
Service Function Chain Placement in Cloud
Data Center Networks: a Cooperative

Multi-Agent Reinforcement Learning Approach

Lynn Gao1, Yutian Chen2, and Bin Tang3

1 Data Science, University of California Irvine, CA 92697, USA
Lmgao@uci.edu

2 Economics Department, California State University Long Beach, CA 90840, USA
Yutian.Chen@csulb.edu

3 Computer Science Department, California State University Dominguez Hills,
Carson, CA 90747, USA

btang@csudh.edu

Abstract. Service function chaining (SFC), consisting of a sequence of
virtual network functions (VNFs) (i.e., firewalls and load balancers), is
an effective service provision technique in modern data center networks.
By requiring cloud user traffic to traverse the VNFs in order, SFC im-
proves the security and performance of the cloud user applications. In
this paper, we study how to place an SFC inside a data center to mini-
mize the network traffic of the virtual machine (VM) communication. We
take a cooperative multi-agent reinforcement learning approach, wherein
multiple agents collaboratively figure out the traffic-efficient route for the
VM communication.
Underlying the SFC placement is a fundamental graph-theoretical prob-
lem called the k-stroll problem. Given a weighted graph G(V,E), two
nodes s, t ∈ V , and an integer k, the k-stroll problem is to find the
shortest path from s to t that visits at least k other nodes in the graph.
Our work is the first to take a multi-agent learning approach to solve k-
stroll problem. We compare our learning algorithm with an optimal and
exhaustive algorithm and an existing dynamic programming(DP)-based
heuristic algorithm. We show that our learning algorithm, although lack-
ing the complete knowledge of the network assumed by existing research,
delivers comparable or even better VM communication time while taking
two orders of magnitude of less execution time.

Keywords: Service Function Chaining · Data Centers · Reinforcement Learning
· k-stroll Problem

1 Introduction

Background and Motivation. Middleboxes (MBs) [9], also known as “net-
work appliances” or “network functions”, are network devices that inspect, filter,

2 L. Gao et al.

or transform network traffic for purposes of improving network security or perfor-
mance. Typical examples of MBs include firewalls, intrusion detection systems,
load balancers, and network address translators. MBs are an important com-
ponent of modern enterprise networks to deliver services to user traffic - it has
been shown that the number of MBs is comparable with the number of routers
in enterprise networks and data centers [33].

firewall

load balancer cache proxy

firewall load balancer

cache proxy

(a) (b)

vm1
vm2

vm1
vm2

Fig. 1: Illustrating SFC placement in cloud data centers. The SFC consists of
three VNFs viz. a firewall, a load balancer, and a cache proxy. The SFC place-
ment in (b) is more network-efficient than the one in (a).

In recent years, with the advancement of network function virtualization
(NFV) [3], MBs can now be implemented as virtual network functions (VNFs)
running as virtual machines (VMs) [30] or containers [34] on commodity hard-
ware platforms. Compared to MBs, which are mostly proprietary and dedicated
purpose-built hardware devices, VNFs are software implementations that are
cost effective and flexible for deployment. As such, deploying VNFs has become
an effective technique in cloud data centers to achieve flexible service manage-
ment and reduce capital and operational expenditures.

In particular, service function chaining (SFC) is established in cloud data
centers to require virtual machine (VM) cloud traffic to traverse a chain of
VNFs [23, 27, 43]. Fig. 1(a) shows an example of SFC, wherein cloud traffic gen-
erated at VM vm1 traverses a sequence of VNFs including a firewall, a load
balancer, and a cache proxy, to arrive at VM vm2. With this traversal, the SFC
blocks malicious traffic detected by the firewall, then diverts the credible VM
traffic using the load balancer to avoid network congestion, and finally caches
the network packets at the proxy server for quick data access by other cloud
users.

SFC Placement Problem. As cloud network resources such as bandwidth
and energy are limited in a cloud data center network, one important task for
cloud operators is to install the VNFs at the right locations inside the network
to optimize the cloud traffic or user-perceived VM communication delay. In this
paper, we study the SFC placement problem. Given a source and a destination
of a VM communication flow inside a cloud data center, and an SFC consisting
of k VNFs of different service functions, it studies where to install the k VNFs

Title Suppressed Due to Excessive Length 3

inside the network to minimize the communication traffic or delay of the VM
flow. In fact, the SFC placement in Fig. 1(a) is not traffic- or delay-optimal for
the communicating VM pair (vm1, vm2). By placing three VNFs as shown in
Fig. 1(b), the resulting cloud traffic and user-perceived delay are dramatically
reduced, as now the traffic only traverses three switches (with two network hops)
compared to six switches (with six network hops) in Fig. 1(a).

State-of-the-Art. Tran et al. [37] showed that the SFC placement problem is
equivalent to a fundamental graph-theoretical problem called the k-stroll prob-
lem [6, 10]. Given a weighted graph G(V,E) and two nodes s, t ∈ V , and an
integer k, k-stroll problem is to find a shortest path from s to t that visits at
least k other nodes in the graph. As k-stroll is NP-hard, Chaudhuri et al. [10]
presented a primal-dual-based 2 + ε approximation algorithm. That is, it yields
a solution with cost that is at most 2 + ε times of the optimal cost. As the
primal-dual algorithm is complicated and difficult to implement for a large-scale
cloud data center, Tran et al. [37] designed a dynamic programming (DP)-based
heuristic algorithm to solve the SFC. They showed that their approach con-
stantly outperforms the performance guarantee of 2 + ε provided by Chaudhuri
et al. [10]. However, the DP algorithm needs the full knowledge of the network
and a complete graph of the network as its input.

