement and mi-
gration research mostly have different objectives – While VNF
placement mainly minimizes the setup cost of VNFs [16], [46],
[13] or the communication cost of cloud users [56], [54], [55],
[36], or maximizes the fully processed traffic [44], [45] or reli-
ability of the SFCs [11], [41], VNF migration mostly focuses
on reducing the service downtime and migration time [51],
[20], [32] and resource consumption [9], [47] during the VNF
migration. As such, many of above VNF placement and VNF
migration problems are studied separately. By characterizing
topology-aware costs for both VM communication and VNF
migration, we are able to integrate both VNF placement and
VNF migration in the same problem space to alleviate cloud
network traffic and to achieve optimal utilization of cloud
network resources in dynamic PPDCs.

We design optimal, approximation, and heuristic traffic-
aware VNF placement and migration algorithms to solve TOP
and TOM. In particular, we find that a special case of TOP viz.
TOP-1 is equivalent to the n-stroll problem1 [7], [10]. n-stroll
problem finds a minimum-length path between a source and

1The literatures refer to it as k-stroll problem.

destination in a network that visits at least n other nodes. n-
stroll is a fundamental problem that is only studied in the the-
ory community. We are the first ones to apply it to model con-
crete network applications. We propose a primal-dual-based
2+ε approximation for TOP and a Pareto-optimal solution for
TOM. This is the first constant-factor approximation algorithm
for the traffic-optimal VNF placement problem to the best
of our knowledge. We further propose a suite of dynamic
programming (DP)-based algorithms that relax the restriction
implied in the approximation algorithm and empirically show
that they constantly outperform the approximation algorithm.
In contrast, the existing VNF placement and migration work
proposed ILP solutions (which lack scalability) and heuristic
algorithms (which do not have performance guarantees) [55],
[34], [20], [21].

One salient feature of our framework is that it achieves
ideal resource utilization for a PPDC’s lifetime - after the
TOP creates the initial optimal VNF placement, the TOM then
executes periodically to optimize a PPDC’s network resource
in the face of dynamic VM traffic. Using flow characteristics
found in Facebook data centers [43], we show that our VNF
migration algorithms are effective in lessening dynamic traffic
in PPDCs, reducing the total network traffic by 73%. Using
the realistic VM traffic patterns, we show our VNF placement
algorithms cost 56% to 64% smaller than existing techniques,
and our VNF migration algorithms outperform the state-of-
the-art VM migration algorithms by up to 63%.

II. RELATED WORK

Traffic-Aware VNF Placement. We categorize the vast number
of traffic-aware VNF placement literature into two groups.
One is to optimize resource provisioning objectives, including
minimizing the total number of VNF instances and their
deployment cost [46], [13], [48], the total cost of the flow
traffic [56], [16], [55], [34], the overall cloud resources (e.g.,
server power and network bandwidth) [54], [23], [12], [30], or
achieving load-balance of cloud resources [50], [36], [49]. The
other group is to achieve admission control objectives (where
not all the requests can be satisfied) such as maximizing the
total utility [33] and throughput [53] of the admitted demands,
the total fully processed traffic [45], [44], or the difference
between service provider’s profit and the total deployment cost
of VNFs [20]. As our work of minimizing total network traffic
belongs to the first category, we review the related work below.

Zheng et al. [56] considered hybrid SFCs wherein different
VNFs are required in the forward and backward directions
between clients and servers. Cohen et al. [16] was one of
the first to tackle the NFV placement problem and provided
bi-criteria approximation algorithms. However, they did not
consider the chain sequence in SFCs. Steering [55] was one
of the first to study multiple-SFC placement and proposed a
heuristic to minimize the traffic delay of all subscribers. Liu
et al. [34] further formulated it as a 0-1 programming problem
and showed it is NP-hard and even has no constant approxi-
mation unless P=NP. They thus proposed a few heuristics.

In contrast with the above works, we consider one SFC
at a time in the network. We are able to design the first
traffic-aware constant-factor approximation VNF placement
algorithm. We are aware that Tomassilli [48] et al. was the
first to propose an approximation algorithm to place SFCs to
minimize the total deployment cost. As the cost of deploying
software VNFs is expected to be much less than the total
network traffic cost in a large-scale dynamic PDDC, our work
complements theirs.
Traffic-Aware VNF Migration. Huang et al. [29] studied VNF
horizontal scaling (that migrates existing VNF instances) and
VNF vertical scaling (that instantiates new VNF instances).
They proposed ILP solutions as well as heuristics. Carpio et
al. [9] used VNF replications to load-balance and reduce VNF
migrations. Yi et al. [52] proposed to migrate VNFs from
poor-state nodes to good-state nodes to maintain the network
balance and performance. A few works targeted dynamic cloud
traffic. Cho et al. [14] used VNF migration to achieve lower
network latency considering dynamic resource availability.
However, it did not consider migration costs. Liu et al. [35]
maximized the service provider’s profit by considering that
existing users can move around and new users can join in.

There are a few works that studied VNF placement and
migration in the same context [20], [21], [18], [26]. In [20], the
objective of VNF placement is to minimize the rejected SFC
bandwidth, and the aim of VNF migration is to consolidate
VNF instances to reduce the server energy consumption and
QoS degradation. Farkiani et al. [21] considered chains with
different priorities and studied the chain deployment and
reconfiguration to maximize the service provider’s profit. Like
most research, both works proposed ILP solutions (which lack
scalability) as well as heuristic algorithms (which do not have
performance guarantees). Cziva et al. [18] studied dynamic and
latency-optimal VNF placement at network edge considering
changing network dynamics. They proposed ILP formulation
and used the theory of optimal stopping to decide when to
migrate VNFs. Our work differs from them in both objective
and solution techniques. We focus on traffic mitigation in
large-scale dynamic cloud data centers and propose the first
constant-factor efficient approximation algorithm for VNF
placement and a Pareto-optimal VNF migration.

III. PRELIMINARIES

System Model. We model a PPDC as an undirected and
weighted graph G(V,E) where V = Vh ∪ Vs includes a
set of hosts Vh = {h1, h2, ..., h|Vh|} and a set of switches
Vs = {s1, s2, ..., s|Vs|}. E is a set of edges, each connecting
either one switch to another or a switch to a host. Fig. 2
shows a k = 4 fat-tree [6] PPDC where k is the number of
ports of a switch.2 We assume that each switch is attached
with a server that can implement various VNFs [55]. There
is an SFC consisting of n VNFs F = {f1, f2, ..., fn} that
need to be placed inside the PPDC. Fig. 2 shows three

2We use fat-trees for illustration purpose. However, the problems and
solutions apply to any data center topology.

VNFs f1, f2 and f3 installed on attached servers of different
switches in the PPDC.3 As a switch and its attached server are
connected by high-speed optical fibers, the delay between them
is negligible compared to that among switches and hosts [27].
We assume policy consistency maintenance mechanisms (i.e.,
FlowTags [22]) are available for VM traffic redirection during
VNF migration.

h15
v2’v1

f1

f2 : Host

: VM

: VNFf3

v2 v1’
h5h4

s1

s2

s3

s4

s5s7

s6

h9h2

Fig. 2. A PPDC with 16 hosts: h1, h2, ..., and h16, 3 VNFs: f1, f2,
and f3, and two VM flows: (v1, v′1) and (v2, v′2). The policy-preserving
communication for (v1, v′1) is shown in black dashed line. The optimal 7-
stroll for (v2, v′2) is shown in solid blue line, as explained in Example 3.

