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Abstract

In this paper, we address an optimization problem that arises in the context of cache placement in sensor networks. In particular,
we consider the cache placement problem where the goal is to determine a set of nodes in the network to cache/store the given
data item, such that the overall communication cost incurred in accessing the item is minimized, under the constraint that the total
communication cost in updating the selected caches is less than a given constant. In our network model, there is a single server
(containing the original copy of the data item) and multiple client nodes (that wish to access the data item). For various settings of
the problem, we design optimal, near-optimal, heuristic-based, and distributed algorithms, and evaluate their performance through
simulations on randomly generated sensor networks.
© 2006 Published by Elsevier B.V.
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1. Introduction

Advances in embedded processing and wireless networking have made possible the creation of sensor networks
[1,12]. A sensor network consists of sensor nodes with short-range radios and limited on-board processing capability,
forming a multi-hop network of irregular topology. Sensor nodes must be powered by small batteries, making en-
ergy efficiency a critical design goal. There has been a significant interest in designing algorithms, applications, and
network protocols to reduce energy usage of sensors. Examples include energy-aware routing [17], energy-efficient
information processing [9,12], and energy-optimal topology construction [31]. We focus on designing techniques to
conserve energy in the network by caching data items at selected sensor nodes in a sensor network. The techniques
developed in this paper are orthogonal to some of the other mentioned approaches, and can be used in combination
with them to conserve energy.

Existing sensor networks assume that the sensors are preprogrammed and send data to a sink node where the data
is aggregated and stored for offline querying and analysis. Thus, sensor networks provide a simple sample-and-gather
service, possibly with some in-network processing to minimize communication cost and energy consumption. How-
ever, this view of sensor network architecture is quite limited. With the rise in embedded processing technology, sensor
networks are set to become a more general-purpose, heterogeneous, distributed databases that generate and process
time-varying data. As energy and storage limitations always remain an issue—as much of it comes from pure physical
limitations—new techniques for efficient data handling, storage, and dissemination must be developed. We take a
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general view of the sensor network where a subset of sensor nodes (called servers) generate data and another subset
of nodes (called clients) consume this data. The data generation and consumption may not be synchronous with each
other, and hence, the overall communication cost can be optimized by caching generated data at appropriately selected
intermediate nodes. In particular, data-centric sensor network applications which require efficient data dissemination
[6,18] benefit from effective data caching strategies.

In our model of the sensor network, there is a single data item at a given server node, and many client nodes. (See
Section 6 for a discussion on multiple data items and servers.) The server is essentially the data item producer and
maintains the original copy of the item. All the nodes in the network cooperate to reduce the overall communication
cost of accessing the data via a caching mechanism, wherein any node in the network can serve as a cache. A natural
objective in this context could be to select cache nodes such that the sum of the overall access and update cost is
minimized. However, such an objective does not guarantee anything about the general distribution of energy usage
across the sensor network. In particular, the updates always originate from the server node, and hence, the server
node and the surrounding nodes bear most of the communication cost incurred in updating. Hence, there is a need to
constrain the total update cost incurred in the network, to prolong the lifetime of the server node and the nodes around
it—and hence, possibly of the sensor network. Thus, we address the cache placement problem to minimize the total
access cost under an update cost constraint. More formally, we address the problem of selecting nodes in the network
to serve as caches in order to minimize the total access cost (communication cost incurred in accessing the data item
by all the clients), under the constraint that the total update cost (communication cost incurred in updating the cache
nodes using an optimal Steiner tree over the cache nodes and the server) is less than a given constant. Since we are
considering only a single data item, we do not need to consider memory constraints of a node.

Paper outline. We start with formulating the problem and a discussion on related work in Section 2. For the cache
placement problem under an update cost constraint, we consider a tree topology and a general graph topology of
the sensor network. For the tree topology, we design an optimal dynamic programming algorithm in Section 3. The
optimal algorithm for the tree topology can be applied to the general graph topology by extracting an appropriate tree
from the given network graph. For the general graph topology, we consider a simplified multiple-unicast update cost
model, and design a constant-factor approximation algorithm in Section 4.1. In Section 4.2, we present an efficient
heuristic for the general cache placement problem under an update cost constraint, i.e., for a general update cost model
in general graph topology. In Section 4.3, we present an efficient distributed implementation. Finally, we present
simulation results in Section 5, and give concluding remarks in Section 6.

2. Problem formulation and related work

In this section, we formulate the problem, starting with a description of the sensor network model.
Sensor network model. A sensor network consists of a large number of sensor nodes distributed randomly in a

geographical region. Each sensor node has a unique identifier (ID). Each sensor node has a radio interface and can
communicate directly with some of the sensor nodes around it. For brevity, we sometimes just use node to refer to a
sensor node. The sensor network can be modeled as an undirected weighted graph G = (V ,E), where V is the set of
nodes, and E is the set of weighted edges in the graph. Two network nodes that can communicate directly with each
other are connected by an edge in the graph. The edge weight may represent a link metric such as loss rate, delay, or
transmission power. We use dij to denoted the weighted distance between any two nodes i and j in G. The network
has a data item, which is stored at a unique node called a server, and is updated at a certain update frequency. Each
sensor node could be a client node. A client node i requests the data item with an access frequency ai . The cost of
accessing a data item (access cost) by a node i from a node j (the server or a cache) is aidij , where dij is the weighted
distance between nodes i and j .

