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Abstract— We consider the problem of preserving data in
intermittently connected sensor networks wherein sensor nodes
do not always have connected paths to the base stations. The
generated data is first stored inside the network before being
uploaded to the base station when uploading opportunities arise.
Each node has both limited energy level and limited storage
space, and is associated with a probability of failure. To guarantee
that at any moment, each generated data item is available for
being uploaded in the presence of node failure, we propose to
replicate K copies of each data item in the network, where
K depends upon the node failure probability. We refer to
the problem as Data K-Availability Problem (DKAP). DKAP is
naturally divided into two phases:K-Availability creation and K-
Availability maintenance. For K-Availability creation, we show
that the problem is NP-hard for arbitrary data sizes, and that it
is equivalent to minimum cost flow problem for unit data sizes.
For K-Availability maintenance, we show that it is NP-hard even
for unit data sizes and design a centralized greedy heuristic.
We further design an efficient and low-overhead distributed
algorithm, which is applicable to both phases, and show using
extensive simulations that it performs close to the heuristic.

Keywords – Data Availability, Data Replication and
(Re)distribution, Intermittently Connected Sensor Networks

I. Background and Motivation

Many of the modern sensor networks applications are de-
ployed in inaccessible and unattended regions, collecting sen-
sory data for a long period of time. They include underwater
sensor networks [32], ocean seismic sensor networks [15, 26],
and volcanic and glacial monitoring sensor networks [16, 33].
In such environment, since it is not feasible to have a long-
term deployment of high power data collection base station
(with power outlets) in the field, data generated is first stored
inside the network and then uploaded to faraway base stations
via different means and opportunities, such as data mules
or satellite links [11, 17]. We refer to such sensor networks
as intermittently connected sensor networks, since the data
uploading is possible only when the uploading opportunities
become available. Between two uploading opportunities, the
generated data needs to be stored inside the network.

There are three main factors contributing to data loss for
the stored data in intermittently connected sensor networks:
node energy depletion (results in loss of stored data), node
storage depletion (nodes can not store newly generated data),
and node hardware failure (results in loss of stored data).
Overcoming the obstacle of data loss and preserving data

until next uploading opportunity is therefore an important
problem. In our previous research, we have addressed storage
and energy depletion induced data loss [10, 27, 30, 31, 34].
However, unlike storage and energy depletion, sensor node
hardware failure is unpredictable and thus can not be alleviated
directly using similar techniques.

One way to ensure against data loss due to hardware failure
is to maintain multiple copies of each generated data item in
the sensor network, such that at any moment, it is with high
probability that at least one copy of each data item is available
for uploading when uploading opportunity arises. In this paper,
we aim to create K copies of each data item and maintain them
for maximum amount of time, under the constraints that each
node has limited storage space and battery energy. We refer to
this problem as Data K-Availability Problem (DKAP), where
K depends on the node failure probability.

DKAP is naturally divided into two phases:
• K-Availability Creation. In this phase, each source sensor
node, which has the original copy of each data item it initially
generated, replicates (K − 1) additional copies of each data
item and distributes the replica copies into the network. The
objective of this phase is to create and distribute the desired
data redundancy with minimum total energy consumption,
while abiding by the storage constraint at each node. At the
end of the this phase, each data item has K copies stored
in the network, with no two copies of the same data item
stored at the same node. Since each node’s energy is being
constantly drained, all the sensor nodes will exhaust their
energy after some time. However, some sensors would get
drained out earlier than others due to the differences in the
initial energy levels of the sensors, and due to different levels
of participation in K-availability Creation phase. This calls
for the second phase below.

• K-Availability Maintenance. When the energy levels of
sensor nodes are different and energy drains continuously at
all sensors, there is a need to redistribute data replicas from
nodes with low energy level to nodes with high energy level,
so that the loss of any replica copy of any data item can be
delayed. In particular, the goal of this phase is to maximize
the minimum remaining energy of all the nodes storing any
copies of data items (including replica copies and original
copies), post redistribution. In this phase it also needs to
guarantee that no two replica copies of each data item be
stored at the same sensor node.
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Specifically, we formulate both problems as graph-theoretic
problems. We show that K-Availability creation is NP-hard for
arbitrary data sizes, and is equivalent to minimum cost flow
problem [1, 20] for unit data sizes. For K-Availability mainte-
nance, we show it is an NP-hard problem even for unit data
sizes and design a centralized greedy redistribution algorithm.
The centralized nature of algorithms in both phases makes
them unsuitable for distributed sensor network deployment.
Therefore, we design an efficient and low-overhead distributed
algorithm, which works for both phases and performs close
to the optimal. In this paper, we have focused more towards
the modeling and formulation of the problems, and towards
proposing graph theoretic solution approaches. This paper
makes some simplistic assumptions with respect to energy and
data storage models in order to keep the solutions tractable. In
real world scenarios, where these assumptions may not hold,
we believe that the proposed solutions can be easily extended
to achieve near optimal performance.

