
Maximizing Data Preservation Time in Linear
Sensor Networks

Ryan Hausen1, Bin Tang2, Samuel Sambasivam1, and Simon Lin1
1Department of Computer Science, Azusa Pacific University, USA

2Department of Computer Science, California State University Dominguez Hills, USA
Email: {rhausen11,ssambasivam,slin}@apu.edu, btang@csudh.edu

Abstract— We study a new algorithmic problem called data
preservation problem with maximum preservation time. It preserves
data inside sensor networks (due to absence of the base station)
by offloading overflow data from source node into the network,
such that the data preservation time is maximized. We present
an optimal and efficient algorithm for linear sensor networks.

Keywords – Data Preservation, Sensor Networks

I. Background and Motivation
Many emerging sensor network applications are deployed

in challenging environments such as underwater, remote or
inhospitable regions, or under extreme weather. With very
limited accessibility of such networks, the generated sensory
data is first stored inside the network, and then uploaded to
the remote base station by data mules, or through low rate
satellite link when they become available.

In our network model, there is one sensor node that gen-
erates large amounts of sensory data (due to its proximity
to the event of interest), therefore it has exhausted its stor-
age capacity. This sensor node with exhausted data storage
while still generating new data is source node. The newly
generated data that can not be stored locally is overflow data.
Other sensor nodes, which all have some available storages,
are storage nodes (sensor node whose generated data has
not exceeded its storage capacity is considered as a storage
node). To prevent data loss, the overflow data is offloaded
to the storage nodes to be stored, then collected when above
uploading opportunities become available. The storage nodes
that finally store offloaded data are destination nodes. We
refer to the process that overflow data is offloaded from the
source node to destination nodes as data preservation in sensor
networks. In this paper, we study data preservation in linear
sensor networks, which have been well adopted in applications
such as water pollution monitoring along the river bank and
underwater seismic monitoring along the seashore.

II. Problem Formulation
Network Model. The sensor network is represented as an undi-
rected linear graph G(V,E), where V = {n, n− 1, ..., 2, 1, 0}
is a set of n + 1 nodes (from left to right) and E is a set of
edges. Let S be the single source node and Vs = {V − {S}}
be the set of storage nodes. There are a equal-size overflow
data items at source node, denoted as D = {D1, D2, ..., Da}.
Let mi be the available free storage space at storage node
i ∈ Vs, measured in number of data items. Sensor node i has
a finite and unreplenishable initial energy Ei. For each sensor

node, sending or receiving a data item each costs 0.5 unit
of its energy. Therefore, energy consumption of offloading a
data item from the source node to a destination node equals
the number of hops the data item traverses.

Problem Formulation. We define preservation function as r :
D → Vs, indicating Dj ∈ D is offloaded from S to its
destination node r(j) ∈ Vs. Let Pj : S, ..., r(j) be the
sequence of sensor nodes along which Dj is offloaded from S
to r(j). Let xi,j be the energy cost incurred by node i when
offloading data item Dj from S to r(j), then xi,j = 0.5 if
i ∈ {S, r(j)}, 1 if i ∈ Pj − {S, r(j)}, and 0 otherwise. Let
E

′

i denote i’s remaining energy after all the a data items are
offloaded, E

′

i = Ei −
∑a

j=1 xi,j , ∀ i ∈ V .
Definition 1: (Data Preservation Time.) Given a source

node with a data items to be preserved, data preservation
time of the sensor network is defined as the sum of remaining
energy of the destination nodes of all the a data items, that is,∑a

j=1 E
′
r(j). It equals

∑
i∈Vs

(
E

′

i × ξ(i)
)
, where ξ(i) is the

number of data items offloaded to node i. □
Considering all the nodes are constantly draining their

battery powers, it is preferred that the data is stored at storage
nodes with high energy levels. Data preservation time therefore
indicates the network’s overall achievable effort to preserve
the a data items. The objective is to find a preservation
function r to maximize the data preservation time

∑a
j=1 E

′
r(j),

under the energy constraint E′
i ≥ 0, ∀ i ∈ V and the storage

capacity constraint |{j |r(j) = i, 1 ≤ j ≤ a}| ≤ mi, ∀ i ∈ V .

III. Algorithms
We first consider that the source node is at one end of the

linear topology then consider that it could be at any position.

Source Node at One End. Assume node 0 is the source node
with a amount of data items to offload.

Theorem 1: If node i finally stores ξ(i) data items, the data
preservation time equals

∑n
i=1

(
Ei × ξ(i)

)
− a2/2.

Proof: Recall that ξ(i) is the number of data items stored at
node i post offloading. Since all the a data items are offloaded,
we have a =

∑n
i=1 ξ(i), and

a2 =

n∑
i=1

ξ(i)

n∑
i=1

ξ(i) = 2×
n∑

i=1

ξ(i)

n∑
j=i+1

ξ(j) +

n∑
i=1

ξ2(i).

Recall E
′

i is the remaining energy of node i post offloading:

2
E

′

i = Ei −
∑n

j=i+1 ξ(j)− ξ(i)/2. The data preservation time
n∑

i=1

(
E

′

i × ξ(i)
)

=

n∑
i=1

(
Ei −

n∑
j=i+1

ξ(j)− ξ(i)/2

)
× ξ(i)

=

n∑
i=1

Ei × ξ(i)−
n∑

i=1

ξ(i)

n∑
j=i+1

ξ(j)−
n∑

i=1

ξ2(i)/2

=
n∑

i=1

(
Ei × ξ(i)

)
− a2/2.