Problem. Informally, we address the following cache placement problem in sensor networks. Select a set of nodes
to store copies of the data item such that the total access cost is minimized under a given update cost constraint. The
total access cost is the sum of all individual access costs over all clients for accessing the data item from the nearest
node (either a cache or the server) having a copy of the data item. The update cost incurred in updating a set of caches
M is modeled as the cost of the optimal Steiner tree [13] spanning the server and the set of caches. This problem is
obviously NP-hard, as even the Steiner tree problem is known to be NP-hard [4]. We look at the problem in various
stages—a tree topology, a graph topology with a simplified update cost model, a graph topology with a general update
cost model—and present optimal, approximation, and heuristic-based algorithms respectively.
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More formally, given a sensor network graph G = (V ,E), a server r with the data item, and an update cost Δ,
select a set of cache nodes M ⊆ V (r ∈ M) to store the data item such that the total access cost

τ(G,M) =
∑
i∈V

ai × min
j∈M

dij

is minimum, under the constraint that the total update cost μ(M) is less than a given constant Δ, where μ(M) is the
cost (i.e., weight) of the minimum weighted Steiner tree over the set of nodes M . We use the words cost and weight
interchangeably. In the definition all network nodes are considered as potential clients. If some node i is not a client,
the corresponding ai would be zero.

Related work. The general problem of determining optimal cache placements in an arbitrary network topology has
similarity to two problems widely studied in graph theory viz., the facility location problem and the k-median problem.
Both problems consider only a single facility type (data item) in the network. In the facility-location problem, setting
up a cache at a node incurs a certain fixed cost, and the goal is to minimize the sum of total access cost and the setting-
up costs for all the caches, without any constraint. On the other hand, the k-median problem minimizes the total access
cost under the number constraint, i.e., that at most k nodes can be selected as caches. Both problems are NP-hard,
and a number of constant-factor approximation algorithms have been developed for each of the problems [8,10,19],
under the assumption that the edge costs in the graph satisfy the triangular inequality. Without the triangular inequality
assumption, either problem is as hard as approximating the set cover [19,24], and therefore cannot be approximated
better than O(log |V |) unless NP ⊆ P̃. Here, |V | is the size of the network.

Several papers in the literature circumvent the hardness of the facility-location and k-median problems by assuming
that the network has a tree topology [23,32]. In particular, Li et al. [23] address the optimal placement of web proxies
in a tree topology, essentially designing an O(n3k2) time dynamic programming algorithm to solve the k-median
problem optimally in a tree of n nodes. In other related work on cache placement in trees, Xu et al. [32] discuss
placement of “transparent” caches to minimize the sum of reads and writes, Krishnan et al. [22] consider a cost model
based on cache misses, and Kalpakis et al. [20] consider a cost model involving reads, writes, and storage. In sensor
networks, which consist of a large number of energy-constrained nodes, the constraint on the number of cache nodes
is of little relevance.

Cache placement has also been widely used in the web environment [3,5,28] and peer-to-peer networks [11,15,25]
to alleviate problems such as server overloading, delayed response time, and inadequate bandwidth. In particular,
Qiu et al. [28] have addressed effective placement of web server replicas over the Internet and evaluated several
placement algorithms. Cohen and Shenkar [11] discuss the data replica placement problem in peer-to-peer networks
and formulate the data replication strategies as a mapping from the query cost to the number of replicas. Relatively less
work has been done on the cache placement problem in the specific context of ad hoc networks. Hara [15] addresses
replica allocation methods for mobile ad hoc networks that can experience frequent disconnection. Yin and Cao [33]
design and evaluate three simple cooperative caching techniques to efficiently support data access in ad hoc networks.
In particular, they propose that intermediate nodes either cache data and/or nearest-cache path information to serve
future requests. None of the described work offers any performance guarantee on the solutions.

Caching in sensor networks is equally important, since caching sensed information at intermediate nodes can
greatly reduce overall communication cost which is the main source of energy consumption. Shenker et al. [30]
propose data centric storage (DCS) as a data dissemination paradigm for sensor networks. In DCS, data is stored
according to event type at corresponding sensornet nodes. Data is also replicated to avoid overloading. Recently, Sheng
et al. [29] study the storage node placement problem to minimize the total energy for data collection and data query.
Intanagonwiwat et al. [18] propose directed diffusion, a data dissemination paradigm for sensor networks, which
adopts a data centric approach and enables diffusion to achieve energy savings by selecting empirically good paths and
by caching/processing data in-network. Bhattacharya et al. [6] develop a distributed framework that improves energy
consumption by application layer data caching and asynchronous update multicast. Prabh et al. [27] improve upon
[6] by presenting and analyzing the optimality properties of Steiner tree data caching over all the cache nodes. None
of the work takes into consideration the update cost incurred for the selected caches. We consider cache placement
in sensor networks wherein the objective is to minimize the access cost under the constraint of maximum allowable
update cost. As mentioned before, the update cost is typically mostly borne by the server and the surrounding nodes,
and hence, is a critical constraint. To the best of our knowledge, we are not aware of any prior work that considers the
cache placement problem under an update cost constraint.
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3. Tree topology

In this subsection, we address the cache placement problem under the update cost constraint in a tree network.
The motivation of considering a tree topology (as opposed to a general graph model which we consider in the next
section) is two fold. Firstly, data dissemination or gathering in sensor networks is typically done over an appropriately
constructed network tree. Secondly, for the tree topology, we can actually design polynomial time optimal algorithms.
Thus, we can apply such optimal algorithms for the tree topology to the general graph topology by extracting an
appropriate tree (e.g., shortest-path tree or near-optimal Steiner tree connecting the clients) from the general graph.
In Section 5, we show through extensive simulations that such a strategy of applying an optimal tree algorithm to a
general graph topology yields heuristics that deliver near-optimal cache placement solutions.