Paper Organization. The rest of the paper is organized as
follows. Section II gives an overview of the related literature.
In Section III, we introduce the problem models includ-
ing energy model and cost model, and discuss availability
constraint and choice of K. Section IV formalizes the K-
Availability creation phase and designs data replication and
distribution techniques. Section V proposes data redistribution
techniques for the K-Availability maintenance. Section VI
presents our distributed algorithm. In Section VII, we compare
all the proposed algorithms, discuss the results in details, and
present useful insights. Section VIII concludes the paper with
a discussion on possible directions for future research.

II. Related Work

Related Work. Replication has long been a key approach to
achieving data availability in World Wide Web [4], peer-to-
peer networks [22], data grids [14, 23], and distributed system
environments [19, 36]. In all the above, availability is defined
as the number of accepted user accesses over total submitted
accesses. Data redistribution has been studied extensively in
the field of parallel computing [21, 25] and disk storage [13].
It mainly studies how to schedule workload and move associ-
ated data from source processors to destination processors,
or change one storage configuration into another, to better
respond to the data demand changes for the purpose of load
balancing of data access. DKAP does not consider data access,
but addresses creating and maintaining data availability, in the
presence of hardware failures at sensor nodes.

Data replication and (re)distribution have been actively
researched in ad hoc and sensor networks. However, most of
the techniques focus on reducing the access cost [8, 28, 29,
35] or battery consumption [24], and are therefore not suitable
towards achieving K-Availability. Only line of research that
focuses on enhancing data availability in sensor networks is
called data redistribution or data preservation [10, 27, 30, 31,
34], which address how to preserve data inside sensor net-
works by tackling either storage- or energy-depletion induced
data loss. Tang et al. [30, 31] study energy-efficient data redis-
tribution in sensor networks wherein data is moved from nodes

with highly loaded storage space to nodes with surplus storage,
while minimizing the total energy consumption. It assumes
that each sensor node has infinite amount of initial energy.
Takahashi et al. [27] study the data preservation problem in the
intermittently connected sensor networks under energy con-
straints at sensor nodes, without considering storage-depletion.
Hou et al. [10] study how to maximize the minimum remaining
energy of the nodes that finally store the data, by considering
both storage- and energy-depletion of sensor nodes. Xue et al.
[34] take a step further, and consider that sensory data from
different source nodes have different importance, and study
how to preserve data with highest importance. However, non
of the work specifically address sensor node hardware failure
by replicating data.

The other line of research that focuses on enhancing data
availability in sensor networks is called data persistence[12],
wherein various network coding techniques are introduced to
provide reliable data access in the event of node failure. Our
focus is mainly on the hardness and optimality of the problem
solutions that provide reliable data access in face of node
failure, using data replication technique. To the best of our
knowledge, our work is the first to study the hardness and
optimality of data availability in sensor networks. Besides, in
most of the data persistence research, it is assumed that the
base station is still available and the goal is to increase the
“persistence” of sensed data, so that data is more likely to
reach a data sink when nodes fail. However, in intermittently
connected sensor networks studied in this paper, the lack of
base station and the lack of frequent data uploading opportuni-
ties render storing data and maintaining its availability inside
the network imperative.

A recent work that specifically targets data availability in
sensor networks is by Montanari et al. [18]. It assumes that
each node has some probability of failure due to energy de-
pletion therefore it adaptively creates and maintains a number
of replicas of the data. The goal is to minimize number of
messages needed to create such replica while guaranteeing
that at least one replica copy of each data exists. They solve
the problem with a greedy heuristic that uses only information
gathered from neighbors. The goal of our work is different.
We recognize that different nodes could have different battery
energy and that nodes are draining their battery continuously,
therefore it is preferred that data and its replica are stored at
nodes with higher battery energy, to survive for a longer period
of time.