Our Contributions. In this paper, we design a cooperative multi-agent re-
inforcement learning (MARL) algorithm to solve the SFC placement problem.
Reinforcement learning (RL) [35] refers to the use of autonomous agents to learn
to perform a task by trial and error without human intervention. Unlike tradi-
tional computer algorithms, RL executes through the iterative interaction of the
agent with the environment to learn about the environment, thus being more
adaptive and robust to the dynamic network environment. In addition, as many
network-related combinatorial problems are NP-hard and it is time-consuming
to find the exact solutions, RL becomes a time-efficient alternative to solve these
problems. As such, RL has been well utilized to solve network-related combina-
torial optimization problems [2, 29].

However, none of the existing research utilizes RL to solve the k-stroll prob-
lem. We show that our MARL algorithm, without knowing the complete graph
of the data center network assumed by existing research, delivers comparable or
even better VM communication time than existing research, while taking two
orders of magnitude less in execution time.

Two characteristics of the k-stroll problem make RL a particularly good
candidate to solve the problem. First, to find a shortest route from source s to
destination t while visiting at least k other nodes, an agent needs to constantly
make decisions along the way. Such multi-step decision making is exactly the
kind of problem that RL is designed to solve. Second, the goal of k-stroll is
to minimize the travel cost of the agent that constantly makes progress, which
corresponds well to the goal of RL of maximizing the cumulative reward.

Paper Organization. The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 formulates the SFC placement problem. In

4 L. Gao et al.

Section 4 we propose our MARL algorithm. Section 5 presents the existing DP
algorithm as well as an optimal algorithm for SFC placement. Section 6 compares
all the algorithms and discusses the results. Section 7 concludes the paper.

2 Related Work

In this section, we first review SFC placement research in general and then
SFC placement research using machine learning in particular, to illustrate the
contributions of our work.

SFC Placement Research. There has been extensive research for SFC place-
ment, also referred to as VNF placement [25]. Bari et al. [5] studied a VNF
orchestration problem that determined the required number and placement of
VNFs to optimize network operational costs. It provided an Integer Linear Pro-
gramming (ILP) solution and an efficient greedy algorithm. Bhamare et al. [7]
studied the VNF placement problem that minimized inter-cloud traffic while
satisfying deployment cost constraints. They mainly used queueing theories and
statistical analysis, which are different from our graph-theoretical approach. Feng
et al. [15] studied the NFV service distribution to minimize the overall cloud net-
work resource cost. They formulated a multi-commodity-chain flow problem and
provided a O(ε) fast approximation algorithm. Huin et al. [22] studied the SFC
placement problem to avoid data passing through unnecessary network devices.
Sang et al. [32] and Chen et al. [12] minimized the cost of VNF deployment that
provides services to flows and designed optimal and approximate algorithms un-
der different network topologies. However, they did not consider the chain-order
sequence of VNFs required in SFCs. Ma et al. [28] considered the traffic chang-
ing effect of VNFs and studied the SFC deployment problems with the goal to
load-balance the network. Flores et al. [16] studied policy-aware VM migration
and placement problem to mitigate the dynamic network traffic in cloud data
centers considering that an SFC has already been placed in the network.

There are other works that studied the admission control aspect of SFC
placement when not all the user requests can be satisfied due to network resource
constraints. They studied how to maximize the total utility [24] and throughput
[41] of the satisfied requests, or to maximize the difference between the service
provider’s profit and the total deployment cost of VNFs [13]. Yang et al. [40]
studied how to place VNFs on the edge and public clouds such that the maximum
link load ratio is minimized and each user’s requested delay is satisfied. Gu et al.
[19] designed a dynamic market auction mechanism for the transaction of VNF
service chains that achieves near-optimal social welfare in the NFV eco-system.

Unlike most of the above work, we take a graph-theoretical approach and
model the SFC placement as a graph-theoretical problem. We uncover that the
problem is equivalent to the k-stroll problem. Although k-stroll problem has
been studied extensively in the theory community, it has not been studied in a
concrete network context targeting a specific network problem such as the SFC
problem in cloud data centers. Due to such theoretical root of our research, the

Title Suppressed Due to Excessive Length 5

techniques developed in this paper could be utilized in any other network context
where the k-stroll model is relevant and applicable.

SFC Placement Research Using Machine Learning. Recently, machine
learning techniques have been utilized to solve SFC placement problems. For ex-
ample, some works employed machine learning to estimate upcoming traffic rates
and to adjust VNF deployment [8, 21, 14, 42, 36]. Xiao et al. [39] considered an
online SFC placement problem with unpredictable real-time network variations
and various service requests and introduced a Markov decision process (MDP)
model to capture the dynamic network state transitions. They proposed a deep
reinforcement learning (DRL) approach to jointly optimize the operation cost of
NFV providers and the total throughput of requests. Using DRL techniques, Pei
et al. [31] aimed to minimize the weighted costs of VNF placement cost, VNFI
running cost, and penalty of rejected user requests. They proposed a Double
Deep Q Network (DDQN)-based optimal solution that places or releases VNF
Instances following a threshold-based policy. Recently, Wang et al. [38] extended
the above DDQN approach to solving an online fault-tolerant SFC Placement.

All above works adopted the DRL approach. Utilizing neural network-based
function approximation algorithms, DRL is a powerful technique that is able to
handle complex states and decision-making for agents. As such, DRL is both
time- and resource-consuming. Further, unlike DRL that must learn from ex-
isting data to train algorithms to find patterns, and then use that to make
predictions about new data, RL uses feedback (i.e., rewards) from interacting
with the environment to maximize an agent’s cumulative reward. Thus the RL
model is better suited to solve our SFC placement problem. Besides, as k-stroll
problem has a low-dimensional and discrete setting in terms of agent’s states
and actions, RL is sufficient to solve the SFC placement. We show that the our
RL-based solution is competitive to the optimal solution.

Our work is inspired by Ant-Q [17], a family of algorithms that combines RL
algorithms with the observation of ant colony behaviors. Ant-Q designed a Q-
learning-based algorithm [35] to solve the traveling salesman problem. However,
like [37], it assumed that the input is a pre-processed complete graph of the
studied network. Our work does not have this assumption and our designed
algorithm directly works on any network topologies such as fat-tree data center
networks studied in this paper.