Consider an ad hoc network tree T rooted at the node r . Since the communication edges are bidirectional, any node
in the network could be designated as the root; thus, we assume that the root node r is also the server for the data item.
The cache placement problem under update cost constraint in a tree topology can be formally defined as follows.

Given the tree network T rooted at r , a data item whose server is r , and an update cost constraint Δ, find a set of
cache nodes M ⊆ T (r ∈ M) for storing copies of the data item, such that the total access cost

τ(T ,M) =
∑
i∈T

ai × min
j∈M

dij

is minimized under the constraint that the total update cost μ(M) is less than Δ, where μ(M) is the weight of
minimum-weighted Steiner tree over M . The minimum weighted Steiner tree spanning over a set of nodes M is
simply the smallest subtree connecting the root r to all the nodes in M .

3.1. Dynamic programming algorithm

In this subsection, we present an optimal dynamic programming algorithm for the described cache placement
problem under the update cost constraint in a tree topology. We first start with some subtree notation [23] that is
needed to describe our dynamic programming algorithm.

Subtree notation. Consider the network tree T rooted at r . We use Tu to denote the subtree rooted at u in the tree T

with respect to the root r ; the tree Tr represents the entire tree T . For ease of presentation, we use Tu to also represent
the set of nodes in the subtree Tu. We use p(i) to denote the parent node of a node i in the tree Tr . Let π(i, j) denote
the unique path from node i to node j in Tr , and dk,π(i,j) denote the distance of a node k to the closest node on π(i, j).

Let us assume a left to right ordering of the children at each node. Consider two nodes v and u in the network tree,
where v in an ancestor of u in Tr . See Fig. 1(a). Let Lv,u be the subgraph induced by the set of nodes on the left of
and excluding the path π(v,u) in the subtree Tv , and Rv,u be the subgraph induced by the set of nodes on the right of

(a) (b)

Fig. 1. Dynamic Programming algorithm for the tree topology. (a) Subtree notation. (b) Setup of the recursive equation.
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and including the path π(v,u), as shown in Fig. 1(a). It is easy to see Tv can be divided into three distinct subgraphs,
viz., Lv,u, Tu, and Rv,u. Tu and Rv,u are trees, while Lv,u may not be a tree.

DP algorithm. Consider a subtree Tv and a node x on the leftmost branch of Tv . Let us assume that all the nodes on
the path π(v, x) (including v and x) have already been selected as caches. Let τ(Tv, x, δ) denote the optimal access
cost for all the nodes in the subtree Tv under the additional update cost δ, where we do not include the cost of updating
the already selected caches on the path π(v, x). We derive a recursive equation to compute τ(Tv, x, δ), which would
essentially yield a dynamic programming algorithm to compute τ(Tr , r,Δ)—the minimum value of the total access
cost for the entire network tree Tr under the update cost constraint Δ.

Let Ov be an optimal set (not including and in addition to π(v, x)) of cache nodes in Tv that minimizes the total
access time under the constraint of additional update cost δ. Let u be the leftmost deepest node of Ov in Tv , i.e., the
node u is such that Lv,u ∩ Ov = ∅ and Tu ∩ Ov = {u}. It is easy to see that adding the nodes along the path π(v,u) to
the optimal solution Ov does not increase the additional update cost incurred by Ov , but may reduce the total access
cost. Thus, without loss of generality, we assume that the optimal solution Ov includes all the nodes along the path
π(v,u) as cache nodes, if u is the leftmost deepest node of Ov in Tv .

Recursive equation. Consider an optimal solution Ov that minimizes τ(Tv, x, δ), and let u be the leftmost deepest
node of Ov in Tv . Ov does not include the nodes on π(v, x). Based on the definition of u and possible cache place-
ments, a node in Lv,u accesses the data item from either the nearest node on π(v,u) or the nearest node on π(v, x). In
addition, any node in Tu accesses the data item from the cache node u, while all other nodes (i.e., the nodes in Rv,u)
choose one of the cache nodes in Rv,u to access the data item. See Fig. 1(b). Thus, the optimal access cost τ(Tv, x, δ)

can be recursively defined in terms of τ(Rv,u,p(u), δ − du,π(v,x)). The quantity du,π(v,x) denotes the shortest distance
in Tv from u to a node on the path π(v, x) and hence, is the additional update cost incurred in updating the caches on
the path π(v,u). We first define S(Tv, x, δ) as the set of nodes u such that the cost of updating u is less than δ, the
additional update cost. That is,

S(Tv, x, δ) = {
u | u ∈ Tv ∧ (δ > du,π(v,x))

}
.