As the east-west traffic accounts more than 70 percent of the
traffic in a data center [1], [3], and most east-west cloud traffic
is pairwise [39], we focus on pairwise VM communication.
We assume that there are l pairs of communicating VMs
P = {(v1, v′1), (v2, v′2), ..., (vl, v′l)} already placed on the
hosts, where v ∈ V = {v1, v′1, v2, v′2, ..., vl, v′l} is placed
at host s(v) and all the VMs have the same size. For any
VM flow (vi, v

′
i), vi and v′i are referred to as its source

and destination VM and s(vi) and s(v′i) as its source and
destination host respectively. We denote the traffic rate of
(vi, v

′
i), which could be the communication frequency or

bandwidth demand between vi and v′i, as λi and the traffic
rate vector as

−→
λ = 〈λ1, λ2, ..., λl〉. In Fig. 2, there are two

VM flows: (v1, v
′
1) and (v2, v

′
2) with

−→
λ = 〈1, 100〉. Note

that as the VM traffic rates change over time in a dynamic
PPDC,

−→
λ is not a constant vector. Considering that network

links are generally provisioned around 40% of utilization to
protect against failures and packet loss [31], we assume there
are enough edge bandwidths. Table I shows all the notations.
Topology-Aware Cost Model. Each edge (u, v) ∈ E has a
weight w(u, v), indicating either the network delay or energy
cost on this edge caused by one unit of VM communication
or VNF migration. Given any host or switch u and v, let
c(u, v) denote the total cost from u to v (i.e., the sum of the
weights of all the edges traversed by VM communication or
VNF migration from u to v). Thus the communication cost of
any VM flow (vi, v

′

i) is λi · c
(
s(vi), s(v

′
i)
)

and the migration
cost of migrating any VNF in F from switch u to switch
v is µ · c(u, v). Here µ is VNF migration coefficient, which
is defined as the ratio between costs of VNF migration and
VM communication. It represents the relative size of memory

3As the attached server of each switch has limited resources thus can install
a limited number of VNFs [13], we assume that different VNFs of an SFC are
installed on servers attached on different switches, but a VNF can be installed
on any of the switches.

h1 h2
(c) VNF migration (d) After VNF migration

v2
v2’

s5
f1

f2

h1 h2
(a) Before VNF migration

v1
v1’

v2
v2’

s4s2

s1

(b) Dynamic traffic

"⃗ = < 1, 100 > "⃗ = < 1, 100 >"⃗ = < 100, 1 >

s5
f1

f2

h1 h2

v1
v1’

v2
v2’

s4s2

s1

"⃗ = < 1, 100 >

h1 h2

v1
v1’

v2
v2’

s2

s1

f2

f1

f2

f1

v1
v1’

s5

s4

s3 s3 s3
Heavy VM traffic

VNF migration

Light VM traffic

Fig. 3. VNF migration achieves 58.6% of total cost reduction in a k=2 PPDC.

or data packet transferred in VNF migration and VM com-
munication. We will quantify µ in Section VI. Our topology-
aware model is different from the well-known pre-copy VM
migration model [37], wherein the cost of migrating a VM or
a VNF is measured by the hypervisor of its host and does not
take into account the network topology. Instead, our model
captures network traffic incurred in VM communication and
VNF migration and is more suitable to study VNF placement
and migration in a large-scale dynamic cloud data center.

Service Function Chainings (SFCs). As an SFC consists of
multiple VNFs of different security and performance func-
tions, we assume one SFC is sufficient to provide security
and performance guarantees to cloud applications [3]. An SFC,
denoted as (f1, f2, ..., fn), requires that the VM traffic to go
through VNFs f1, f2, ..., and fn in that specific order. We refer
to f1 (and fn) as ingress (and egress) VNF, and the switch
where the ingress (and egress) VNF is installed as ingress (and
egress) switch. In Fig. 2, (v1, v′1) traverses SFC (f1, f2, f3),
resulting in communication cost of 1×10 = 10 (black dashed
line). Here we use unweighted costs (i.e., number of edges)
only for the purpose of illustration. Next we quantify the
benefit of using VNF migration to reduce network cost.

EXAMPLE 1: Fig. 3 shows a k=2 fat tree PPDC with two
hosts h1 and h2. There are two VM flows (v1, v′1) and (v2, v

′
2),

with v1 and v′1 at h1 while v2 and v2′ at h2.
−→
λ = 〈100, 1〉 and

TABLE I
NOTATION SUMMARY

Notation Description
G(V,E) A PPDC graph, where V = Vh ∪ Vs
w(u, v) Weight of an edge (u, v) ∈ E
Vh Vh = {h1, h2, ..., h|Vh|} is the set of |Vh| hosts
Vs Vs = {s1, s2, ..., s|Vs|} is the set of |Vs| switches
F F = {f1, f2, ..., fn} is the set of n VNFs
P P = {(vi, v′i), ..., (vl, v′l)} is the set of l VM flows
V V = {v1, ..., vl, v′1, ..., v′l}
s(v) The host in Vh where VM v ∈ V is stored
λi Traffic rate between vi and v′i, 1 ≤ i ≤ l−→
λ

−→
λ = 〈λ1, λ2, ..., λl〉 is the changing traffic rate vector

c(u, v) Cost between hosts (or switches) u and v
p(j) VNF placement function p, fj is placed at switch p(j)
Ca(p) Total VM communication cost with VNF placement p
µ VNF migration coefficient
m(j) VNF migration function m, fj is migrated to switch m(j)
Cb(p,m) Total VNF migration cost of migrating from p to m
Ca(m) Total VM communication cost after migrating from p to m
Ct(p,m) Total VNF migration and VM communication cost after

migrating from p to m; Ct(p,m) = Cb(p,m) + Ca(m)

µ = 1. There are two VNFs f1 and f2. Fig. 3(a) shows one
initial optimal VNF placement, where f1 is installed on switch
s1 and f2 on switch s2, resulting in total communication cost
of 100 × 4 + 1 × 10 = 410 (shown in black dashed lines).
However, due to dynamic traffic,

−→
λ next changes to 〈1, 100〉,

as shown in Fig. 3(b). This results in a dramatic increase of
total communication cost to 1 × 4 + 100 × 10 = 1004. Our
solution to reduce the cost is to migrate f1 to s5 and f2 to
s4, shown in solid red line in Fig. 3(c). Although this incurs
migration cost of 6 for VNF migration, the total cost of the
VM communication (shown in Fig. 3(d)) reduces to 1× 10+
100× 4 = 410, a 58.6% of total cost reduction. This fat tree
PPDC is indeed the same linear PPDC in Fig. 1.

IV. TOP: TRAFFIC-OPTIMAL VNF PLACEMENT

In this section, we formulate the TOP and prove its NP-
hardness. Then we focus on a special case of TOP with
one VM pair viz. TOP-1, and design a primal-dual-based
approximation algorithm. We then relax an assumption made
in the approximation algorithm, propose a DP-based heuristic
algorithm and give its optimality condition. Finally, we solve
the TOP based on our DP solution for TOP-1.

1) Problem Formulation: We define a VNF placement
function as p : F → Vs, which places VNF fj ∈ F at switch
p(j) ∈ Vs. Given any VNF placement p, denote the total
communication cost of all the l VM flows under p as Ca(p).

Ca(p) =

l∑
i=1

λi ·
n−1∑
j=1

c
(
p(j), p(j + 1)

)
+

l∑
i=1

λi ·
(
c
(
s(vi), p(1)

)
+ c
(
p(n), s(v′i)

))
.