3 Problem Formulation

System Model. We model a data center network as an undirected graph
G(V,E) where V = Vh ∪ Vs includes a set of hosts Vh = {h1, h2, ..., h|Vh|} and a
set of switches Vs = {s1, s2, ..., s|Vs|}. E is a set of edges, each connecting either
one switch to another or a switch to a host. Fig. 2 shows a K=4 fat-tree [4] data
center where K is the number of ports per switch.4

4 We use fat-trees for illustration purpose. However, the problems and solutions pro-
posed in this paper are applicable to any data center topology.

6 L. Gao et al.

Core Switches

Aggregation Switches

Edge Switches

h2 h15

v

f1

f2

: Host
: VM
: VNF

f3

v’

f2

Optimal SFC Placement and VM Communication
Non-optimal SFC Placement and VM Communication

Fig. 2: A K-ary fat-tree data center with K=4. It has16 hosts: h1, h2, ..., and
h16, an SFC with 3 VNFs: f1, f2, and f3, and a VM flow: (v, v′). One optimal
and one non-optimal SFC placement and communication are shown in the blue
solid line and the red dashed line, respectively.

There is an SFC consisting of n VNFs F = {f1, f2, ..., fn}, each of which
needs to be installed (i.e., placed) on a different switch in the data center. Once
the VNFs are installed, it requires that the VM traffic to go through the VNFs
in the order of f1, f2, ..., and fn. We refer to f1 (and fn) as the ingress (and
egress) VNF, and the switch where the ingress (and egress) VNF is installed as
the ingress (and egress) switch. There is one pair of communicating VMs (v, v′)
already in the data center, where v is located at host s(v) and v′ at s(v′). v and
v′ are referred to as the source and destination VM, and s(v) and s(v′) as source
and destination host respectively.

Each edge (u, v) ∈ E has a weight w(u, v), indicating either the network
delay or energy cost on this edge caused by the VM communication. Given any
host or switch u and v, let c(u, v) denote the total cost of all the edges traversed
by VM communication from u to v. Thus the communication cost of the VM
flow (v, v′) is c

(
s(v), s(v′)

)
. Note that c

(
s(v), s(v′)

)
is not necessarily the cost

of the shortest path between s(v) and s(v′), as the VM communication must
traverse a sequence of VNFs.

Fig. 2 shows the VM flow (v, v′), where v is located at host h2 and v′ at
h15, and one SFC consisting of three VNFs f1, f2 and f3. The blue solid line
shows one optimal SFC placement for this VM flow, which results in 6 hops of
VM communication between v and v′. However, if we instead place f2 at one of
the edge switches, the VM communication between v and v′ becomes 10 hops,
as shown in the red dashed line. Here, we use unweighted costs (i.e., number of
edges) only for purpose of illustration, as the problem and its solution target
weighted graphs. Table 1 shows all the notations.

Title Suppressed Due to Excessive Length 7

Table 1: Notation Summary
Notation Description

G(V,E) A data center graph, where V = Vh ∪ Vs

w(u, v) Weight of an edge (u, v) ∈ E
c(u, v) Cost between hosts (or switches) u, v ∈ V
Vh Vh = {h1, h2, ..., h|Vh|} is the set of |Vh| hosts
Vs Vs = {s1, s2, ..., s|Vs|} is the set of |Vs| switches
F F = {f1, f2, ..., fk} is the set of k VNFs of an SFC
(v, v′) The source and destination communicating VMs
s(v) The source host where source VM v is stored
s(v′) The destination host where destination VM v′ is stored
K K-ary fat-tree data center wherein each switch has K ports

p(j) SFC placement function p, fj is placed at switch p(j) ∈ Vs

Cc(p) Total VM communication cost with VNF placement p

α The learning rate of each agent, 0 ≤ α ≤ 1
γ The discount rate of each agent, 0 ≤ γ ≤ 1
δ, β Parameters weighing the relative importance of the Q-value

and the edge length in the agent’s action selection rule

Problem Formulation We define a SFC placement function as p : F → Vs,
which places VNF fj ∈ F at switch p(j) ∈ Vs. Given any SFC placement p,
denote the communication cost of VM flow v, v′ under p as Cc(p). Therefore,

Cc(p) =

n−1∑
j=1

c
(
p(j), p(j + 1)

)
+
(
c
(
s(vi), p(1)

)
+ c
(
p(n), s(v′i)

))
. (1)

Note that for (v, v′), the ingress switch is always p(1) and the egress switch
is always p(n). The objective of the SFC placement problem is to find a p to
minimize Cc(p).

k-stroll problem. Previous work [37] has shown that the SFC placement problem
is equivalent to k-stroll problem [10, 6], which is NP-hard. Given a weighted graph
G=(V,E) with nonnegative length we on edge e ∈ E, two special nodes s and
t, and an integer k, the k-stroll problem finds an s-t path or walk (i.e., a stroll)
of minimum length that visits at least k distinct nodes excluding s and t. When
s=t, it is called the k-tour problem. The triangle inequality holds for all edges:
for (x, y), (y, z), (z, x) ∈ E, w(x, y) + w(y, z) ≥ w(z, x).

Fig. 3(a) shows a graph of six nodes and six edges with the weight of each
edge shown as well. An optimal 2-stroll between s and t is s, D, t, C, and
t, with a cost of 6. While most of the works solving k-stroll problem assume
the graph is non-complete graph [18, 10, 11], two works [6, 37] assume its input
is a complete graph. In particular, Tran el al. [37] showed that by converting
the data center graph into a complete graph, it is able to design an efficient
dynamic programming (DP) based heuristic. In this paper, however, we show
that our reinforcement learning-based algorithm can relax this assumption while

8 L. Gao et al.

still achieving comparable or even better performance compared to the DP-based
algorithm. Next we propose a multi-agent reinforcement learning algorithm to
solve the SFC placement problem.