Now, the recursive equation can be defined as follows.

τ(Tv, x, δ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
i∈Tv

ai × di,π(v,x), if S(Tv, x, δ) = ∅,

minu∈S(Tv,x,δ)

⎛
⎜⎜⎝

∑
i∈Lv,u

ai × min(di,π(v,u), di,π(v,x))

+
∑

i∈Tu

aidiu

+ τ(Rv,u,p(u), δ − du,π(v,x))

⎞
⎟⎟⎠ , otherwise.

In the recursive equation, the first case corresponds to the situation when the additional update cost δ is not sufficient
to cache the data item at any more nodes (other than already selected cache nodes on π(v, x)). For the second case,
we compute the total (and minimum possible) access cost for each possible value of u, the leftmost deepest additional
cache node, and pick the value of u that yields the minimum total access cost. In particular, for a fixed u, the first term
corresponds to the total access cost of the nodes in Lv,u. For a node in Lv,u the closest cache node is either on the
path πv,x or πv,u. The second and third terms correspond to the total access time of nodes in Tu and Rv,u respectively.
Since the tree Tu is devoid of any cache nodes, the cache node closest to any node in Tu is u. The minimum total
access cost of all the nodes in Rv,u can be represented as τ(Rv,u,p(u), δ − du,π(v,x)), since the remaining available
update cost is δ − du,π(v,x) where du,π(v,x) is the update cost used up by the cache node u.

Time complexity. The recursive equation can also be used to compute the optimal placement of cache nodes required
within Tv to attain the optimal cost τ(Tv, x, δ). Also, our original problem of finding an optimal set of cache nodes in
Tr under the given update constraint Δ can be solved by evaluating τ(Tr , r,Δ).

For time efficiency, we first precompute the terms
∑

i∈Lv,u
ai × min(di,π(v,u), di,π(v,x)) and

∑
i∈Tu

aidiu for all

combinations of values of v,u, and x. It is easy to see that the precomputation can be done in O(n4) time. Next, we
compute τ(Tv, x, δ) for all values of v, x and δ. Using the precomputed values, each such τ(Tv, x, δ) value takes O(n)

time for computation. Since, there are a total of n2Δ combinations of v, x and δ, the overall time complexity of our
dynamic programming algorithm is O(n4 + n3Δ). In unweighted graphs, the time complexity can be simplified to
O(n4), since Δ = O(n).
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4. General graph topology

The tree topology assumption makes it possible to design a polynomial-time optimal algorithm for the cache
placement problem under an update cost constraint. In this subsection, we address the cache placement problem
in a general graph topology. In the general graph topology, the cache placement problem becomes NP-hard. Thus,
our focus here is on designing polynomial-time algorithms with some performance guarantee on the quality of the
solution.

As defined before, the total update cost incurred by a set of caches nodes is the minimum-weight of an optimal
Steiner tree over the set of cache nodes and the server; we refer to this update cost model as the Steiner tree update
cost model. Since the minimum-weighted Steiner tree problem is NP-hard in general graphs, we solve the cache
placement problem in two steps. First, we consider a simplified multiple-unicast update cost model and present a
greedy algorithm with a provable performance guarantee for the simplified model. Then, we improve our greedy
algorithm based upon the more efficient Steiner tree update cost model.

4.1. Multiple-unicast update cost model

In this section, we consider the cache placement problem for a general network graph under a simplified update
cost model. In particular, we consider the multiple-unicast update cost model, wherein we model the total update cost
incurred in updating a set of caches as the sum of the individual shortest path lengths from the server to each cache
node. More formally, the total update cost of a set M of cache nodes is μ(M) = ∑

i∈M dsi , where s is the server.
Using this simplified update cost model, the cache placement problem in general graphs for an update cost constraint
can be formulated as follows.

Problem under multiple-unicast model. Given an ad hoc network graph G = (V ,E), a server s with the data item,
and an update cost Δ, select a set of cache nodes M ⊆ V (s ∈ M) to store the data item such that the total access cost
τ(G,M) = ∑

i∈V ai ×minj∈M dij is minimum, under the constraint that the total update cost μ(M) = ∑
i∈M dsi < Δ.

The cache placement problem with this simplified update cost model is still NP-hard, as can be easily shown by
a reduction from the k-median problem. A number of constant-factor approximation algorithms have been proposed
[8,19] for the k-median problem which can also be used to solve this cache placement problem. However, all the
constant-factor approximation algorithms are based on the assumption that the edge weights in the network graph
satisfy the triangular inequality. Moreover, the proposed approximation algorithms for the k-median problem cannot
be easily extended to the more efficient Steiner tree update cost model. We present a greedy algorithm that returns a
solution whose “access benefit” is at least 63% of the optimal benefit, where access benefit is defined as the reduction
in total access cost due to cache placements.

Greedy algorithm. In this section, we present a greedy approximation algorithm for the cache placement problem
under the multiple-unicast update cost constraint in general graphs, and show that it returns a solution with near-
optimal reduction in access cost. We start with defining the concept of a benefit of a set of nodes which is important
for the description of the algorithm.