(1)

The objective of TOP is to find a p to minimize Ca(p). Note
that for any VM flow, the ingress switch is always p(1), and the
egress switch is always p(n). TOP generalizes the classic p-
median problem [42]. The p-median problem places p facilities
in a network while minimizing the total distance between
demand nodes and their closest facilities. TOP, however, not
only identifies p locations to install the VNFs, but for each
flow, it needs to traverse all the p VNFs in some order instead
of just accessing the closest VNF. Before solving TOP, we
first focus on a special case of TOP with only one VM flow
(v1, v

′
1). We refer to it as TOP-1. Below we prove that TOP-1

is equivalent to n-stroll problem [10], [7], which is NP-hard.

n-stroll problem. Given a weighted graph G=(V,E) with
nonnegative length we on edge e ∈ E, two special nodes
s and t, and an integer n, n-stroll problem finds an s-t path
or walk (i.e., a stroll) of minimum length that visits at least
n distinct nodes excluding s and t. When s=t, it is called
n-tour problem. The triangle inequality holds for all edges:
for (x, y), (y, z), (z, x) ∈ E, w(x, y) + w(y, z) ≥ w(z, x).
Fig. 4(a) shows an optimal 2-stroll between s and t: s, D, t,
C, and t, which is a walk with a cost of 6. The other 2-stroll
s, A, B, and t is a path with cost of 7, thus is not optimal.

s

A t

C
3

3

1
.52

3B

D

(a) (b)

s C

tD

3

5.5

.5

2

5

2.5

Fig. 4. Illustrating (a) n-stroll problem and (b) how DP in Algo. 2 works.

Theorem 1: TOP-1 is equivalent to the n-stroll problem.
Proof: To prove that they are equivalent, we first reduce any
instance of TOP-1 to an instance of n-stroll in polynomial
time and then do the reverse.

First, given any instance of TOP-1 with a PPDC graph
G(V = {Vh ∪ Vs}, E), where the only pair of VMs v1
and v′1 are located at hosts s(v1), s(v′1) ∈ Vh respectively,
we construct an induced new graph G′(V ′, E′) where V ′ =
Vs ∪ {s(v1), s(v′1)} and E′ = {(u, v) ∈ E|u, v ∈ V ′}. We
claim that a placement of n VNFs for (v1, v′1) in G is optimal
if and only if the corresponding n-stroll in G′ that starts at
s(v1) and ends at s(v′1) is optimal. As a VNF placement gives
minimum cost for (v1, v

′
1) in G and each of the n VNFs is

placed on a different switch, the resulted s(v1)-s(v′1) stroll in
G′ thus visits these n distinct nodes with minimum cost. On
the other hand, as an optimal n-stroll in G′ must visit at least
n distinct other nodes between s(v1) to s(v′1), we place f1,
f2, ..., and fn at the first n distinct nodes respectively. When
v1 communicate with v2 by traversing f1, f2..., and fn in that
order, it gives (v1, v

′
1) minimum communication cost in G, as

the s(v1)-s(v′1) stroll is a minimum n-stroll in G′.
As a VNF placement gives minimum cost for (v1, v′1) in G

and each of the n VNFs is placed on a different switch, the
resulted s(v1)-s(v′1) stroll in G′ thus visits these n distinct
nodes with minimum cost. On the other hand, as an optimal
n-stroll in G′ must visit at least n distinct other nodes between
s(v1) to s(v′1), we place f1, f2, ..., and fn at the first n
distinct nodes respectively. When v1 communicate with v2
by traversing f1, f2..., and fn in that order, it gives (v1, v

′
1)

minimum communication cost in G, as the s(v1)-s(v′1) stroll
is a minimum n-stroll in G′.

Fig. 5 (a) and (b) show the instances of G and G′ with one
VM flow (v1, v

′
1) in Fig. 3. As s(v1) = s(v′1) = h1 and one

optimal VNF placement for (v1, v
′
1) in G is f1 at s1 and f2

at s2, the optimal s-t 2-tour in G′ is s, s1, s2, s1, and t.
2) Algorithms for TOP-1: Inspired by [10], Algo. 1 below

is a primal-dual based approximation algorithm for TOP-1.

G(V,E) G’’(V’’,E’’)

s5

h1

v1
v1

’

s4s2

s1

s3

h1

s2 s3

s4

s5

G’(V’,E’)

s5

s, t

s4s2

s1

s3

s1

(a) (b) (c)
Fig. 5. Proving TOP-1 is equivalent to n-stroll problem.

We first give the primal ILP of TOP-1.
Given G(V,E), V = Vs ∪ {s(v1), s(v′1)}, let xv indicate if

v ∈ Vs is selected to place a VNF, and ye denote if an edge
e ∈ E is on the path. Let δ(S) denote the set of edges with
exactly one endpoint in set S. The primal ILP of TOP-1 is:

min λ1 ·
∑
e∈E

ce × ye (2)

s.t.
xv = {0, 1}, ∀v ∈ Vs (3)
ye = {0, 1}, ∀e ∈ E (4)∑
e∈δ(U)

ye ≥ 1, ∀U ⊆ V, s(v′1) ∈ U, s(v1) /∈ U (5)

∑
e∈δ(S)

≥ 2 · xv, ∀S ⊆ Vs,∀v ∈ S (6)

∑
v∈Vs

xv ≥ n, ∀v ∈ Vs. (7)

Constraints 5 and 6 construct a path between hosts s(v1)
and s(v′1) by selecting an edge in every cut separating them,
and Constraint 7 guarantees this path has least n switches.

Given above ILP of the TOP-1 and its feasible dual solution
y, Algo. 1 iteratively finds a feasible primal solution x that
obeys the complementary slackness conditions [5] w.r.t. y.

Algorithm 1: An Approximation Algorithm for TOP-1.

Step 1. It considers the LP-relaxation of above ILP (i.e., 0 ≤
xv ≤ 1 and 0 ≤ ye ≤ 1), and then relaxes the complementary
slackness condition related to its dual variables.

Step 2. It iteratively adds edges, paying for them with
increases to variables in the dual (growth phase), and then
deletes edges to obtain the final path that spans n switches
(pruning phase). On the pruned tree constructed, it starts with
s(v1) and ends at s(v′1) while traversing all the edges in the
tree at most twice. This gives the n-stroll for s(v) and s(v′1).

Algo. 1 takes O(|V |5 · log|V |) [10]. We give Theorem 2
without proof that it is a 2+ ε approximation for TOP-1 [10].

Theorem 2: In Algo. 1, the primal problem of TOP-1 costs
no more than 2+ε times the value of the feasible dual solution.
This implies that the cost of the resulted n-stroll is with a
factor of 2 + ε of the optimal.
Discussions. In Algo. 1, as the ILP counts the weight of each
edge on the n-stroll once, it implicitly assumes that the optimal
n-stroll must be a path that visits each edge once. However,
Fig. 4(a) shows that an optimal n-stroll can be a walk that
visits an edge multiple times. Thus, this is a strong assumption.

Besides, to achieve rigorous analysis of its performance bound,
Algo. 1 proposes complicated procedures (e.g., Step 2) that
cannot be easily implemented for large-scale PPDCs.

DP Algorithm for TOP-1. We thus propose a more practical
and time-efficient VNF placement heuristic viz. Algo. 2 for
TOP-1. Our key observation is that although finding a shortest
s-t stroll visiting n distinct nodes is NP-hard, finding one
visiting n edges (not necessarily distinct) can be solved
optimally and efficiently using DP. Algo. 2 takes as input
a complete graph G′′(V ′′, E′′) that is transformed from the
PPDC graph G(V,E) as follows. V ′′ = {s(v1), s(v′1)} ∪ Vs;
for an edge (u, v) ∈ E′′, its cost c(u,v) is λ1 · c(u, v), the
communication cost of (v1, v

′
1) between u and v in G. As

there does not always exist an s(v1)-s(v′1) stroll of exactly
n+1 edges in G while there always exists one in G′′ (as long
there are at least n+1 edges in G′′), using G′′ overcomes an
obstacle otherwise faced by using G.