4 Multi-Agent Reinforcement Learning Algorithm for
SFC Placement

In this section, we first present the basics of RL and then our cooperative multi-
agent reinforcement learning (MARL) framework for SFC placement.

Reinforcement Learning (RL). In a RL system [35], an agent’s decision
making is described by a 4-tuple (S,A, t, r) wherein,

– S is a finite set of states,
– A is a finite set of actions,
– t : S ×A→ S is a state transition function, and
– r : S ×A→ R is a reward function, where R is a real value reward.

That is, at a specific state s ∈ S, the agent takes an action a ∈ A to transition
to state t(s, a) ∈ S while receiving a reward r(s, a) ∈ R. The agent maintains
a policy π(s) : S → A that maps its current state s ∈ S into the desirable
action a ∈ A. We consider a deterministic policy where given the state, the
policy outputs a specific action for the agent to take to go to the next step.
Deterministic policy suites the SFC placement well as an agent always attempts
to make progress finding a k-stroll from host s(v) to host s(v′); that is, it hopes
to get closer to s(v′) each time it moves to the next node.

A widely used class of RL algorithms are value-based methods [35, 26]. These
algorithms try to extract the near-optimal policy based on the value function
V πs = E{

∑∞
t=0 γ

tr(st, π(st))|s0 = s}, which is the expected value of a discounted
future reward sum with the policy π at stage s. Here, γ (1 ≤ γ ≤ 1) is a
discounted rate and r(st, π(st)) is the reward received by the agent at state st
at time slot t following policy π.

s A

t

B

2.5

2

0.52.5

2

CD
2.5

s

t

D

5

5.5
2.5

2.5

2.5

C

3

(a) (b)

Fig. 3: (a) An example of k-stroll problem. (b) The complete graph for the DP-
based Algo. 2 (only the relevant part for the DP computation is shown).

Title Suppressed Due to Excessive Length 9

Q-Learning. Q-learning is a family of value-based algorithms [35]. It learns how
to optimize the quality of the actions in terms of the Q-value Q(s, a). Q(s, a)
is defined as the expected discounted sum of future rewards obtained by taking
action a from state s following an optimal policy. The optimal action at any
state is the action that gives the maximum Q-value. For an agent at state s,
when it takes action a and transitions to the next state t, Q(s, a) is updated as

Q(s, a)← (1− α) ·Q(s, a) + α · [r(s, a) + γ ·maxbQ(t, b)], (2)

where α and γ (1 ≤ α, γ ≤ 1) are the learning rate and discount rate respectively.
In Eqn. 2, r(s, a) is the reward obtained if action a is taken at the current state
s and maxbQ(t, b) is the maximum reward that can be obtained from the next
state t.

Multi-agent Reinforcement Learning (MARL) Algorithm. In our MARL
framework for SFC placement, there are multiple agents that all start from the
source host s(v). They work synchronously and cooperatively to learn the state-
action Q-table and the reward table and take action accordingly in any of the
states. In the context of the SFC placement, the states are the nodes (switches
or hosts) where agents are located and actions are the nodes they move to next.
The common task of all the agents is to learn and find a k-stroll: starting from
the source host s(v), each visiting at least k other switches, and ending at the
destination host s(v′). The k distinct switches found in the k-stroll are where
the k VNFs will be placed.

One important component of our MARL algorithm is the action selection
rule; an agent follows such rule to select the node to move to during its k-stroll
learning process. It combines exploration and exploitation of an agent; that is,
an agent can reinforce the good evaluations it already knows as well as explore
new actions. We define the action selection rule in SFC placement as below.

Definition 1. Action Selection Rule of SFC Placement. The action se-
lection rule specifies, for an agent located at node s, which node t it moves to
next. When q ≤ q0, where q is a random value in [0, 1] and q0 (0 ≤ q0 ≤ 1) is

a preset value, it always chooses the node t = argmaxu∈U{ [Q(s,u)]δ

[w(s,u)]β
} to move to

(i.e., the exploitation). Here δ and β are parameters weighing the relative impor-
tance of the Q-value and the edge length while U is the set of nodes not visited
yet by the agent. Otherwise, the agent chooses a node t ∈ U to move to by the

following distribution: p(s, t) = [Q(s,t)]δ/[w(s,t)]β∑
u∈U [Q(s,u)]δ/[w(s,u)]β

(i.e., the exploration). �

In the above action selection rule, by exploitation, an agent, located at node
s, always moves to a node t that maximizes the learned Q-value weighted by
the length of the edge (s, t). By exploration, it chooses the next node to move
to according to the distribution p(s, t), which characterizes how good the nodes
are in terms of learned Q-values and the edge lengths. The higher the Q-value
and the shorter the edge length, the more desirable the node to move to.

The above action rule is based on ε-greedy exploration [35], wherein an agent
selects a random action with probability ε and selects the best action, which

10 L. Gao et al.

corresponds to the highest Q-value, with probability 1− ε. Moreover, our action
rule augments ε-greedy exploration by taking into account specific features of
cloud data center networks (i.e., edge lengths).

MARL Algorithm. Next, we present our MARL algorithm viz. Algo. 1. There are
m agents initially located at the source host s(v) (line 1). Their k-stroll learning
takes place in iterations. Each iteration consists of two stages.

The first stage consists of k steps (lines 3-18). In each step, each agent inde-
pendently takes actions following Definition 1 to move to the next node. At the
end of each step, each updates the Q-value of the involved edge. This continues
until each agent finds its k-stroll and arrives at destination host s(v′). Following
[17], each agent maintains a list of visited switches in its memory, so that it
knows how to select an unvisited switch to visit while visiting at least k switches
before arriving at s(v′).

In the second stage (line 19-23), it finds among the m k-strolls the one with
the smallest length, and updates the reward value of the edges that belong
to this shortest k-stroll as well as the Q-values according to Eqn. 2. Finally, it
checks if the termination condition is met. If not, it goes to the next iteration and
repeats the above two stages. Here, the termination condition is either a specified
number of iterations or within some proximity to the costs of the compared DP
and optimal algorithms.