Definition 1 (Benefit of nodes). Let A be an arbitrary set of nodes in the sensor network. The benefit of A with respect
to an already selected set of cache nodes M , denoted as β(A,M), is the decrease in total access cost resulting due to
the selection of A as cache nodes. More formally, β(A,M) = τ(G,M) − τ(G,M ∪ A), where τ(G,M), as defined
before, is the total access cost of the network graph G when the set of nodes M have been selected as caches. The
absolute benefit of A denoted by β(A) is the benefit of A with respect to an empty set, i.e., β(A) = β(A,∅).

The benefit per unit update cost of A with respect to M is β(A,M)/μ(A), where μ(A) is the total update cost of
the set A under the multiple-unicast update cost model.

Our proposed Greedy Algorithm works as follows. Let M be the set of caches selected at any stage. Initially, M is
empty. At each stage of the Greedy Algorithm, we add to M the node A that has the highest benefit per unit update
cost with respect to M at that stage. This process continues until the update cost of M reaches the allowed update cost
constraint. The algorithm is now formally presented.
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Algorithm 1 (Greedy Algorithm).

Input: A sensor network graph V = (G,E).
Update cost constraint Δ.

Output: A set of cache nodes M .
Begin

M = ∅;
while (μ(M) < Δ)

Let A be the node with maximum β(A,M)/μ(A).
M = M ∪ {A};

end while;
RETURN M − {A} or {A}, whichever has the higher benefit.

END.

The running time of the greedy algorithm is O(kn2), where n is the number of nodes in the network and k(� n) is
the number of iterations.

Performance guarantee of the Greedy Algorithm. We now show that the Greedy Algorithm returns a solution that
has a benefit at least 31% of that of the optimal solution. We start with presenting a lemma about the benefit function
that leads to the final approximation result. The following lemma shows that the total benefit of a set of sets of nodes
is at most the sum of the benefit of individual sets.

Lemma 1. Let O1,O2, . . . ,Om and M be arbitrary sets of nodes. Then, β(O1 ∪O2 ∪· · ·∪Om,M) �
∑m

i=1 β(Oi,M).

Proof. Without loss of generality, we prove the lemma for m = 2. By definition of the benefit function, we have

β(O1 ∪ O2,M) = β(O1,M) + β(O2,M ∪ O1).

In the next paragraph, we show that

β(O2,M ∪ O1) � β(O2,M).

Thus, we get β(O1 ∪ O2,M) � β(O1,M) + β(O2,M).
To complete the proof, we now show that β(O2,M) � β(O2,M ∪ O1) for arbitrary sets of nodes M , O1, and O2.

Let V be the set of all nodes in the given network graph, and let d(i,M) denote the distance (number of hops) from a
node i to the closest node in the set M . For an arbitrary node i and arbitrary sets of nodes M,O1, and O2, we have

d(i,M) − d(i,M ∪ O2) � d(i,M ∪ O1) − d(i,M ∪ O1 ∪ O2).

To see this, consider the following three cases viz. the closest node to i in the set M ∪ O1 ∪ O2 is in M , or O1 or O2.
In the first case, both sides of the equation are zero. For the second case, the right hand side is zero while the left hand
side is positive. For the third case, d(i,M ∪ O1 ∪ O2) = d(i,M ∪ O2) = d(i,O2) and d(i,M) � d(i,M ∪ O1).

Now, by the definition of the benefit function, we have

β(O2,M) =
∑
i∈V

ai × (
d(i,M) − d(i,M ∪ O2)

)
�

∑
i∈V

ai × (
d(i,M ∪ O1) − d(i,M ∪ O1 ∪ O2)

)
= β(O2,M ∪ O1). �

Now, we show that the Greedy Algorithm returns a solution with near-optimal benefit. The proof technique used
here is similar to that used in [14] for the closely related problem of selection of views in a data warehouse.

Theorem 1. Greedy Algorithm (Algorithm 1) returns a solution whose absolute benefit is of at least (1 − 1/e)/2 times
the absolute benefit of an optimal solution.
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Proof. Let M be the set of cache nodes selected by the Greedy Algorithm at the end of the while loop, i.e., before
the very last step. We show that the benefit of M is at least (1 − 1/e) times the absolute benefit of an optimal solution
(we actually allow the optimal solution to use μ(M) update cost). Since the Greedy Algorithm partitions M into two
feasible solutions and returns the better of them, we get the desired approximation result.

Let μ(M), the total multiple-unicast update cost of M , be equal to k. Let the optimal solution using at most k units
of multiple-unicast update cost be O .

Consider a stage when the greedy algorithm has already chosen a set M = Gl occupying l units of update cost
with “incremental” benefits b1, b2, . . . , bl . Incremental benefit bi is defined as the increase in benefit when the node
with the ith unit of update cost is added into the set of cache nodes. So, the absolute benefit of Gl , β(Gl) = ∑l

i=1 bi .
Since, the absolute benefit of O ∪ Gl is at least that of O , we have β(O,Gl) � β(O) − ∑l

i=1 bi .
Let O = {o1, o2, . . . , om}. By Lemma 1 for the sets {oi}’s, we have β(O,Gl) �

∑m
i=1 β({oi},Gl). Now, we show

by contradiction that there exists a node oh in O such that β({oh},Gl)/μ(oh) � β(O,Gl)/k. O and Gl may not be
disjoint. Let us assume that there is no such node oh in O . Then, β({oi},Gl) < (β(O,Gl)/k)μ(oi) for every node
oi ∈ O . Thus,

∑m
i=1 β({oi},Gl) < (β(O,Gl)/k)

∑m
i=1 μ(oi) = β(O,Gl), which violates Lemma 1. Therefore, there

exists a node oh in O such that

β
({oh},Gl

)
/μ(oh) � β(O,Gl)/k �

(
β(O) −

l∑
i=1

bi

)
/k.