III. Problem Models

Problem Models. We model a sensor network as a general
graph G(V,E) where V = {1, 2, ..., N} is a set of N sensor
nodes distributed uniformly at random in the region, and E is
a set of edges. There exist an edge between two nodes if they
can communicate directly with each other. Each sensor node
i has a finite and unreplenishable initial energy Ei. We adopt
the first order radio model [9], which states the following. To
send a k-bit data from node i to its neighboring node j over
their distance dij , the sending energy (also called transmission
energy) by node i is ET (k, i, j) = Eelec ∗ k + εamp ∗ k ∗
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d2ij , the receiving energy by node j is ER(k) = Eelec ∗ k.
Here Eelec = 100nJ/bit is the energy consumption per bit
on the transmitter circuit and receiver circuit, and Eamp =
100pJ/bit/m2 calculates the energy consumption per bit on
the transmit amplifier. Note that when dij is small, the energy
spent at sender and receiver nodes is almost equal. This is
because, εamp is much smaller than Eelec. Thus, for simplicity
we can assume that to send a data item from a node to its
neighboring node costs 1 unit of energy with 0.5 units spent
by each sender and receiver. We use this simplistic model for
illustrative purposes later in this paper.

Let cij denote the minimum energy cost of sending k-bit
data from node i to node j, where i and j are not necessarily
one-hop neighbors from each other. We adopt unicast network
routing model, wherein for a one-hop communication, only
the sender and receiver nodes cost energy, and sender’s other
neighbors do not cost any energy. We also assume that there
exists a contention-free MAC protocol (e.g. [2]) that provides
channel access to the nodes. In this paper, we assume that
all the sensor nodes are awake all the time monitoring while
waiting for the data uploading opportunities, draining their
battery energy constantly. Duty-cycling, in which individual
sensor node activates very briefly for sensing and communi-
cation and stays in dormant state for a long period of time, is
beyond the scope of this paper.

There are p distinct data items D = {D1, D2, ..., Dp}
generated in the network. Dj has size of sj units (each unit is
of k bits) and is stored in its source node S(j) ∈ V (a source
node could have multiple data items). Let mi be the number
of units (each unit is of k bits) of initial free storage for node i,
before it generates and stores any data items. For sensor node
i that is also a source node, the available space after storing
its generated data items is thus mi −

∑p
j=1{sj |S(j) = i}.

Availability Constraint. Two requirements must be satisfied
in both K-Availability creation and maintenance. First, K
copies of each data item should be stored in the network.
Second, multiple replica copies of the same data item can not
be stored at the same sensor node. These two requirements are
collectively referred to as availability constraint. Therefore,
each node (including the source node) is allowed to store at
most p distinct data items, even though its storage capacity
could possibly be larger than the total size of the p data items.
We therefore define effective storage capacity as follows.

Definition 1: (Effective Storage Capacity.) The effective
storage capacity of node i, denoted as m

′

i, is the maximum
storage capacity of i that can be used to store data items. It
is the minimum of its initial storage mi and the total size of
the p data items: m

′

i = min{mi,
∑p

j=1 sj}. �

Choice of K. Next let’s decide the number of replicas of
each data item, K. Assume that the independent node failure
probability of each node is pf . Given that K copies of a
particular data item are maintained at different nodes in the
network, let us denote the number of available copies of the
data item at an arbitrary time instant as C. We have,

P [C = 0] = pKf , and P [C = K] = (1− pf )
K . (1)

Fig. 1. An example of 2-Availability creation in a linear network of 8 nodes,
where 4, 6, and 8 are source nodes, each has one data item. The storage
capacity of each node is 1.

Also,

P [C = i] =
(
K
i

)
(1− pf )

ip
(K−i)
f , ∀i ∈ {0 . . .K}. (2)

The expected number of available copies is given by

E[C] =
∑K

i=0 i ·
(
K
i

)
(1− pf )

ip
(K−i)
f = K (1− pf ) . (3)

In general, it would be desirable to have at least one copy
available in the network. Therefore, we need,

K (1− pf ) ≥ 1, or K ≥ 1

1− pf
.

Thus, K would be chosen adaptively to satisfy the above
condition, given the failure probability pf . For the rest of the
paper, K is fixed and equals 1/(1− pf ).