Algo. 2 finds a shortest s(v1)-s(v′1) stroll with n+1 edges
(lines 4-10) and checks if it traverses n distinct switches (lines
11-19). If not, it finds a stroll with n + 2 edges, so on and
so forth, until n distinct switches are found (lines 20-21). It
finally places f1, ..., fn on the first n switches and return
the cost of the n-stroll (lines 23-25). Its time complexity is
O(n · |V |4). Note that Algo. 2 also works for n-tour problem
where s(v1)=s(v′1) and the special case that n distinct switches
are already on the shortest path between s(v1) and s(v′1).

Algorithm 2: A DP Algorithm for TOP-1.
Input: A complete graph G′′(V ′′, E′′), s(v1), s(v′1), and an

SFC (f1, f2, ..., fn).
Output: stroll(G′′, s(v1), s(v′1), n, p), cost of an s(v1)-s(v′1)

stroll in G′′ visiting at least n distinct switches.
Notations: e: index for edges; i: index for switches;
c(u, s(v′1), e), successor(u, s(v

′
1), e): cost and u’s successor

in a u-s(v′1) stroll with e edges, +∞ and -1 initially;
r: num. of edges needed on s(v1)-s(v′1) stroll, initially n+ 1;
p: an array storing distinct switches on s(v1)-s(v′1) stroll;
num: the number of distinct switches in p;
found: true if it has found a s(v1)-s(v′1) stroll with at least
n distinct switches; initially false;

1. V ′′ = {u1, ..., u|V ′′|}, let ua = s(v1) and u|V ′′| = s(v′1);
2. ∀ui, uj ∈ V ′′ with i 6= j, c(ui, uj , 1) = cui,uj

,
successor(ui, uj , 1) = uj , successor(uj , ui, 1) = ui;
∀ui ∈ V ′′, c(ui, ui, 1) = +∞, successor(ui, ui, 1) = −1;

3. while (¬found)
4. for (e = 2; e <= r; e++) // edges in ui-s(v′1) stroll
5. for (i = 1; i ≤ |V ′′| − 1; i++) // node ui
6. for

(
each u, u 6= ui ∧ u 6= s(v′1)∧
ui 6= successor(u, s(v′1), e− 1)

)
7. if

(
c(ui, s(v

′
1), e) > cui,u + c(u, s(v′1), e− 1)

)
8. c(ui, s(v

′
1), e) = cui,u + c(u, s(v′1), e− 1);

9. successor(ui, s(v
′
1), e) = u;

10. end if;
11. num = 0; p = φ (empty set), e−−;
12. b = successor(s(v1), s(v

′
1), e);

13. while (e > 1)

14. if (b 6= s(v1) ∧ b 6= s(v′1) ∧ b /∈ p)
15. p[num] = b;num++;
16. end if;
17. e++;
18. b = successor(b, s(v′1), e);
19. end while;
20. if (num < n) r++; // less than n distinct switches
21. else found = true;
22. end while;
23. Place f1, ..., fn on the first n switches stored in p;
24. stroll(G′′, s(v1), s(v′1), n, p) = c(s(v1), s(v

′
1), r);

25. RETURN stroll(G′′, s(v1), s(v
′
1), n, p).

EXAMPLE 2: The complete graph of Fig. 4(a) is partially
shown in Fig. 4(b) (other edges are irrelevant for discussion
thus not shown). To find the optimal s-t 2-stroll in Fig. 4(a),
Algo. 2 instead finds the optimal s-t 3-edge stroll on Fig. 4(b).
In particular, it finds C-t 1-edge stroll, D-t 2-edge stroll, and
s-t 3-edge stroll in that order, where the s-t 3-edge stroll s,
D, C, and t gives optimal cost of 6. Note that if Algo. 2 takes
non-complete graph in Fig. 4(a) as input, it finds a 3-edge
stroll s, A, B, t of cost 7, which is not optimal. �

One obstacle of the DP approach is that an edge can be
traversed multiple times, incurring more cost but not finding
more distinct nodes. Algo. 2 overcomes it partially by making
sure that the same edge is not traversed twice consecutively
(line 6). We illustrate it by below example.

EXAMPLE 3: Fig. 2 shows a VM flow (v2, v
′
2) with v2

and v′2 placed at h4 and h5 respectively. To place 7 VNFs
between v2 and v′2 is to find a 7-stroll between h4 and h5.
Algo. 2 finds an 8-edge path traversing 7 distinct switches
(shown in solid blue line): h4, s1, s2, s3, s4, s5, s6, s7, and
h5. There is an 8-edge walk between h4 and h5 that traverses
5 distinct switches: h4, s1, s2, s1, s2, s3, s4, s7, and h5, which
is not selected by Algo. 2 due to loops between s1 and s2. �

Theorem 3 below gives the sufficient condition for the
optimality of Algo. 2.

Theorem 3: Let successori be the ith switch on the s(v1)-
s(v′1) stroll found in Algo. 2, 1 ≤ i ≤ n. If the (n+1−i)-edge
stroll found in Algo. 2 that starts at successori and ends at
s(v′1) has the minimum cost among all the (n + 1 − i)-edge
strolls that end at s(v′1), then Algo. 2 is optimal for TOP-1.
Proof. We show that both overlapping subproblem and optimal
substructure needed for the optimality of a DP are satisfied.
First, given any instance of TOP-1, as successori is the
ith switch on the s(v1)-s(v′1) stroll found in Algo. 2, the
original (n+1)-edge s(v1)-s(v′1) stroll problem encompasses
it n subproblems viz. successori-s(v′1) (n + 1 − i)-edge
stroll problem, 1 ≤ i ≤ n. This satisfies the overlapping
subproblems. Second, consider all the subproblems, as each
successori-s(v′1) (n+1− i)-edge stroll found by Algo. 2 has
the minimum cost among all the (n + 1 − i)-edge stroll that
ends at s(v′1), it satisfies the optimal substructure.

For example, the optimal s-t 3-edge stroll found in Fig. 4(b)
s, D, C, and t satisfies this sufficient condition, as the solutions
to its the subproblems viz. C-t 1-edge stroll, D-t 2-edge stroll,

and s-t 3-edge stroll are all optimal.
By taking the complete graph as input and avoiding the

edge loops, Algo. 2 dramatically improves the efficiency of
searching for distinct nodes in TOP-1. We show in experiments
that Algo. 2 constantly outperforms the performance guarantee
of 2 + ε provided by the approximation Algo.1 and performs
very close to the optimal algorithm viz. Algo. 4 presented next.

3) Algorithms for TOP: For TOP with l > 1, as there exists
simple solutions for cases of n = 1, 2, we only consider n ≥
3. Algo. 3 checks all pairs of ingress and egress switches
p(1) and p(n). For each pair, it finds the rest n-2 switches by
solving an (n-2)-stroll problem with s = p(1) and t = p(n)
using Algo. 2. Finally it juxtaposes them to find an n-stroll that
gives the minimum cost. Its time complexity is O(n · |V |6).

Algorithm 3: VNF Placement Algorithm for TOP.
Input: A PPDC graph G(V,E) with VM placement s(v),

v ∈ V , and an SFC (f1, f2, ..., fn), n ≥ 3.
Output: A VNF placement p, total VM comm. cost Ca(p).
Notations: x: set of switches storing f2, f3, ..., fn−1;
1. Compute G′′(V ′′ = V,E′′), Ca(p) = +∞;
2. for (1 ≤ i < |Vs|)
3. for (i+ 1 ≤ j ≤ |Vs|)
4. a =

∑l
k=1 λk ·

(
c(s(vk), si) + c(sj , s(v

′
k))
)
;

5. b = stroll(G′′, si, sj , n− 2, x); // Call Algo. 2
6. if

(
(a+ b) ≤ Ca(p)

)
7. Ca(p) = a+ b, p(1) = si, p(n) = sj ;
8. for (2 ≤ i ≤ n− 1) p(i) = x[i− 2];
9. end for;
10. end for;
11. RETURN p and Ca(p).