Now, the benefit per unit update cost with respect to Gl of the node C selected by the algorithm is at least that of
oh, which is at least (β(O) − ∑l

i=1 bi)/k. Distributing the benefit of C over each of its unit update costs equally (for
the purpose of analysis), we get

bl+j �
(

β(O) −
l∑

i=1

bi

)
/k for 0 < j � μ(C),

where μ(C) is the update cost for C.
As the analysis is true for each node C selected at any stage, we have for 0 < j � k:

bj �
(

β(O) −
j−1∑
i=1

bi

)
/k.

Rearranging a few terms, we get:(
β(O) −

j∑
i=1

bi

)
�

(
β(O) −

j−1∑
i=1

bi

)
(k − 1)/k.

Application of the equation j times, we get (β(O) − ∑j

i=1 bi) � ((k − 1)/k)jβ(O), which yields(
β(O) −

k∑
i=1

bi

)
�

(
(k − 1)/k

)k
β(O) when j = k.

Thus, we get (
∑k

i=1 bi)/β(O) � 1 − ( k−1
k

)k � 1 − 1/e. Since, the absolute benefit of M is β(M) = ∑k
i=1 bi , we have

β(M)/β(O) � 1 − 1/e. �
4.2. Steiner tree update cost model

Recall that the constant factor performance guarantee of the Greedy Algorithm described in the previous section is
based on the multiple-unicast update cost model, wherein whenever the data item in a cache node needs to be updated,
the updated information is transmitted along the individual shortest path between the server and the cache node.
However, the more efficient method of updating a set of caches from the server is by using the optimal (minimum-
weighted) Steiner tree over the selected cache nodes and the server. In this section, we improve the performance of our
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Greedy Algorithm by using the more efficient Steiner tree update cost model, wherein the total update cost incurred
for a set of cache nodes is the cost of the optimal Steiner tree over the set of nodes M and the server of the data item.

Since the minimum-weighted Steiner tree problem is NP-hard, we adopt the simple 2-approximation algorithm [13]
for the Steiner tree construction, which constructs a Steiner tree over a set of nodes L by first computing a minimum
spanning tree in the “distance graph” of the set of nodes L. We use the term 2-approximate Steiner tree to refer to the
solution returned by the 2-approximation Steiner tree approximation algorithm. Based on the notion of 2-approximate
Steiner tree, we define the following update cost terms.

Definition 2 (Steiner update cost). The Steiner update cost for a set M of cache nodes, denoted by μ′(M), is defined
as the cost of a 2-approximate Steiner tree over the set of nodes M and the server s.

The incremental Steiner update cost for a set A of nodes with respect to a set of nodes M is denoted by μ′(A,M)

and is defined as the increase in the cost of the 2-approximate Steiner tree due to addition of A to M , i.e., μ′(A,M) =
μ′(A ∪ M) − μ′(M).

Based on these definitions, we describe the Greedy-Steiner Algorithm which uses the more efficient Steiner tree
update cost model as follows.

Algorithm 2 (Greedy-Steiner Algorithm).

Input: A network graph V = (G,E).
Update cost constraint Δ.

Output: The set of cache nodes M .
Begin

M = ∅;
while (μ′(M) < Δ)

Let A be the node with maximum β(A,M)/μ′(A,M).
M = M ∪ {A};

end while;
RETURN M − {A} or {A}, whichever has the higher benefit.

END.

Unfortunately, there is no performance guarantee of the solution delivered by the Greedy-Steiner Algorithm. How-
ever, as we show in Section 5, the Greedy-Steiner Algorithm performs the best among all our designed algorithms for
the cache placement problem under an update cost constraint.

4.3. Distributed implementation

In this subsection, we design a distributed version of the centralized Greedy-Steiner Algorithm (Algorithm 2).
Using similar ideas as presented in this section, we can also design a distributed version of the centralized Greedy
Algorithm (Algorithm 1). However, since the centralized Greedy-Steiner Algorithm outperformed the centralized
Greedy Algorithm for all ranges of parameter values in our simulations, we present only the distributed version of
Greedy-Steiner Algorithm. As in the case of the centralized Greedy-Steiner Algorithm, we cannot prove any per-
formance guarantee for the presented distributed version. However, we observe in our simulations that the solution
delivered by the distributed version is very close to that delivered by the centralized Greedy-Steiner Algorithm. Here,
we assume the presence of an underlying routing protocol in the sensor network. Due to limited memory resources at
each sensor node, a proactive routing protocol [26] that builds routing tables at each node is unlikely to be feasible. In
such a case, a location-aided routing protocol such as GPSR [21] is sufficient for our purposes, if each node is aware
of its location (either through GPS [16] or other localization techniques [2,7]).