IV. K-Availability Creation

Problem Formulation. We define distribution function r :
D × K → V , indicating that the kth replica copy of data
item Dj ∈ D, where 1 ≤ j ≤ p and k ∈ K = {1, 2, ...,K},
is distributed from S(j) to r(j, k) ∈ V via the shortest path
between them. Here we assume that the original copy of Dj

in S(j) is its first replica copy and it is not distributed, i.e.
r(j, 1) = S(j). The data replicas from the same node are
distributed one by one in a unicast fashion. For one data
item, its distribution cost is equal to the sum of the minimum
energy cost of distributing each of its K replica copies into the
network. The K-Availability creation problem is to find such a
distribution function r to minimize the total distribution cost,
which is the sum of the distribution costs of all the data items
in the network:

p∑
j=1

K∑
k=1

sj × cS(j)r(j,k), (4)

under the storage capacity constraint of each node:∑p
j=1{sj |r(j, k) = i} ≤ m

′

i,∀i ∈ V, 1 ≤ k ≤ K, and the
availability constraint: r(j, k) 6= r(j, k

′
), 1 ≤ j ≤ p, k 6= k

′
.

EXAMPLE 1: Fig. 1 illustrates the K-Availability cre-
ation problem in a linear sensor network of 8 nodes, where
K = 2. There are three source nodes: 4, 6, 8, initially having
data item i1, i2, and i3 respectively. The storage capacity of
each node is one. The minimum cost solution for 2-Availability
creation is given by: node 4 distributes a replica of i1 to node
3, node 6 distributes a replica of i2 to node 5, while node
8 distributes a replica of i3 to node 7. Assuming sending
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or receiving a data item each costs 0.5 energy, the total
distribution cost is 3. �

Theorem 1: The K-Availability creation is NP-hard.
Proof: The K-Availability creation problem can be proved
to be NP-hard by a reduction from the Multiple Knapsack
Problem (MKP), which is known to be NP-hard [3]. We
show that MKP is a special case of K-Availability creation
problem. MKP is defined as follows. Given is a set of m bins
(knapsacks) and a set of n items. Each knapsack has a capacity
cj (1 ≤ j ≤ m), and each item i has a size si and a profit pi
(1 ≤ i ≤ n). The objective is to find a subset of data items of
maximum profit such that they have a feasible packing in the
bins.

To show MKP is a special case of K-Availability creation
problem, we consider each of K − 1 copies of each of the
p original data items as one “item” in MKP, and each sensor
node (including the source node) as a “bin” in MKP; all the
replica copies of data item i has the same size si. Let D =
maxi,j dij , where i is a source node and j ∈ V , i.e. D is the
maximum distance between any source node and any sensor
node. Let D minus the shortest distance between a data item’s
source node and a sensor node be the “profit” of the data
item if distributed to that sensor node. With this, the objective
of K-Availability creation problem is rephrased appropriately
to maximizing profit, to be consistent with the maximization
objective of MKP.

MKP is a special case of K-Availability creation problem
in two aspects.1 First, the profit of an item is a constant in
MKP, while in K-Availability creation problem, the profit of
an item can vary based upon the specific bin that it is put in.
Second, in K-Availability creation problem, the K− 1 copies
of the same data item must be distributed to different sensor
nodes (bins) due to the availability constraint. Therefore, if we
relax the availability constraint and associate a constant profit
with each data item in K-Availability creation, the problem
becomes a MKP. Thus, K-Availability creation is at least as
hard as MKP, and hence is NP-hard.

Below we show that when each data item is of unit size,
the K-Availability Creation problem is polynomially solvable.

Theorem 2: When each data item is of unit size (i.e.
∀j, sj = 1) and the total size of the data items after replication
is less than or equal to the total size of the effective storage
space in the network (i.e. K × p ≤

∑
i∈V m

′

i), the K-
Availability Creation problem is equivalent to minimum cost
flow problem.
Proof: When each data item is of unit size, the storage capacity
of each node is multiple of data item size. For clarity of
illustration, we assume that each data item is stored at a
different source node, and the source node of Di is node
i. For more general case where a source node has multiple
data items, subdivide each source node into same number of
sub-nodes, each of which stores one data item. We transform

1Note that in MKP, the total size of the items could be larger than the
total capacities of the knapsacks, i.e.