Below we present Algo. 4, an exhaustive algorithm that
solves TOP optimally. It takes O(|V |n). Although it is not
time-efficient, as it can be implemented easily, we compare it
with other algorithms as benchmark.

Algorithm 4: Exhaustive VNF Placement for TOP.
Input: A PPDC G(V,E) with VM placement s(v), v ∈ V ,

and an SFC (f1, f2, ..., fn).
Output: A VNF placement p and the total cost Ca(p).
1. Ca(p) = +∞;
2. Among all |Vs| · (|Vs| − 1) · ..., ·(|Vs| − n+ 1) VNF

placements, find p that gives the minimum cost Ca(p).
3. RETURN p and Ca(p).

V. TOM: TRAFFIC-OPTIMAL VNF MIGRATION

In this section, we first formulate the TOM and show its NP-
hardness. Before presenting our traffic-optimal VNF migration
algorithm, we introduce VNF migration frontier, a key concept
used in our algorithm. We then show that the VNF migration
frontier represents a Pareto front, which is a set of optimal
solutions for multi-objective optimization problems (MOOPs).
Finally, we give a sufficient condition for the optimality of our
VNF migration algorithm.

Let’s represent the initial VNF placement in TOM as p : F
→ Vs, indicating that fj ∈ F is located at switch p(j) ∈ Vs.
Note p is computed by various VNF placement algorithms

(i.e., Algo. 1, 2, 3, and 4) according to the traffic rates at
that moment. The total communication cost of all the l VM
pairs is thus Ca(p) (Eq. 1). However, as the traffic rate vector−→
λ changes over time due to dynamic traffic, the Ca(p) is no
longer optimal, necessitating VNF migration.

1) Problem Formulation: We define a VNF migration func-
tion as m : F → Vs, meaning that fj ∈ F will be migrated
from switch p(j) to switch m(j) (m(j) = p(j) if fj does not
migrate). Let Cb(p,m) = µ ·

∑n
j=1 c

(
p(j),m(j)

)
be the total

migration cost of migrating all the n VNFs from p to m and
Ca(m) be the total communication cost of all VM flows after
migrating to m. Let Ct(p,m) = Cb(p,m) + Ca(m) =

µ ·
n∑
j=1

c
(
p(j),m(j)

)
+

l∑
i=1

λi ·
n−1∑
j=1

c
(
m(j),m(j + 1)

)
+

l∑
i=1

λi ·
(
c
(
s(vi),m(1)

)
+ c
(
m(n), s(v′i)

))
.

(8)

The objective of TOM is to find a VNF migration m that
minimizes Ct(p,m). Note that new users join for the first
time [35] is a special case of TOM, wherein their traffic rates
change from zero to some positive values. Below we show that
TOP is a special case of TOM, thus TOM is also NP-hard.

Theorem 4: TOP is a special case of TOM with µ = 0.
Proof: Plug µ = 0 into Eq. 8, we get Ct(p,m) =

∑l
i=1 λi ·∑n−1

j=1 c
(
m(j),m(j + 1)

)
+
∑l
i=1 λi ·

(
c
(
s(vi),m(1)

)
+

c
(
m(n), s(v′i)

))
. As TOP is to find a VNF placement, we re-

place m with p in r.h.s. of above equation and get Ct(p,m) =∑l
i=1 λi ·

∑n−1
j=1 c

(
p(j), p(j+1)

)
+
∑l
i=1 λi ·

(
c
(
s(vi), p(1)

)
+

c
(
p(n), s(v′i)

)) Eq. 1
= Ca(p).

2) Algorithms for TOM: To design VNF migration al-
gorithms, we first compute new VNF placement p′ using
Algo. 3 and we have Ca(p

′) ≤ Ca(p). To reduce VM
communication cost, we migrate VNF fj from p(j) towards
p′(j) gradually along the shortest path between them. As p(j)
incurs zero VNF migration cost while p′(j) incurs minimum
VM communication cost, the challenge is to decide how far
each VNF migrates. We give the below definition.

Definition 1: (VNF Migration Frontiers.) Denote the
shortest path between p(j) and p′(j) as Sj . Let hj ≥ 1 be
the number of switches on Sj (hj = 1 if p(j) = p′(j)), and
hmax = max{hj}. The VNF migration frontiers F are sets
of n switches, each of which is from a different Sj . That is,
F = {〈sk1 , sk2 , ..., skn〉|skj ∈ Sj , 1 ≤ j ≤ n}. �

f2

f1

f4
f3

VNF migration

Parallel Migration
Frontiers

p’

p

a

b
Initial SFC
New SFC

(a) VNF parallel migration frontiers.

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

V
M

C
o
m
m
.

C
o
s
t

C
a
(
m
)
(
x
1
0
3
)

VNF Migration Cost Cb(p,m)(x10
 2)

New Comm. Cost Ca(p’)

(b) Pareto front, k=16, n=6.

Fig. 6. Illustrating VNF migration Algo. 5.

F essentially represents all |F| =
∏n
j=1 hj possible

schemes of migrating VNFs from p to p′. Our VNF migration
algorithm (Algo. 5) is thus to find a migration frontier that
gives the minimum total cost of VNF migration and VM com-
munication. As |F| becomes large in a large scale PPDC and
it takes time to find the best migration scheme, our algorithm
focuses on parallel migration frontiers defined below.

Definition 2: (VNF Parallel Migration Frontiers.) De-
note the kth switch in Sj as sj,k, 1 ≤ k ≤ hj ; sj,1 = p(j)
and sj,hj = p′(j). Let P = [pi,j] be an (hmax × n) matrix
where pi,j = sj,i if i ≤ hj and pi,j = sj,hj

otherwise. The
hmax rows in P are the hmax VNF parallel frontiers. �

EXAMPLE 4: Fig. 6(a) illustrates how parallel VNF mi-
gration frontiers look like. It shows the migration paths of
VNFs using red solid lines. It also shows the initial SFC
placement p and the new SFC placement p′. As h1 = 1,
h2 = 4, h3 = 3, and h4 = 2, there are |F| = 24 VNF
migration frontiers. Four of them are VNF parallel frontiers
viz. p, a, b, and p′, represented by different dashed lines. �

With the above preparation, we present our VNF migration
algorithm viz. Algo. 5 below. It first calls Algo. 3 to compute
the new VNF placement p′ (lines 1-3). Next, it finds all parallel
frontiers between p′ and initial VNF placement p. Among
them, it finds m, the parallel frontier with the minimum total
cost (lines 4-19). Finally, it migrates VNF fj from switch
p(j) to switch m(j) along the shortest path between them and
returns the total cost (lines 20 and 22). Its time complexity is
O(|V |3 + n · D), where D is the diameter (i.e., the greatest
distance between any pair of vertices) of G.

Algorithm 5: VNF Migration Algorithm for TOM.
Input: A PPDC graph G(V,E) with VM pair placement

s(v), VNF placement p(j), µ, and
−→
λ ;

Output: A VNF migration m and its total cost Ct(p,m).
Notations: fr: the current parallel migration frontier;
i: index of frontiers; j: index of VNFs;
fr[j]: the switch where VNF fj is located in fr;
fr|{j, a} = 〈p(1), ..., p(j − 1), a, p(j + 1), ..., p(n)〉:
fr with its jth switch replaced by switch a;

1. Compute new VNF placement p′ using Algo. 3;
Let hj be the number of switches on the shortest path

between p(j) and p′(j), and hmax = max{hj};
Let sj,k be the kth switch from p(j) to p′(j);

2. m = fr = 〈p(1), p(2), ..., p(n)〉; // initial frontier
3. Cb(p,m) = 0; Ct(p,m) = Ca(m);
4. if (hmax ≥ 2) // if p and p′ are not the same
5. for (1 ≤ j ≤ n) hj++;
6. end for;
7. for (2 ≤ i ≤ hmax) // ith parallel frontier
8. for (1 ≤ j ≤ n) // VNFs
9. if (hj ≥ 1) // a new switch to migrate to
10. Cb(p, fr) += µ · c

(
fr[j], sj,i

)
;

11. fr = fr|{j, sj,i};
12. hj++;
13. end if;
14. end for;

15. Ct(p, fr) = Ca(fr) + Cb(p, fr);
16. if

(
Ct(p, fr) < Ct(p,m)

)
17. Ct(p,m) = Ct(p, fr); m = fr;
18. end if;
19. end for;
20. Migrates each fj from switch p(j) to switch m(j).
21. end if;
22. RETURN m and Ct(p,m).