Distributed Greedy-Steiner Algorithm. The distributed version of the centralized Greedy-Steiner Algorithm
consists of rounds. During a round, each non-cache node A estimates its benefit per unit update cost, i.e.,
β(A,M)/μ′(A,M). If the estimate at a node A is maximum among all its communication neighbors, then A decides
to cache itself, and sends the estimated incurred update cost μ′(A,M) to the server. During each round, a number of
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sensor nodes may decide to cache the data item according to this criteria. At the end of each round, the server node
sums the update cost incurred by newly added cache nodes, and calculates the remaining update cost by deducting it
from the given update cost constraint. Then the remaining update cost is broadcast by the server to the entire network
and a new round is initiated. To avoid many cache nodes being selected in the first round, we can have a node selecting
itself as a cache node only if its estimate of benefit per unit cost estimate is the maximum among all its k-hop neigh-
bors, where k > 1. The constant k may be chosen iteratively, until the number of nodes selecting themselves is small
enough. We do not need to assume a synchronized mode, since each round is initiated by the server using a message.
If there is no remaining update cost, then the server decides to discard some of the recently added caches (to keep the
total update cost under the given update cost constraint), and the algorithm terminates. In this case, the server can deal
with it by order. The algorithm is now formally presented.

Algorithm 3 (Distributed Greedy-Steiner Algorithm).

Input: A network graph V = (G,E).
Update cost constraint Δ.

Output: The set of cache nodes M .
Begin

M = ∅;
while (μ′(M) < Δ)

Let A be the set of nodes each of which (denoted as A)
has the maximum β(A,M)/μ′(A,M) among its
non-cache neighbors.
M = M ∪A;

end while;
RETURN M ;

END.

Estimation of μ′(A,M). Let A be a non-cache node, and T S
A be the shortest path tree from the server to the set of

communication neighbors of A. Let C ∈ M be the cache node in T S
A that is closest to A, and let d be the distance from

A to C. In the Distributed Greedy-Steiner Algorithm, we estimate the incremental Steiner update cost μ′(A,M) to be
d × u, where u is the update frequency of the server. The value d can be computed in a distributed manner at the start
of each round as follows. As mentioned before, the server initiates a new round by broadcasting a packet containing
the remaining update cost to the entire network. If we append to this packet all the cache nodes encountered on the
way, then each node should get the set of cache nodes on the shortest path from the server to itself. Now, to compute
d , each node only needs to exchange the information with all its immediate neighbors.

Estimation of β(A,M). A non-cache node A considers only its “local” traffic to estimate β(A,M), the benefit with
respect to an already selected set of cache nodes M . The local traffic of A is defined as the data access requests that
use A as an intermediate/origin node. Thus, the local traffic of a node includes its own data requests. We estimate the
benefit of caching the data item at A as β(A,M) = d × t , where t is the frequency of the local traffic observed at A

and d is the distance to the nearest cache from A. The local traffic t can be computed if we let the normal network
traffic (using only the already selected caches in previous rounds) run for some time between successive rounds. The
data access requests of a node A during normal network traffic between rounds can be directed to the nearest cache in
the tree T S

A as defined in the previous paragraph.
Dynamic topologies. The sensor network topology may be very dynamic due to node/link failures, mobility of

sensor nodes, new sensor nodes entering the network, etc. The Distributed Greedy-Steiner Algorithm can be adapted
to handle node failures if the active cache nodes periodically send a probe to the server node, and the server initiates a
new round if the current update cost is sufficiently less than the update cost constraint. If the server node is static, then
mobility of cache nodes can be handled in a similar way. However, in this case, the server node may need to discard
cache nodes that have moved too far away. The situation is more challenging if the server node itself is mobile. In the
most general scenario of mobile server and client nodes, the server node may need to gather latest location of active
cache nodes by periodically flooding the network (in absence of a proactive routing scheme that adapts to mobility



432 B. Tang, H. Gupta / Journal of Discrete Algorithms 5 (2007) 422–435
of nodes). New nodes entering the network automatically become part of the network and play a useful role in later
rounds of the algorithm.

5. Performance evaluation

We empirically evaluate the relative performance of the cache placement algorithms for randomly generated sensor
networks of various densities. As the focus of our work is to optimize access cost, this metric is evaluated for a wide
range of parameters: (i) network-related—such as the number of nodes and network density, (ii) application-related—
such as the number of clients accessing each data item.

We study various caching schemes on a randomly generated sensor network of 2000 to 5000 nodes in a square
region of 30 × 30. The distances are in terms of arbitrary units. We assume all the nodes have the same transmission
radius (Tr ), and all edges in the network graph have unit weight. We have varied the number of clients over a wide
range. For clarity, we first present the data for the case where number of clients is 50% of the number of nodes, and
then present a specific case with varying numbers of clients. All the data presented here are representative of a very
large number of experiments we have run. Each point in a plot represents an average of five runs, in each of which the
server is randomly chosen. The access costs are plotted against number of nodes and transmission radius and several
caching schemes are evaluated:

• No Caching—serves as a baseline case.
• Greedy Algorithm—greedy algorithm using the multiple-unicast update cost model (Algorithm 1).
• Centralized Greedy-Steiner Algorithm—greedy algorithm using the Steiner tree-based update cost model (Algo-

rithm 2).
• Distributed Greedy-Steiner Algorithm—distributed implementation of the Greedy-Steiner Algorithm (Algo-

rithm 3).
• DP on Shortest Path Tree of Clients—Dynamic Programming algorithm (Section 3.1) on the tree formed by the

shortest paths between the clients and the server.
• DP on Steiner Tree of Clients—Dynamic Programming algorithm (Section 3.1) on the 2-approximate Steiner tree

over the clients and the server.