∑n
i=1 si >

∑m
j=1 cj . Similarly, in K-

Availability creation, the total size of the data items after replication could
be larger than the total size of the effective storage space in the network, i.e.
K ×

∑p
i=1 si >

∑
j∈V m

′
j . In this case, some data items can not have K

replica copies.

Fig. 2. K-Availability creation problem with unit data item size is equivalent
to minimum cost flow problem. In each parenthesis, the first value is the
capacity of the edge and the second the cost of the edge. Note that there are
no edges: (x1, 1), (x2, 2), ..., (xp, p).

the K-Availability creation problem with unit data size to the
minimum cost flow problem by changing G(V,E) into a new
graph G′(V ′, E′), as shown in Fig. 2:

1. V ′ = V ∪{s}∪ {t}∪V1, where s is the new source node,
t is the new sink node, and V1 = {x1, x2, ..., xp} is a set of
p new nodes. Here xi represents node i, the source node of
Di.

2. E′ = {(s, i) : i ∈ V1} ∪ {(j, t) : j ∈ V } ∪ {(i, j) : i ∈
V1, j ∈ V } − {(x1, 1), (x2, 2), ..., (xp, p)}.

3. For each edge (s, i), set its capacity as K − 1 and its cost
0. For each edge (j, t), set its capacity as m′

j and its cost 0.
4. For all other edges (xi, j), xi ∈ V1, j ∈ V , set its capacity
as 1, and its cost as cij , the minimum energy cost of sending
a unit-size data from i to j. Together with 2, it guarantees
that the K − 1 copies of each data item are distributed to
K − 1 different nodes other than its source node.

5. Set the supply of each node in V1 ∪ V as 0. Set both the
supply at s and the demand at t as p× (K − 1).

Since all the inputs are integer, the minimum cost flow
problem always has an integer minimum cost flow [1]. Now
a valid flow of amount p × (K − 1) from s to t includes
K − 1 amount on edge (s, x1), K − 1 amount on (s, x2), ...,
and K − 1 amount on (s, xp). This is the maximum possible
flow. Therefore solving the minimum cost flow problem on
G′(V ′, E′) gives the minimum distribution cost in the original
graph G(V,E).

The minimum cost flow problem can be solved efficiently
in polynomial time using well-known algorithms [1]. In this
paper, we use the algorithm and implementation by Goldberg
[6, 7] due to its practical nature. This algorithm has the time
complexity of O(N2Mlog(NC)), where N , M , and C are
the number of nodes, the number of edges, and the maximum
capacity of an edge in graph G′. In our case, C = K − 1.
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V. K-Availability Maintenance
There are now K copies of each data item in this phase. Let

Djk denote the kth copy of Dj . Let S(j, k) be the node that
stores Djk. Due to availability constraint, S(j, k) 6= S(j, k′)
if k 6= k′. The goal of the maintenance phase is to redistribute
the data copies (including both replica copies and original
copies of data items) to maximize the minimum remaining
energy of the nodes that store any data copy. We assume that
the battery power drainage rate at each sensor is a constant c
(but our algorithm can be extended to varying drainage rate
case). In K-Availability maintenance, even the original copies
of the data items could be redistributed. For simplicity of
formulation, we assume that each data item (and its replica) is
of unit size. The formulation and proposed solution approaches
can easily be extended to the scenario where data items have
different sizes. The energy level of sensor node i is E

′

i , its
remaining energy at the end of K-Availability creation. In this
section, any node storing a data item (original or replica) is
referred to as a source node.

Problem Formulation. A redistribution function is defined as
r : D×K → V , indicating that Djk is redistributed from node
S(j, k) to node r(j, k) ∈ V where 1 ≤ j ≤ p and 1 ≤ k ≤ K.
Let Pjk : S(j, k), ..., r(j, k), referred to as redistribution path
of Djk, be the sequence of distinct sensor nodes along which
Djk is distributed from S(j, k) to r(j, k) (if r(j, k) = S(j, k),
it means that Djk is kept in S(j, k)). Note that Pjk is not
necessarily one of the shortest paths between node S(j, k)
and r(j, k). Let R be the set of the destination nodes of
the redistribution, i.e. R =

⋃
1≤i≤p,1≤j≤K{r(i, j)}. Let E

′′

i

denote node i’s energy level after the data redistribution, and
let xijk be the energy cost incurred at node i in distributing
Djk from node S(j, k) to r(j, k),