Algorithm 1 MARL Algorithm for SFC Placement.
Input: A data center graph G(V = Vs ∪ Vh, E), s(v1), s(v′1), and an

SFC (f1, f2, ..., fn).
Output: A k-stroll from s(v1) to s(v′1); that is, a switch p(j) ∈ Vs to place

each of the k VNFs fj ∈ F and the cost Cc(p)) of the k-stroll.
Notations: i: index for switches; j: index for agents;
Uj : the set of nodes unvisited by agent j, initially Uj = Vs, the set of switches;
Lj : the path taken by agent j, initially empty;
lj : the length of Lj , initially zero;
rj : the node where agent j is located currently;

Q(u, v): Q-value of edge (u, v), initially |E|
|V |·

∑
(u,v)∈E w(u,v) ;

p: an array storing the distinct switches on s(v1)-s(v′1) stroll;
α: learning rate, α = 0.1;
γ: discount factor, γ = 0.3;
W : a constant value of 10 following [17];

1. Initially all the m agents are at host s(v), i.e., rj = s(v), 1 ≤ j ≤ m;
2. while (termination condition is not met)
3. for (i = 1; i <= k; i++) // Finding the k switches to place VNFs
4. for (j = 1; j ≤ m; j++) // Agent j
5. Agent j decides the next node sj to move to following action rule

in Definition 1;
6. Lj = Lj ∪ {sj};

Title Suppressed Due to Excessive Length 11

7. lj = lj + w(rj , sj);
8. Q(rj , sj) = (1− α) ·Q(rj , sj) + α · γ ·maxz∈UjQ(sj , z); // Q-value
9. rj = sj ; // Agent j moves to switch sj ;
10. Uj = Uj − {sj}; // Switches not yet visited by agent j
11. end for;
12. end for;
13. for (j = 1; j ≤ m; j++) // Agent j ends at destination host s(v′)
14. Lj = Lj ∪ {s(v′)};
15. lj = lj + w(rj , s(v

′));
16. Q(rj , sj) = (1− α) ·Q(rj , sj) + α · γ ·maxz∈UkQ(sj , z); // Q-value
17. rj = s(v′);
18. end for;
19. Let j∗ = argmin1≤j≤mlj be the agent with a k-stroll of smallest length;
20. for (each edge (u, v) ∈ Lj∗)
21. r(u, v) = W

lj∗
; // Update reward value r(u, v);

22. Q(u, v)← (1− α) ·Q(u, v) + α · [r(u, v) + γ ·maxbQ(v, b)]; // Q-value
23. end for;
24. end while;
25. RETURN The switch p(j) ∈ Vs to place VNF fj ∈ F and the cost Cc(p).

Discussion. In each iteration, the first stage takes m · k, the second stage takes
m + k. Assume N iterations take place, then the time complexity of Algo. 1 is
O(N ·m·k). A key question for Algo. 1 is whether it is convergent (i.e., it is able to
find the global optimum k-stroll in finite time). Gutjahr [20] gave a graph-based
general framework to study convergences of ant systems. It shows that under
certain conditions, the solutions generated can converge with a high probability
to be arbitrarily close to the optimal solution for a given problem instance.
However, as it is a general framework, it does not tackle specific combinatorial
problems including the k-stroll. Considering the simple definition and elegant
discrete structure inherent in k-stroll problem, studying the convergence as well
as estimating the theoretical speed of convergence of applying RL to solve the
k-stroll problem is promising future research.

5 Existing Algorithms for SFC Placement

We compare our MARL algorithm with existing work and a naive exhaustive
optimal algorithm. We present them below to be self-contained for the paper.

Dynamic Programming (DP) Algorithm. Tran el al. [37] designed a DP-
based heuristic algorithm viz. Algo. 2 to solve SFC placement. It is based on
the observation that although finding the shortest stroll visiting k distinct nodes
is NP-hard, finding the shortest stroll of k edges can be solved optimally and
efficiently using DP.

Algo. 2 takes input a complete graph G′(V ′, E′) converted from the data
center graph G(V,E) as follows. V ′ = {s(v), s(v′)} ∪ Vs; for an edge (u, v) ∈ E′,

12 L. Gao et al.

its cost c(u,v) is c(u, v), the communication cost of (v, v′) between u and v in G.
Algo. 2 finds a shortest s(v)-s(v′) stroll with k+ 1 edges (lines 4-10) and checks
if it traverses k distinct switches (lines 11-19). If not, it finds a stroll with k + 2
edges, so on and so forth, until k distinct switches are found (lines 20-21). It
finally places f1, ..., fk on the first k switches and returns the cost of the k-stroll
(lines 23-24). Its time complexity is O(k · |V |4). Note that Algo. 2 also works for
k-tour problem where s(v)=s(v′) and the special case that k distinct switches
are already on the shortest path between s(v) and s(v′).

Algorithm 2 A DP Algorithm for SFC Placement Problem.
Input: A complete graph G′(V ′, E′), s(v), s(v′), and an SFC (f1, f2, ..., fk).
Output: cost of an s(v)-s(v′) stroll in G′ visiting at least k distinct switches.
Notations: e: index for edges; i: index for switches;
c(u, s(v′), e): cost of a u-s(v′) stroll with e edges, initially +∞ ;
successor(u, s(v′), e): u’s successor in a u-s(v′) stroll with e edges, initially -1 ;
r: number of edges needed on s(v)-s(v′) stroll, initially k + 1;
p: an array storing distinct switches on s(v)-s(v′) stroll;
num: the number of distinct switches in p;
found: true if it has found a s(v)-s(v′) stroll with at least k distinct switches,

initially false;
1. V ′ = {u1, ..., u|V ′|}, let ua = s(v) and u|V ′| = s(v′);
2. ∀ui, uj ∈ V ′ with i 6= j, c(ui, uj , 1) = cui,uj , successor(ui, uj , 1) = uj ,
successor(uj , ui, 1) = ui; ∀ui ∈ V ′, c(ui, ui, 1) = +∞, successor(ui, ui, 1) = −1;