Varying network size for multiple update constraints. We first compare the performance of the six algorithms under
different update cost constraints with varying number of nodes (see Fig. 2). The transmission radius (Tr ) is fixed at 2.
Instead of using absolute cost values to describe the update cost constraint, we represent it in terms of a fraction of
the cost of the near-optimal (2-approximate [4]) Steiner tree over all clients and the server node. Clearly, this cost
represents a measure of the maximum possible update cost. The update cost constraint is set to 25% and 75% of the

(a) (b)

Fig. 2. Access cost with varying number of nodes in the network for different update cost constraints. Transmission radius (Tr ) = 2. Number of
clients = 50% of the number of nodes, and hence increases with the network size. (a) Update cost = 25% of the near-optimal Steiner tree cost.
(b) Update cost = 75% of the near-optimal Steiner tree cost.
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(a) (b)

Fig. 3. Access cost with varying transmission radius (Tr ) for different update cost constraints. Number of nodes = 4000, and number of
clients = 2000 (50% of number of nodes). (a) Update cost = 25% of the near-optimal Steiner tree cost. (b) Update cost = 75% of the near-optimal
Steiner tree cost.

Fig. 4. Effect of the number of clients on the access cost. Tr = 2. Update cost = 50% of the minimum Steiner tree cost. Number of nodes = 3000.

cost of the near-optimal Steiner tree. Fig. 2 shows that the proposed algorithms perform significantly better (up to an
order of magnitude) than the no-caching case (the vertical axis uses a logarithmic scale). Fig. 2(a) shows that when
the update cost constraint is small, all our proposed algorithms perform very similarly, especially for large network
size. However, a closer look shows that Greedy Algorithm using the multiple-unicast update cost model performs the
worst among our five designed algorithms. The performance differences can be seen more clearly in Fig. 2(b), where
the update cost constraint is larger. In particular, the best performing algorithms are the Steiner tree based centralized
algorithms viz. DP on a Steiner tree of clients and the Centralized Greedy-Steiner Algorithm. Finally, we observe that
the Distributed Greedy-Steiner Algorithm performs quite closely to its centralized version.

Varying transmission radius. Fig. 3 shows the effect of the transmission radius (Tr ) on access cost. A network of
4000 nodes is chosen for these experiments. The transmission radius Tr is varied from 1 to 4. This range is sufficient
for evaluation. Tr smaller than 1 disconnects the network with high probability. A convergence of behavior of our
caching algorithms is seen near Tr = 4, as the network is already dense enough. So, Tr is not increased any further.
The total access cost of all the algorithms decreases with the increase in Tr , since clients come closer to the server
in terms of number of hops as the network density increases. However, when the update cost is large (75% of the
near-optimal Steiner tree) as shown in Fig. 3(b), the performance of the two Steiner-tree based centralized algorithms
is almost the same for all values of Tr . Moreover, we again observe that the Distributed Greedy-Steiner Algorithm
performs very close to its centralized version.

Summary. The general trend in these two sets of plots (Figs. 2 and 3) is similar. Aside from the fact that our
algorithms offer much smaller total access cost than the no-caching case, the plots show that (i) the two Steiner tree-
based algorithms (DP on the Steiner Tree of Clients and the Centralized Greedy-Steiner Algorithm) perform equally
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well and the best among all algorithms except on very sparse graphs; (ii) the Greedy-Steiner Algorithm provides the
best overall behavior; (iii) the Distributed Greedy-Steiner Algorithm performs very closely to its centralized version.
Fig. 4 shows the total access cost as a function of number of clients for a network with 3000 nodes. The general
behavior is no different from before.

6. Conclusions

We have developed a suite of data caching techniques to support effective data dissemination in sensor networks.
In particular, we have considered an update cost constraint and developed efficient algorithms to determine optimal or
near-optimal cache placements to minimize overall access cost. Minimization of access cost leads to communication
cost savings and hence, energy efficiency. The choice of update constraint also indirectly contributes to resource ef-
ficiency. Two models have been considered—one for a tree topology, where an optimal algorithm based on dynamic
programming has been developed, and the other for the general graph topology, which presents an NP-hard problem
where a polynomial-time approximation algorithm has been developed. We also designed efficient distributed imple-
mentations of our centralized algorithms, and empirically showed that they perform well for random sensor networks.

Cache placement of multiple data items at different servers can be solved as independent single data item cache
placement problems, since the update cost constraint at different servers would presumably be independent. The cache
placement problem of multiple data items at a single server is challenging, but we can use a heuristic of allocating
update costs for each item in proportion to the sum of access frequencies. Each of the scenarios assumes no memory
constraints at network nodes. Since, sensor nodes are characterized by limited memory capacity and limited battery
energy, we are currently addressing the more general cache placement problem in sensor networks under memory and
update constraints for multiple data items.
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