E
′′

i = E
′

i −
p∑

j=1

K∑
k=1

xijk,

where xijk = ET (k, i, σ(i, j, k)) if i = S(j, k), xijk =
ER(k) if i = r(j, k), xijk = ET (k, i, σ(i, j, k)) + ER(k)
if i ∈ Pjk − {S(j, k), r(j, k)}, and xijk = 0 otherwise. Here
σ(i, j, k) indicates the successor node of i on Pjk.
K-availability maintenance problem is to find a redistribu-

tion function r and a corresponding set of paths P = {Pij},
1 ≤ i ≤ p and 1 ≤ j ≤ K, to redistribute each of the
p × K data item copies, such that the minimum remaining
energy among all the destination nodes R is maximized post
redistribution, i.e.

maxr,P min1≤j≤p,1≤k≤K E
′′

r(j,k), (5)

under the energy constraint that E
′′

i ≥ 0,∀i ∈ V , the
availability constraint: r(j, k) 6= r(j, k

′
), when k 6= k

′
, and the

storage constraint: |{j|r(j, k) = i}| ≤ m
′

i = min{mi, p}, 1 ≤
j ≤ p, 1 ≤ k ≤ K, which means that node i stores at most
p or mi distinct data items, whichever is smaller. Now with
constant draining rate c of each sensor node’s battery2, the

2If energy draining rates are varying for different nodes, instead of a
constant, Equation 5 can be adjusted to account for the drainage rate nj

at node j as follows: E′′
r(j,k)/nr(j,k)

.

time that takes for the first data loss to occur is therefore
max

r,P min1≤j≤p,1≤k≤K E
′′
r(j,k)

c . We refer to this as the data
preservation time for the rest of the paper.

1 3 5

i
1

0 2 4

40 20 1506 20 100

Energy Level

Node Id

Fig. 3. An example of 2-Availability maintenance in a linear network of 6
nodes. The storage capacity of each node is 1.

EXAMPLE 2: Fig. 3 illustrates the K-Availability main-
tenance phase in a linear sensor network with K = 2. Each
node’s current energy is indicated in the graph, and each
node has storage capacity of 1. Node 0 stores the original
copy of data item i1, node 4 stores the other copy of i1. To
preserve both copies as long as possible under energy and
availability constraints, node 0 redistributes i1 to node 5. This
example illustrates that the node with maximum remaining
energy level is a good choice for redistributing the data during
K-Availability maintenance. �

Theorem 3: K-Availability maintenance problem is NP-
hard even for unit data sizes.
Proof: It can be shown that the disjoint connecting paths
(DCP) problem [5], which is known to be NP-hard, is a special
case of the decision version of the K-Availability maintenance
problem.

It suffices to show that K = 1 case is NP-hard (thus
distribution path Pij can be simply written as Pi). Without
loss of generality, let Di be stored at node i (1 ≤ i ≤ p).
We further simplify the problem by assuming that mi = 1 for
sensor node i (including the source nodes). We show that the
disjoint connecting paths (DCP) problem [5], which is known
to be NP-hard, is a special case of the decision version of
above simplified data preservation problem. The DCP problem
is as follows. Given a graph G(V,E) and a set of p disjoint
source and destination vertex pairs (si, ti), where si, ti ∈ V
for 1 ≤ i ≤ p, the goal is to find whether there are p vertex-
disjoint paths P1, P2, ..., Pp in G where Pi connects si to ti.

In K-Availability maintenance problem, let p source nodes
be S = {s1, s2, ..., sp}, and let T = {t1, t2, ..., tp} with
T ∩ S = φ (empty set). Then assign the energy level of each
node in T as E � 1, and the energy level for other nodes
in (V − T ) (including S) as 1. We claim that to determine
whether the maximum data preservation time of the network
is (E − 0.5)/c is the same as solving DCP problem, whether
there exist p vertex-disjoint paths connecting the source and
destination vertex pairs.

On one hand, if the maximum data preservation time equals
(E − 0.5)/c, it must be the case that data item in one of the
nodes in S is distributed to one of the nodes in T . Since
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sending and receiving any data item for each node costs 0.5
units of energy, and all the nodes in (V −T ) have energy level
of 1, the p distribution paths P1, P2, ..., Pp must be mutually
vertex-disjoint. On the other hand, if there exist p vertex-
disjoint paths connecting p source and destination vertex pairs,
these p paths are the distribution paths we use to distribute
the p data items. In this case, the energy level of each node
in T after distribution is E − 0.5, therefore maximum data
preservation time of (E − 0.5)/c can be reached.