3. while (¬found)
4. for (e = 2; e <= r; e++) // edges in ui-s(v

′) stroll
5. for (i = 1; i ≤ |V ′| − 1; i++) // node ui
6. for

(
each u, u 6= ui ∧ u 6= s(v′) ∧ ui 6= successor(u, s(v′), e− 1)

)
7. if

(
c(ui, s(v

′), e) > cui,u + c(u, s(v′), e− 1)
)

8. c(ui, s(v
′), e) = cui,u + c(u, s(v′), e− 1);

9. successor(ui, s(v
′), e) = u;

10. end if;
11. num = 0; p = φ (empty set), e−−;
12. b = successor(s(v), s(v′), e);
13. while (e > 1)
14. if (b 6= s(v) ∧ b 6= s(v′) ∧ b /∈ p)
15. p[num] = b;num++;
16. end if;
17. e−−;
18. b = successor(b, s(v′), e);
19. end while;
20. if (num < k) r++; // less than k distinct switches
21. else found = true;
22. end while;
23. Place f1, ..., fk on the first k switches stored in p;
24. RETURN c(s(v), s(v′), r).

Title Suppressed Due to Excessive Length 13

Example 1. Fig. 3(b) shows the complete graph of Fig. 3(a) that is used for
above DP computation. In this example, the Algo. 2 is able to find the optimal
2-stroll between s and t as s, D, t, C, and t. �

Optimal Algorithm. Below we present Algo. 3, an exhaustive algorithm that
enumerates all the SFC placements and finds the one with minimum cost, thus
solving the SFC placement problem optimally. It takes O(|V |k). Although it is
not time-efficient, it can be implemented easily, and we compare it with other
algorithms as a benchmark in small cases.

Algorithm 3 Exhaustive and Optimal SFC Placement.
Input: A data center graph G(V,E), s(v) and s(v′), and an SFC (f1, f2, ..., fk).
Output: A VNF placement p and the total cost Cc(p).
1. Cc(p) = +∞;
2. Among all |Vs| · (|Vs| − 1) · ..., ·(|Vs| − k + 1) SFC placements, find p that

gives the minimum cost Cc(p);
3. RETURN p and Cc(p).

6 Performance Evaluation

Experiment Setup. We compare our RL-based learning algorithm viz. Algo. 1
(referred to RL) with DP-based algorithm Algo. 2 (referred to as DP) and
exhaustive optimal Algo. 3 (referred to as Optimal). We write our own simulator
in Python on a MacBook Pro (Big Sur 11.5.1) with Intel Processor (2.7GHz
Quad-Core Intel Core i7) and 16GB of memory. As Optimal takes a long time to
execute, we first compare these three algorithms in small K = 4 fat-tree cloud
data centers of 16 hosts. We then compare RL with DP in K = 8 data centers
of 128 hosts. As RL is a multi-agent cooperative learning algorithm, we also
investigate the effects of the number of agents m in a K = 6 fat-tree data center

of 54 hosts. Unless otherwise mentioned, m is set as K3

4 , the number of hosts in
the data center.

In the plots, each data point is an average of 20 runs with 95% confidence
interval. For a fair comparison, in each run instance, the source VM v and
destination VM v′ are first randomly placed on the hosts then we compare
the algorithms on the same VM placement. The SFCs in real-world cases are
broadly categorized into two types viz. access SFCs and application SFCs [1].
As it shows that a typical SFC could have 5 to 6 access functions and 4 to 5
application functions, we consider up to 11 VNFs in an SFC.

Simulation Parameters. Following [17], we set all the RL related parameters as
follows. The learning rate α = 0.1, the discount factor γ = 0.3, the original

Q-values for all the edges is |E|
|V |·

∑
(u,v)∈E w(u,v) ; that is, 1 divided by the multi-

plication of average distance between all nodes with number of nodes. For the

14 L. Gao et al.

(a) Communication Cost. (b) Execution Time.

Fig. 4: Comparing RL, DP, and Optimal in K = 4 fat-tree data centers. Here, m = 16.

parameters used in action selection rule, δ = 1 and β = 2. The constant number
W used in Algo. 1 is set as 10.

Comparing RL, DP, and Optimal in K = 4 fat-trees. Fig. 4 compares
all three algorithms in K = 4 fat-trees while varying the number of VNFs k.
Fig. 4(a) compares the VM communication costs in terms of the number of hops
yielded by all three algorithms. We have several observations. First, Optimal
performs the best by giving the smallest communication cost. Second, RL per-
forms better than DP in most cases although it does not have the complete
knowledge of the data center network as DP does. This demonstrates that RL
is indeed an effective SFC placement algorithm. Fig. 4 show the execution time
of the three algorithms. While both RL and DP are time-efficient, incurring less
than one second for all the cases, RL takes around half of the time compared to
DP (note the logarithmic scale of the y values). In contrast, Optimal takes an
enormous amount of time, in the order of hundreds of seconds when k gets large.
This shows that our RL algorithm achieves comparable communication cost as
the existing SFC placement algorithms while using smaller amount of execution
time.

Comparing RL and DP in K = 8 fat-trees. Next, we compare RL and DP
in a larger scale of K = 8 fat-tree data centers while varying the number of
VNFs k from 6 to 12. Fig. 5(a) shows that DP performs better than RL when k
is relatively small and RL performs better than DP when k gets large. However,
Fig. 5(b) shows that our RL algorithm has a much smaller amount of execution
time than DP (again, note the logarithmic scale of the y values). In particular,
while RL takes less than one second to find the SFC placement, the DP takes
hundreds of seconds to do so.