Discussions. As migrating VNFs from p to p′ decreases the
VM communication cost Ca(m) at the price of increasing the
VNF migration cost Cb(p,m), Algo. 5 attempts to achieve
a balance between Ca(m) and Cb(p,m). We conjecture that
its solution is a Pareto-optimal point, where neither Ca(m)
nor Cb(p,m) can be improved (i..e, decreased) without de-
teriorating (i.e, increasing) the other. As the goal of TOM is
to minimize Ct(p,m) = Ca(m) + Cb(p,m), we can treat
it as a multi-objective optimization problem (MOOP) [15]
that tries to minimize Ca(m) and Cb(p,m) simultaneously.
As Pareto front [15] consisting of Pareto-optimal points is an
“optimal” solution of MOOPs, we empirically investigate if
VNF migration frontier found in Algo. 5 yields a Pareto front.

Fig. 6(b) considers a k=16 fat tree PPDC with n=6 VNFs
and migration coefficient µ=200. Algo. 5 first computes the
new VNF placement p′, shown in the green squared dots.
While the VNFs migrate from their current switches towards
the new ones in p′, Algo. 5 finds all the VNF parallel migration
frontiers m and records Cb(p,m) on x-axis and Ca(m) on y-
axis. Fig. 6(b) shows that Ca(m) decreases with the increase
of Cb(p,m), and Ca(m) cannot be reduced without increasing
Cb(p,m) in each of the VNF parallel migration frontiers. Thus
they are indeed Pareto fronts. However, instead of adopting
any point on the Pareto front as the VNF migration scheme,
Algo. 5 takes one step further and checks all the frontier points
on the Pareto front and finds the one with the minimum cost.

Below we derive an optimal condition for Algo. 5 using
scalarization [15]. Scalarization finds efficient solutions for a
MOOP by linearly combining its multiple objective functions
into a single objective function. We observe that Eq. 8 is in-
deed a scalarization of Ca(m) and Cb(p,m). It is well-known
that if the solution function of a MOOP has a convex Pareto
front, scalarization can identify optimal solutions [19]. We
present the below theorem, which gives a sufficient condition
for the optimality of Algo. 5, without proof.

Theorem 5: If the Pareto front of VNF migration generated
by Algo. 5 is convex, Algo. 5 gives minimum total cost.

We demonstrate the effectiveness of Algo. 5 in Section VI
by showing it outperforms two VM migration schemes [17],
[24] and performs close to below exhaustive algorithm.

Algorithm 6: Exhaustive VNF Migration for TOM.
Input: A PPDC G(V,E) with VM pair placement s(v),

v ∈ V , and VNF placement p(j), 1 ≤ j ≤ n, µ.
Output: A VNF migration m and its total cost Ct(m).
1. Ct(p,m) = +∞;
2. Among all |Vs| · (|Vs| − 1) · ..., ·(|Vs| − n+ 1) VNF

migrations, find m with minimum cost Ct(p,m).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 3 5 7 9 11 13

T
o
ta

l
c
o
s
t
(x

1
e
3
)

Number of VNFs n

Optimal
DP-Stroll

PrimalDual

Fig. 7. Comparing TOP-1, l=1, k=8.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

6AM 8AM 10AM12PM 2PM 4PM 6PM 8PM

T
ra

ff
ic

 R
a
te

s
 o

f
V

M
 P

a
ir
s

Time

East Coast

West Coast

Fig. 8. Daily traffic rate pattern.

3. RETURN m and Ct(p,m).

VI. PERFORMANCE EVALUATION

State-of-the-Arts. We first present the existing work of VNF
placement and VNF migration that we compare with.

VNF Placement. Steering [55] considers that two services
(i.e., VNFs) are dependent if they appear consecutively in a
requested SFC, the degree of this dependency is the amount
of traffic going through it. It picks the service with the
highest dependency degree and finds its best location (i.e.,
minimizing the average time) until all services are placed. In
our single-SFC model, Steering thus finds the best location for
VNFs one by one. Liu [34] et al. proposes a two-step greedy
algorithm. First, the MBs are sorted in descending order of
their importance factor, which is the number of policies that
use this MB. Second, it calculates each MB’s cost score
for each switch, and the switch with minimum cost score is
selected to place the MB. The cost score is the increment of
the total end-to-end delay by adding this MB plus the weighted
average delay of all unplaced MBs to this MB.

TABLE II
SUMMARY OF COMPARED ALGORITHMS.

Problems Our solutions Existing work
TOP-1 DP-Stroll, Optimal PrimalDual [10]
TOP DP, Optimal Steering [55], Greedy [34]
TOM mPareto, Optimal PLAN [17], MCF [24]

VNF Migration. Existing research proposes to use VNF mi-
gration in dynamic network traffic environment [20], [21],
[35], [14]. However, they either does not consider migration
cost [14] or have objectives different from ours [20], [21], [35],
thus are not suitable for comparison. Instead, there are two
recent research [17], [24] that migrate communicating VMs
to reduce dynamic cloud traffic. PLAN [17] migrates VMs to
hosts with available resources to maximize the utility, which
is the reduction of the VM’s communication cost minus its
migration cost. Flores et al. [24] show that minimizing the
total communication and migration cost of VMs is a minimum
cost flow (MCF) problem [5]. As both works aim to reduce
dynamic network traffic as our VNF migration approach does,
we compare with them to see which is more effective.

Summary of Algorithms. Table II summarizes all algorithms.
We refer to Algo. 4 and 6 as Optimal. For TOP-1, we refer
to primal-dual-based Algo. 1 as PrimalDual and DP-based
Algo. 2 as DP-Stroll, and compare DP-Stroll with the 2 + ε
guarantee (i.e., two times of Optimal) of PrimalDual. For TOP,

 5

 10

 15

 20

 25

500 1000 1500 2000

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Number of VM Pairs l

Optimal
DP

Greedy
Steering

(a) Varying l, n = 7.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

3 5 7 9 11

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Number of VNFs n

Optimal
DP

Greedy
Steering

(b) Varying n, l = 1000.

Fig. 9. Comparing VNF placement, k = 8.

we refer to our DP-based Algo. 3 as DP and compare it with
Steering [55] and Greedy [34]. For TOM, we refer to our
Algo. 5 as mPareto, as it finds the minimum cost Pareto front,
and compare it with PLAN [17] and MCF [24].

Experiment Setup. We study fat-tree PPDCs of k=8 with 128
hosts and k=16 with 1024 hosts. As 80% of cloud data center
traffic originated by servers stays within the rack [8], we place
80% of the VM pairs into hosts under the same edge switches.
Following diverse flow characteristics found in Facebook data
centers [43], we assume the traffic rates of VM flows are in
the range of [0, 10000], where 25% of VM flows have light
traffic rates in [0, 3000), 70% medium traffic rates in [3000,
7000], and 5% heavy rates in (7000,10000]. Each data point
in the plots is an average of 20 runs with a 95% confidence
interval. We consider both unweighted (i.e., number of hops)
and weighted (i.e., time delays on edges) PPDCs.