The proof technique used here is similar to that used in [27]
for a closely related energy depletion induced data preservation
problem in intermittently connected sensor networks.

Since the K-Availability maintenance problem is NP-hard,
we propose a centralized heuristic as follows.

Centralized Max-Min Heuristic. First, the destination node
is chosen such that it has the maximum energy level among
all nodes in the network, and with available storage. Then
find the source node that is closest to this destination node.
We redistribute a data item from this source node to this
destination node, using a shortest path between them, so as
to maximize the minimum remaining energy of any node
along the path (after redistribution is complete). If the chosen
destination is unable to store all the data (due to availability
or storage constraint), the next best destination is chosen to
redistribute the remaining data in a similar fashion. The time
complexity of this algorithm is O(qKN3), here q is total
number of data items in the network. The detailed analysis
is omitted here due to space constraint.

VI. Distributed algorithm for K-Availability Problem

In this section, we design a distributed algorithm, which
could be used in both K-Availability creation and maintenance
phases. The algorithm works in iterations. Each iteration has
the following stages:
1. Advertisement Stage. The source node i broadcasts an
advertisement message containing its ID i, its current energy
Ei, and the IDs of all the data items stored in i. Assume that
there are n ≤ p data items stored at i: {I1, ..., In}.

2. Storage Commitment Stage. Each sensor node j, upon
receiving the advertisement message from node i, performs
the following steps3:
a. If Ej ≤ Ei, or n = 0, or m′

j = 0, go to Step d.
b. Computes φ(i, j) = Ej×qj/dij . Ej is the current energy

level of node j. dij is the shortest path distance from
node i to j, which can be obtained by incrementing an
integer stored in advertisement message every time a
node receives it the first time. qj is the number of i’s
data items that could be stored at node j according to
availability constraint. It is computed as follows:
– qj = 0.
– ∀y ∈ {I1, ...In}, if a copy of y is not stored at node

j, increment qj .
– qj = min{qj ,m′

j}.

3Note that the advertisement message from the same node is processed and
forwarded only once by node j.

c. If φ(i, j) = 0, go to Step d. Else, sends a commitment
message to node i, along with φ(i, j) and the IDs of the
data items it can store for i: {Iq1 ...Iqj}. When no node
sends out storage commitment during a complete round
of advertisements, network lifetime is reached.

d. Forwards the advertisement message.
3. Data Offloading Stage. Once source node i has received
all commitment message (this can be done by i to wait for
enough time), it performs the following steps (it does nothing
if it does not receive any commitment message):
a. Selects the node j with maximum φ(i, j) (ties are broken

randomly), and sends these qj data items to node j
following the reverse of the path from which it receives
the commitment message from j.

b. Removes the qj data items from its list of data items
to be redistributed and sets n = n − qj . Removes j
from its list of committed nodes. Removes these qj data
items from the list of committed data items sent by other
nodes. Let q∗k denote the size of new list for committed
node k. For each committed node k, node i recomputes
φ∗(i, k) = φ(i, k)× q∗k/qk.

c. If n = 0, stop. Else, φ(i, k) = φ∗(i, k) . If φ(i, k) = 0,
remove node k from the list of committed nodes. Go
back to Step a.

Discussion and Message Complexity. φ(i, j) = Ej×qj/dij is
used in both Stage 2 and Stage 3 to facilitate the communica-
tion among node i and j. The rationale is that a node with high
energy should be an ideal storage node, and a node with many
replica copies should offload more copies to nodes with high
energy if its own energy is low. Meanwhile, a nearby node with
less energy level is preferred over a far away node with similar
or slightly higher energy level. Over time, as the network
dynamics change, this nearby node can always redistribute the
data item before its energy runs out. Thus, it is still possible
that the data item will reach the far away node later on. We
also calculate the number of transmissions in the distributed
algorithm without going through the detailed analysis – the
total number of transmissions needed is O((q + m̄)KN

3
2 ),

where q is total number of data items, m̄ is the average storage
space of each node.

VII. Performance Evaluation

In this section, we present simulation results and analysis for
K-Availability creation and K-Availability maintenance phase,
respectively. In both cases, we adopt grid-like sensor network
topology (note that our proposed algorithms are applicable to
other topologies). In all cases, the transmission range of the
sensor is one unit, the length of each grid edge.