This is in sharp contrast to Fig. 4(b), which shows that DP only takes twice
as much time as RL does. As the time complexity of DP is O(k · |V |4) and
|V | = 5

4 ·K
2, the number of switches in a K-ary fat-tree, the time complexity of

DP in a K-ary fat-tree is thus O(k ·K8). On the other hand, the time complexity

Title Suppressed Due to Excessive Length 15

(a) Communication Cost. (b) Communication Cost.

Fig. 5: Comparing RL and DP in K = 8 fat-tree data centers, m = 128 and k = 10.

of RL is O(N ·m · k) = O(N ·K3 · k), which is less dependent on the size of the
fat-tree than DP is. The two orders of magnitude difference in execution times
show that the RL algorithm is a promising technique for the SFC placement
problem. Another reason why RL performs better can be attributed to the large
number of agents (i.e., 128) that participate in the RL algorithm. As all the
agents work cooperatively and synchronously to learn the state-action Q-table
and make progress towards finding the k-stroll, the algorithm takes less time.

Effects of Number of Agents m in RL. Finally, we take a close look at
the RL algorithm, and investigate the effects of the number of agents m on the
performance of RL. We place an SFC of 10 VNFs (i.e., k = 10) in a K = 6 data
center. Table. 2 shows that with the increase of m, the VM communication costs
found by RL, the execution time, and the number of training iterations for RL all
decrease. As more agents participate in the cooperative learning process, its time
efficiency increases dramatically. We also observe that the VM communication
cost seems to stabilize when m reaches 20. One possible reason could be that
when m = 20, the RL is able to find the optimal VM communication cost.

7 Conclusions and Future Work

For data center operators, figuring out how to place SFC with different VNFs
inside a data center network while minimizing the communication cost of VMs is
a critical task. In this paper, we proposed a multi-agent reinforcement learning
algorithm to solve the SFC placement problem. Although the SFC placement

Table 2: Varying number of agents m in RL. Here, k = 10 and K = 6.
Number of Agents m 1 5 10 15 20

Communication Cost (number of hops) 23.3 17.6 14.7 13.7 13.4

Execution Time (seconds) 65.54 27.72 9.07 2.70 0.22

Number of Iterations 169.6 75.05 22.25 10.7 3.1

16 L. Gao et al.

problem has been solved extensively with and without resorting to machine
learning techniques, our work has two novelties. First, we discovered that at
the core of the SFC placement problem is the k-stroll problem, which is only
studied in the theory community and has not been identified by any of the
existing research on SFC placement. We hope our work can shed some light on
how k-stroll can not only advance SFC placement research but also model an
even wider range of network applications. Second, all the existing work utilizing
machine learning techniques adopts a deep reinforcement learning approach. We
showed that under k-stroll modeling of SFC placement, this is not necessary as
there are a limited number of states and actions available for the agents. We
designed a multi-agent reinforcement learning algorithm where multiple agents
cooperatively and synchronously solve k-stroll in order to place SFC. We showed
via simulations that our algorithm’s performance is comparable with or even
better than the existing algorithms, however, with execution time that is up to
two orders of magnitude smaller than that of the existing work.

We have three research directions in the future. First, we will investigate
the convergence and convergence speed of our RL algorithm by studying the
unique discrete structure of k-stroll. For example, the existing DP-based algo-
rithm provides some insights into how visiting k distinct nodes is related to
visiting k + 1 distinct edges, which can be solved optimally and efficiently. Sec-
ond, in our current multi-agent scenario, all the agents cooperate with each other
by sharing the same reward and updating the same Q-table. In a rational and
game-theoretical environment wherein different agents have different goals and
rewards, how agents balance cooperation with competition to find a near-optimal
SFC placement efficiently remains largely unexplored. Third, currently, we only
consider SFC placement for one VM flow. When there exist multiple VM flows
with highly diverse and dynamic traffic rates (e.g., transmission rates and band-
width demands), how to apply RL techniques to achieve optimal network traffic
and communication delay in cloud data centers becomes a challenging problem.

Acknowledgment

This work was supported by NSF Grants CNS-1911191 and CNS-2131309.

References

1. Service function chaining use cases in data centers (ietf),
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06section-3.3.1

2. Reinforcement learning for combinatorial optimization: A survey. Computers &
Operations Research 134 (2021)

3. et al., R.G.: Network functions virtualisation: an introduction, benefits, enablers,
challenges and call for action, introductory white paper. In: SDN and OpenFlow
World Congress (2012)

4. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

Title Suppressed Due to Excessive Length 17

5. Bari, F., Chowdhury, S.R., Ahmed, R., Boutaba, R., Duarte, O.C.M.B.: Orches-
trating virtualized network functions. IEEE Transactions on Network and Service
Management 13(4), 725–739 (2016)

6. Bateni, M., Chuzhoy, J.: Approximation algorithms for the directed k-tour and
k-stroll problems. In: Proc. of APPROX/RANDOM 2010

7. Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., Chan, H.A.: Optimal
virtual network function placement in multi-cloud service function chaining archi-
tecture. Comput. Comm. 102, 1 – 16 (2017)

8. Bunyakitanon, M., Vasilakos, X., Nejabati, R., Simeonidou, D.: End-to-end
performance-based autonomous vnf placement with adopted reinforcement learn-
ing. IEEE Transactions on Cognitive Communications and Networking 6(2), 534–
547 (2020)

9. Carpenter, B., Brim, S.: Middleboxes: Taxonomy and issues (2002),
https://tools.ietf.org/html/rfc3234

10. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency
tours. In: Proc. of IEEE FOCS 2003

11. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related
problems. ACM Trans. on Algorithms 8(3) (Jul 2012)

12. Chen, Y., Wu, J., Ji, B.: Virtual network function deployment in tree-structured
networks. In: Proc. of ICNP 2018

13. Eramo, V., Miucci, E., Ammar, M., Lavacca, F.G.: An approach for service function
chain routing and virtual function network instance migration in network function
virtualization architectures. IEEE/ACM Transactions on Networking 25(4), 2008–
2025 (2017)