To maximize data preservation time
∑n

i=1 E
′

i × ξ(i), it
therefore needs to maximize

∑n
i=1

(
Ei × ξ(i)

)
.

Algorithm 1: Optimal algorithm for source node 0.
Input: Linear sensor network {n, n− 1, ..., 2, 1, 0},

mi, Ei, a data items D at source node 0
Output: r : D → {n, n− 1, ..., 2, 1};
1. Sort storage nodes {n, n− 1, ..., 2, 1} in non-ascending

order of their initial energy: Ev1 ≥ Ev2 ≥ ... ≥ Evn ;
2. Find the top k + 1 highest energy nodes: v1, ..., vk, vk+1

such that
∑k

i=1 mvi < a ≤
∑k+1

i=1 mvi ;
3. Offload mi data items to each node i ∈ {v1, ..., vk},

and a−
∑k

i=1 mvi
data items to vk+1;

4. RETURN Data preservation time
∑n

i=1

(
E

′

i × ξ(i)
)
.

Algorithm 1 is optimal when source node is at one end (the
proof is omitted due to space constraints). That is, it gives the
maximum data preservation time among all the data offloading
strategies. Its time complexity is O(nlogn+ a).
Source Node in Arbitrary Position. Now source node is k
(0 ≤ k ≤ n). Let tl(x) and tr(x) denote the maximum data
preservation time when x data items are offloaded to k’s left
and right respectively, with k being at one end.

Algorithm 2: Optimal algorithm for source node k.
Input: Linear sensor network {n, n− 1, ..., 2, 1, 0},

mi, Ei, a data items D at source node k
Output: r : D → {n, n− 1, ..., k + 1, k − 1, 2, 1, 0};
0. max = 0; max is the maximum preservation time
1. for (0 ≤ a1 ≤ min{a,

∑n
i=k+1 mi})

2. if tl(a1) + tr(a− a1) > max, where tl(a1)
and tr(a− a1) are calculated by Algorithm 1;

3. then max = tl(a1) + tr(a− a1);
4. end for;
5. RETURN max.

Algorithm 2 is optimal for arbitrary position of source
node (the proof is omitted due to space constraints). Its time
complexity is O(nlogn+a2). We emphasize that the optimality
of Algorithms 1 and 2 is non-trivial. Below we design a
greedy algorithm (Algorithm 3).

Algorithm 3: Greedy algorithm for source node k.
Input: Linear sensor network {n, n− 1, ..., 2, 1, 0},

mi, Ei, a data items D at source node k
Output: r : D → {n, n− 1, ..., 2, 1};

 0

 500

 1000

 1500

 2000

 2500

100 300 500 700 900

A
v
e
ra

g
e
 d

a
ta

 p
re

s
e
rv

a
ti
o
n
 t
im

e

Number of data items

Random
Greedy
Optimal

(a) Average preservation time.

 0

 200000

 400000

 600000

 800000

 1000000

100 300 500 700 900

T
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Number of data items

Random
Greedy
Optimal

(b) Total energy consumption.

Fig. 1. Performance comparison when source node is 0.

 0

 500

 1000

 1500

 2000

 2500

100 300 500 700 900

A
v
e
ra

g
e
 d

a
ta

 p
re

s
e
rv

a
ti
o
n
 t
im

e

Number of data items

Random
Greedy
Optimal

(a) Average preservation time.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

100 300 500 700 900

T
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Number of data items

Random
Greedy
Optimal

(b) Total energy consumption.
Fig. 2. Performance comparison when source node is 499.

1. for (each of the a data items)
2. Offload it to the storage node with highest energy

and available storage (tie is broken randomly);
3. end for;
4. RETURN Data preservation time

∑n
i=1

(
E

′

i × ξ(i)
)
.

The time complexity of Algorithm 3 is O(nlogn + an).
By offloading each data item to the highest energy node with
storage in each iteration, it works more meticulously than
Algorithm 2 to maximize the data reservation time. However,
we show in Section IV that it is not optimal.

IV. Performance Evaluation
We consider a linear sensor network with 1000 nodes. We

randomly set the initial energy level of each node between
1000 and 2000, and the storage capacity of each storage node
between 1 and 5. In Figure 1, the source node is node 0 (at
one end). It compares Algorithm 1, Algorithm 3 (referred to
as Greedy), and a random algorithm (referred to as Random),
while varying a from 100, 300, ..., to 900. In Random, we
randomly choose a storage node with available storage to
offload each data item. In Figure 2, the source node is 499
(in the middle). It compares Algorithm 2, Algorithm 3 and
Random. It shows that Algorithm 1 and Algorithm 2 perform
the best in either case in terms of average data preservation
time (the total data preservation time divided by a), due to
their optimality. We also observe that they both cost the least
amount of total energy consumption.

V. Conclusion and Future Work
We identify, formulate, and solve a new algorithmic problem

in sensor networks. We study how to offload overflow data
items from source node to storage nodes to maximize the data
preservation time, so that data can be preserved for the longest
amount of time. We solve it optimally in linear topologies. As
future work, we will study the problem under star, tree, and
general graph topologies.