K-Availability Creation. Fig. 4 shows the optimal energy
consumption obtained by minimum cost flow algorithm, by
varying the network size from 15×15, 20×20, 25×25, ..., to
50×50. For each network size, we randomly choose the source
nodes in the network with number varying as the ratio of the
network size, from 1%, 6%, 10%, 30%, to 50%. Each source
initially has one data item of unit size. The storage capacity of
each node is 100 units. We let K = 200, which corresponds to
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Fig. 4. Minimum cost flow algorithm for K-Availability creation, K = 200.
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Fig. 5. Network lifetime with respect to number of source nodes in K-
Availability maintenance.

a very large probability of failure, as pf = 1−1/200 = 0.995.
This represents the case where sensor nodes are quite cheap
and unreliable, or the environment where they are deployed
is harsh, making replication necessary in order to maintain
data availability. It suggests that when the total size of the
replicated data is much less than the total effective storage
capacity, the total energy consumption increases slowly with
an increase in the network size (for example, when the source
node ratio is 1%, the total storage capacity in the network is
50 times the total storage demand.). However, when the total
size of the replicated data is comparable to the total effective
storage capacity, the total energy cost increases exponentially
with the network size. For example, when the source node ratio
is 50%, the total storage capacity in the network equals the
total storage demand, for all network sizes. Therefore, the cost
of redistribution is much higher, particularly for larger network
size, as the average path length increases causing heavy energy
drainage at intermediate relaying nodes.

K-Availability Maintenance. For K-Availability mainte-
nance, we compare the distributed algorithm with the central-
ized heuristic described in Section V. Here, the network size
is 5×5, K = 3. The storage capacity of each node equals 100,
and initial energy of each node is a random number between
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Fig. 6. Network lifetime with respect to number of replica copies in K-
Availability maintenance.

1000 and 10000. We assume the energy depletion rate of each
node is c = 1, and the network lifetime equals to the maximum
remaining energy of the destination nodes divided by c. Fig. 5
depicts this comparison in terms of the network lifetime
achieved, for a range of source node ratios. It shows that the
lifetime decreases almost linearly with an increase in storage
demand. The centralized heuristic performs better in all cases.
This is because the centralized algorithm does not incur the
energy costs incurred by the distributed algorithm during the
advertisement and storage commitment stages. Nevertheless,
our proposed distributed algorithm’s performance ≥ 60% of
the centralized algorithm in all cases.

Fig. 6 studies the effect of K upon system performance,
with source node ratio 20%. We observe that the performance
decrease is drastic when K is increased from 1 to 2, but
is more gradual thereafter. Similar performance trends are
depicted in Fig. 7 when K = 3, for various choices of
energy depletion rate parameter c. Note that, when c is large,
the communication cost is relatively small compared to the
constant energy drainage at all nodes. This accounts for the
smaller difference in performance between the centralized and
distributed algorithms, since the major contributor to the dif-
ference is the communication and relaying energy costs. Also,
the network lifetime decreases drastically as c is increased
initially from 1 to 2. Thereafter, the network lifetime decreases
gradually with increase in c, similar to the trend observed with
K in Fig. 6.

VIII. Conclusion and Future Work
Data collection and distributed storage using sensor net-

works is important in many scientific applications. Data K-
Availability problem endeavors to preserve data in the face of
energy and storage space constraints in sensor networks, as
well as node failure, by utilizing data replication, distribution,
and redistribution. When data loss is a critical concern, K-
Availability is a feasible solution towards preserving the com-
plete data. We formulated the K-Availability problem in sensor
networks, and showed that both K-availability creation and
maintenance are NP-hard in the general case. K-Availability
becomes particularly important when a network could become
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disconnected from the base station for considerably larger
periods of time. We designed a distributed algorithm for this
problem and discussed its performance trends and compari-
son with an appropriate centralized heuristic. For the future
work, on the theory side, we will consider varying energy
consumption (i.e., energy cost depends on the distance of two
communicating nodes) and varying data sizes, and investigate
the hardness of the DKAP problem. On the experiment side,
the simulations in this paper are only limited to grid networks.
We would like to experiment on randomly generated sensor
networks, and investigate how network lifetime is affected in
different network scenarios.
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