14. Fei, X., Liu, F., Xu, H., Jin, H.: Adaptive vnf scaling and flow routing with proac-
tive demand prediction. In: Proc. of IEEE INFOCOM 2018

15. Feng, H., L., J., Tulino, A.M., Raz, D., Molisch, A.F.: Approximation algorithms
for the nfv service distribution problem. In: Proc. of IEEE INFOCOM 2017

16. Flores, H., Tran, V., Tang, B.: Pam & pal: Policy-aware virtual machine migration
and placement in dynamic cloud data centers. In: Proc. of IEEE INFOCOM 2020

17. Gambardella, L., Dorigo, M.: Ant-q: A reinforcement learning approach to the
traveling salesman problem. In: ICML (1995)

18. Garg, N.: Saving an ε: A 2-approximation for the k-mst problem in graphs. In:
Proc. of ACM STOC 2005

19. Gu, S., Li, Z., Wu, C., Huang, C.: An efficient auction mechanism for service chains
in the nfv market. In: Proc. of IEEE INFOCOM 2016

20. Gutjahr, W.: A graph-based ant system and its convergence. Future Generation
Computer Systems 16, 873–888 (2000)

21. Huang, X., Bian, S., Gao, X., Wu, W., Shao, Z., Yang, Y., Lui, J.: Online vnf chain-
ing and predictive scheduling: Optimality and trade-offs. IEEE/ACM Transactions
on Networking 29(4), 1867–1880 (2021)

22. Huin, N., Jaumard, B., Giroire, F.: Optimal network service chain provisioning.
IEEE/ACM Trans. on Netw. 26(3), 1320–1333 (June 2018)

23. Joseph, D.A., Tavakoli, A., Stoica, I.: A policy-aware switching layer for data cen-
ters. In: Proc. of ACM SIGCOMM 2008

24. Kuo, T., Liou, B., Lin, K.C., Tsai, M.: Deploying chains of virtual network func-
tions: On the relation between link and server usage. IEEE/ACM Transactions on
Networking 26(4), 1562–1576 (Aug 2018)

25. Laghrissi, A., Taleb, T.: A survey on the placement of virtual resources and vir-
tual network functions. IEEE Communications Surveys Tutorials 21(2), 1409–1434
(2019)

18 L. Gao et al.

26. Littman, M.L.: Value-function reinforcement learning in markov games. Cognitive
Systems Research 2(1), 55–66 (2001)

27. Liu, J., Li, Y., Zhang, Y., Su, L., Jin, D.: Improve service chaining performance
with optimized middlebox placement. IEEE Transactions on Services Computing
10(4), 560–573 (2017)

28. Ma, W., Beltran, J., Pan, D., Pissinou, N.: Traffic aware placement of interdepen-
dent nfv middleboxes. IEEE Transactions on Network and Service Management
16(4), 1303–1317 (Dec 2019)

29. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for
combinatorial optimization: A survey. CoRR (2020)

30. Mijumbi, R., Serrat, J., Gorricho, J.L., Bouten, N., Turck, F.D., Boutaba, R.:
Network function virtualization: State-of-the-art and research challenges. IEEE
Communications Sur. and Tut. 18(1) (2015)

31. Pei, J., Hong, P., Pan, M., Liu, J., Zhou, J.: Optimal vnf placement via deep
reinforcement learning in sdn/nfv-enabled networks. IEEE Journal on Selected
Areas in Communications 38(2), 263–278 (2020)

32. Sang, Y., Ji, B., Gupta, G.R., Du, X., Ye, L.: Provably efficient algorithms for joint
placement and allocation of virtual network functions. In: Proc. of INFOCOM 2017

33. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: Network processing as a cloud service.
In: Proc. of ACM SIGCOMM 2012

34. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: A scalable, high-performance alternative to hy-
pervisors. SIGOPS Oper. Syst. Rev. 41(3), 275–287 (Mar 2007)

35. Sutton, R.S., Barto, A.G.: Reinforcement Learning, An Introduction. The MIT
Press (2020)

36. Tang, L., He, X., Zhao, P., Zhao, G., Zhou, Y., Chen, Q.: Virtual network function
migration based on dynamic resource requirements prediction. IEEE Access 7,
112348–112362 (2019)

37. Tran, V., Sun, J., Tang, B., Pan, D.: Traffic-optimal virtual network function place-
ment and migration in dynamic cloud data centers. Submitted to IEEE IPDPS
2022

38. Wang, L., Mao, W., Zhao, J., Xu, Y.: Ddqp: A double deep q-learning approach
to online fault-tolerant sfc placement. IEEE Transactions on Network and Service
Management 18(1), 118–132 (2021)

39. Xiao, Y., Zhang, Q., Liu, F., Wang, J., Zhao, M., Zhang, Z., Zhang, J.: Nfvdeep:
Adaptive online service function chain deployment with deep reinforcement learn-
ing. In: Proc. of the IWQoS 2019

40. Yang, S., Li, F., Trajanovski, S., Chen, X., Wang, Y., Fu, X.: Delay-aware virtual
network function placement and routing in edge clouds. IEEE Transactions on
Mobile Computing (2019)

41. Zhang, Q., Liu, F., Zeng, C.: Adaptive interference-aware vnf placement for service-
customized 5g network slices. In: IEEE INFOCOM 2019 (2019)

42. Zhang, X., Wu, C., Li, Z., Lau, F.C.: Proactive vnf provisioning with multi-
timescale cloud resources: Fusing online learning and online optimization. In: Proc.
of IEEE INFOCOM 2017

43. Zhang, Y., Beheshti, N., Beliveau, L., Lefebvre, G., Manghirmalani, R., Mishra,
R., Patney, R., Shirazipour, M., Subrahmaniam, R., Truchan, C., Tatipamula, M.:
Steering: A software-defined networking for inline service chaining. In: Proc. of
IEEE ICNP 2013