SFC Use Cases [3]. Real-world SFCs are broadly categorized
into two types viz. access SFCs and application SFCs. As a
typical SFC could have 5 to 6 access functions and 4 to 5
application functions, we consider up to 13 VNFs in an SFC.

Migration Coefficient µ. We quantify µ using the relative size
of data or memory transferred in VM communication and VNF
migration. As a typical data packet is around 1KB [8] and the
size of transferred memory in migrating a containerized VNF
is around 100MB [38], we set µ between 104 and 105.

Comparing TOP-1 Algorithms. Fig. 7 compares TOP-1 (i.e.,
n-stroll) algorithms in an unweighted PPDC with one VM pair.
We observe that with the increase of the number of VNFs
n, the communication cost of this VM pair increases as its
traffic needs to traverse more VNFs. It also shows that DP-
Stroll performs very close to Optimal, yielding only around 8%
of more cost, and solidly outperforms the 2 + ε performance
guarantee provided by PrimalDual.

 5

 10

 15

 20

 25

 30

500 1000 1500 2000

T
o
ta

l
c
o
s
t
(x

1
e
6
 s

e
c
)

Number of VM Pairs l

Optimal
DP

Greedy
Steering

(a) Varying l, n = 7.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

3 5 7 9 11

T
o
ta

l
c
o
s
t
(x

1
e
6
 s

e
c
)

Number of VNFs n

Optimal
DP

Greedy
Steering

(b) Varying n, l = 1000.
Fig. 10. Comparing VNF placement with time delays, k = 8.

 0

 5

 10

 15

 20

 25

 30

 35

6AM 8AM 10AM12PM 2PM 4PM 6PM 8PM

T
o
ta

l
C

o
s
t(

x
1
e
6
 s

e
c
)

Time

PLAN
mPareto
Optimal

MCF

(a) Total cost comparison.

 1

 2

 4

 8

 16

6AM 8AM 10AM 12PM 2PM 4PM 6PM 8PM

N
u
m

b
e
r

o
f
H

o
p
s

Time

PLAN
mPareto

MCF
Optimal

(b) # of VNF or VM migrations, y axis
is in exponential scale with base 2.

 0

 5

 10

 15

 20

 25

 500 1000 1500 2000

T
o
ta

l
C

o
s
t
(x

1
0

6
)

Number of VMs l

MPareto(µ = 10
4
)

mPareto(µ = 10
5
)

No Migration
Optimal(µ = 10

4
)

Optimal(µ = 10
5
)

(c) Compare with Optimal and NoMi-
gration, n = 7.

 5

 10

 15

 20

 25

 3 4 5 6 7 8 9 10 11 12 13 14

T
o
ta

l
C

o
s
t
(x

1
0

7
)

Number of VNFs n

mPareto(µ = 10
4
)

mPareto(µ = 10
5
)

No Migration

(d) Compare with NoMigration, l =
1000.

Fig. 11. The effect of VNF migration in dynamic cloud traffic with k = 16 and µ = 104 or 105.

Comparing TOP Algorithms. Fig. 9 compares the total VM
communication costs of different VNF placement algorithms
viz. Optimal, DP, Greedy, and Steering in unweighted PPDCs.
Fig. 9 varies l and Fig. 9(b) varies n, respectively. In both
cases, DP performs very close to Optimal, while both outper-
forming significantly Greedy and Steering. Fig. 10 considers
weighted PPDCs by adopting the parameter setting in Greedy
[34], wherein link delays follow a uniform distribution with a
mean value of 1.5 ms and variance of 0.5 ms. It shows that the
DP yields 6% to 12% more costs than that of the Optimal when
varying number of VM flows l, and 12% to 16% more costs
when varying number of VNFs n. DP yields costs 56% to 64%
smaller than those of the Steering and Greedy, respectively.

Dynamic Traffic Model. We model dynamic cloud traffic as
cycle-stationary with diurnal patterns [25]. Eramo et al. [20]
proposed a sinusoidal model of 24 hours to quantify the scale
factor of traffic rates τh at hth hour. We instead consider N =
12 hours daily, where VM traffic rates increase gradually from
6 AM to noon and then decrease gradually from noon to 6
PM. Eqn. 9 shows our model, where τmin is 0.2 as in [20].
Besides, to model the real effect of U.S. time zone difference
upon cloud user activities, we assume that half of the VM
flows (jobs submitted by users on the east coast) are three
hours earlier than the other half (on the west coast). Fig. 8
visualizes the daily VM traffic rate pattern when changing
their traffic rates following Eqn. 9.

τh =


0 h = 0,
2 hN (1− τmin) h = 1, ..., N2 ,
2N−hN (1− τmin) h = N

2 + 1, ..., N .
(9)

Effects of VNF Migrations on Dynamic Traffic. Fig. 11(a)-
(d) investigate the effect of VNF migration on dynamic cloud
traffic in a k=16 data center. Fig. 11(a) compares the total
communication and migration costs of mPareto, PLAN, MCF,
and Optimal. It shows that the mPareto performs within 5-10%
of the Optimal, and both outperform PLAN and MCF by 52%-
63%. Fig. 11(b) shows that the number of VNF migrations in
mPareto is much smaller than the number of VM migrations
in PLAN and MCF. Fig. 11(a) and (b) together show a smaller
number of VNF migrations reduces more network traffic than
a larger number of VM migrations, demonstrating that VNF
migration is more effective in reducing dynamic traffic than
VM migration. This is because migrating one VNF can reduce
the total traffic of all the VM flows going through it while

migrating one VM pair only affects the communication traffic
of this pair.

Fig. 11(c) varies the number of VM pairs l and shows again
that mPareto performs close to the Optimal. We also observe
that total traffic costs for both mPareto and Optimal get slightly
smaller when changing µ from 105 to 104, as a smaller
migration coefficient encourages VNF migrations. Finally,
we investigate how much traffic reduction VNF migration
achieves by comparing the mPareto with the NoMigration.
Fig. 11(c) and (d) vary l and n respectively, and it shows
that the VNF migration reduces the total cost of VM flows
by up to 73% compared to NoMigration. This demonstrates
that VNF migration is indeed an effective technique to reduce
dynamic cloud traffic in PPDC.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a new traffic-optimal VNF framework for
dynamic PPDCs consisting of VNF placement and VNF
migration. We formulated them as new graph-theoretical
problems and proposed time-efficient approximation, Pareto-
optimal, and DP-based algorithms. Using flow characteristics
found in production data centers and realistic traffic patterns,
we showed our algorithms outperform the state-of-the-art
significantly and achieve network resource optimization for a
PPDC’s lifetime. As future work, we will consider a more gen-
eral scenario wherein each switch can install multiple VNFs,
and different VM flows can request different SFCs. We will
investigate how VNF replication can alleviate dynamic VM
traffic in PPDCs and study to which extent VNF replication
could be beneficial in terms of dynamic traffic mitigation when
compared to VNF migration. Finally, we will study how the
traffic-reduction effect of VNFs (e.g., packet filtering) [36]
can influence the problem formulations and solutions of VNF
placement and migration in PPDCs.

ACKNOWLEDGMENT

This work was supported by NSF Grant CNS-1911191.

REFERENCES

[1] Cisco global cloud index: Forecast and methodology, 2016 to 2021 white
paper. https://www.cisco.com/c/en/us/solutions/service-provider/global-
cloud-index-gci/white-paper-listing.html.

[2] Hosting large meetings in zoom. https://support.zoom.us/hc/en-
us/articles/201362823-Hosting-large-meetings.

[3] Service function chaining use cases in data centers (ietf).
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06section-3.3.1.

[4] Zoom cloud meetings. https://zoom.us/.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, 2008.

[7] M. Bateni and J. Chuzhoy. Approximation algorithms for the directed
k-tour and k-stroll problems. In Proc. of APPROX/RANDOM 2010.

[8] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proc. of ACM IMC 2010.

[9] F. Carpio, A. Jukan, and R. Pries. Balancing the migration of virtual
network functions with replications in data centers. In Proc. of
IEEE/IFIP NOMS, 2018.

[10] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and
minimum latency tours. In Proc. of IEEE FOCS 2003.

[11] D. Chemodanov, P. Calyam, and F. Esposito. A near optimal reli-
able composition approach for geo-distributed latency-sensitive service
chains. In IEEE INFOCOM 2019.

[12] D. Chemodanov, P. Calyam, and F. Esposito. A near optimal reli-
able composition approach for geo-distributed latency-sensitive service
chains. In IEEE INFOCOM 2019.

[13] Y. Chen, J. Wu, and B. Ji. Virtual network function deployment in
tree-structured networks. In Proc. of ICNP 2018.

[14] D. Cho, J. Taheri, A. Y. Zomaya, and P. Bouvry. Real-time virtual
network function (vnf) migration toward low network latency in cloud
environments. In Proc. of IEEE 10th International Conference on Cloud
Computing (CLOUD), 2017.

[15] J. Cho, Y. Wang, I. Chen, K. S. Chan, and A. Swami. A survey on
modeling and optimizing multi-objective systems. IEEE Communica-
tions Surveys Tutorials, 19(3):1867–1901, 2017.

[16] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. Near optimal
placement of virtual network functions. In Proc. of INFOCOM 2015.

[17] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Plan: Joint
policy- and network-aware vm management for cloud data centers. IEEE
Transactions on Parallel and Dis. Sys., 28(4):1163–1175, 2017.

[18] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros. Dynamic, latency-
optimal vnf placement at the network edge. In IEEE INFOCOM 2018.

[19] M. Ehrgott. Multicriteria Optimization. Springer, 2005.
[20] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca. An approach

for service function chain routing and virtual function network instance
migration in network function virtualization architectures. IEEE/ACM
Transactions on Networking, 25(4):2008–2025, 2017.

[21] B. Farkiani, B. Bakhshi, S. Ali MirHassani, T. Wauters, B. Volckaert,
and F. De Turck. Prioritized deployment of dynamic service function
chains. IEEE/ACM Transactions on Networking, pages 1–15, 2021.

[22] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags. In Proc. of USENIX NSDI 2014.

[23] H. Feng, J. L., A. M. Tulino, D. Raz, and A. F. Molisch. Approximation
algorithms for the nfv service distribution problem. In Proc. of IEEE
INFOCOM 2017.

[24] H. Flores, V. Tran, and B. Tang. Pam & pal: Policy-aware virtual
machine migration and placement in dynamic cloud data centers. In
Proc. of IEEE INFOCOM 2020.

[25] S. Gebert, R. Pries, D. Schlosser, and K. Heck. Internet access traffic
measurement and analysis. In 2012 Int. Conf. Traffic Monitor. Anal.

[26] C. Gonzalez and B. Tang. Aggvnf: Aggregate virtual network function
allocation and migration in cloud data centers. Submitted to Infocom
2022.

[27] A. Gushchin, A. Walid, and A. Tang. Scalable routing in sdn-
enabled networks with consolidated middleboxes. In Proc. of ACM
Hotmiddlebox, 2015.

[28] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi. Traffic steering
for service function chaining. IEEE Communications Surveys Tutorials,
21(1):487–507, 2019.

[29] M. Huang, W. Liang, Y. Ma, and S. Guo. Maximizing throughput of
delay-sensitive nfv-enabled request admissions via virtualized network
function placement. IEEE Transactions on Cloud Computing, 2019.

[30] N. Huin, B. Jaumard, and F. Giroire. Optimal network service chain
provisioning. IEEE/ACM Trans. on Netw., 26(3):1320–1333, June 2018.

[31] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat. Experience with a globally-deployed software defined
wan. In Proc. of ACM SIGCOMM 2013.

[32] B. Jaumard and H. Pouya. Migration plan with minimum overall
migration time or cost. J. Opt. Commun. Netw., 10:1 – 13, 2018.

[33] T. Kuo, B. Liou, K. C. Lin, and M. Tsai. Deploying chains of virtual
network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking, 26(4):1562–1576, Aug 2018.

[34] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin. Improve service chaining
performance with optimized middlebox placement. IEEE Transactions
on Services Computing, 10(4):560–573, 2017.

[35] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu. On dynamic service function
chain deployment and readjustment. IEEE Transactions on Network and
Service Management, 14(3):543–553, 2017.

[36] W. Ma, J. Beltran, D. Pan, and N. Pissinou. Traffic aware placement
of interdependent nfv middleboxes. IEEE Transactions on Network and
Service Management, 16(4):1303–1317, Dec. 2019.

[37] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer. Remedy: Network-aware steady state vm management for
data centers. In Proc. of the NETWORKING 2012.

[38] R. J. Martins, C. B. Both, J. A. Wickboldt, and L. Z. Granville. Virtual
network functions migration cost: from identification to prediction.
Computer Networks, 181(9), 2020.

[39] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In Proc.
of IEEE INFOCOM 2010.

[40] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and re-
search challenges. IEEE Communications Sur. and Tut., 18(1), 2015.

[41] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz. A reliability-aware
network service chain provisioning with delay guarantees in nfv-enabled
enterprise datacenter networks. IEEE Transactions on Network and
Service Management, 14(3):554–568, 2017.

[42] J. Reese. Solution methods for the p-median problem: An annotated
bibliography. Networks, 48(3):125–142, 2006.

[43] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In Proc. of SIGCOMM 2015.

[44] G. Sallam and B. Ji. Joint placement and allocation of vnf nodes
with budget and capacity constraints. IEEE/ACM Transactions on
Networking, 2021.

[45] G. Sallam, Z. Zheng, and B. Ji. Placement and allocation of virtual
network functions: Multi-dimensional case. In Proc. of ICNP 2019.

[46] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. Provably efficient algo-
rithms for joint placement and allocation of virtual network functions.
In Proc. of INFOCOM 2017.

[47] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen. Virtual network
function migration based on dynamic resource requirements prediction.
IEEE Access, 7:112348–112362, 2019.

[48] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes. Provably efficient
algorithms for placement of service function chains with ordering
constraints. In IEEE INFOCOM 2018, pages 774–782, 2018.

[49] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu. Delay-
aware virtual network function placement and routing in edge clouds.
IEEE Transactions on Mobile Computing, 2019.

[50] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu. Delay-
aware virtual network function placement and routing in edge clouds.
IEEE Transactions on Mobile Computing, 20(2):445–459, 2021.

[51] B. Yi, X. Wang, M. Huang, and A. Dong. A multi-criteria decision
approach for minimizing the influence of vnf migration. Computer
Networks, 159:51 – 62, 2019.

[52] B. Yi, X. Wang, M. Huang, and K. Li. Design and implementation of
network-aware vnf migration mechanism. IEEE Access, 8:44346–44358,
2020.

[53] Q. Zhang, F. Liu, and C. Zeng. Adaptive interference-aware vnf
placement for service-customized 5g network slices. In IEEE INFOCOM
2019, 2019.

[54] X. Zhang, Z. Xu, L. Fan, S. Yu, and Y. Qu. Near-optimal energy-efficient
algorithm for virtual network function placement. IEEE Transactions on
Cloud Computing, pages 1–1, 2019.

[55] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula. Steering: A software-defined networking for inline
service chaining. In Proc. of IEEE ICNP 2013.

[56] D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao. Towards
latency optimization in hybrid service function chain composition and
embedding. In IEEE INFOCOM 2020.

