
1

LiteWS: A Web Service Enhancing Multi-User
Queries in Data Intensive Sensor Networks

Masaaki Takahashi and Bin Tang
Department of Electrical Engineering and Computer Science

Wichita State University
Wichita, KS 67260

mxtakahashi@wichita.edu, bintang@cs.wichita.edu

Abstract—Internet-based data intensive sensor networks
(DISNs) are sensor networks wherein large volume of different
types of sensory data are sensed and generated from the physical
world, and queried by multiple users simultaneously. One critical
issue in Internet-based DISNs is how to support multiple user
queries simultaneously in an efficient manner, in terms of query
response time, query loss ratio and sensor node energy con-
sumption. In this paper, we formulate and study multi-user data
query problem in DISNs and present our solution. Specifically, we
present our design, implementation, and evaluation of LiteWS,
a web service system aiming to enhance multi-user queries in
Internet-based DISNs. We propose a simple caching technique
and give an analytical model of how to reduce query loss ratio
in our system. Through extensive experiments based on Crossbow
IRIS motes, we evaluate the system performance of LiteWS
under both correlated and uncorrelated query traffic. We show
the performance with data caching is much better than the one
without; particularly, the average query response time of LiteWS
is improved 5 to 10 times and the query loss rate is improved 2
times.

Keywords – Multi-user Queries, Web Services, LiteOS,
Data Intensive Sensor Networks

I. INTRODUCTION

Recently the integration of wireless sensor networks
(WSNs) with Internet has attracted much attention in both
research community and industry. Connecting sensors to the
Internet not only gives users more visibility and control to
monitor the physical environment of interest from anywhere
anytime, but also gives rise to a whole range of new sensor net-
work applications in scientific computation [16]. One salient
example is the data-intensive sensor networks (DISNs) for
scientific applications [12], where large volume of scientific
data sensed or generated are constantly queried and shared
by many researchers from different parts of the world. The
sensory sources include a rich collection of sensors such as
video cameras, microphones, RFID readers, environmental
or weather sensors, telescopes, seismometers; corresponding
scientific applications include climate change, earthquake de-
tection and characterization, and environmental monitoring.

Due to its data-intensive and query-based nature, the
Internet-based DISNs pose more challenges compared to tra-
ditional standalone sensor network applications. Sensor energy
consumption, the query response time and query loss ratio are
all important to consider. In this paper, we study the multi-
user data query problem in Internet-enabled data intensive

sensor networks, wherein large volume of different types of
sensory data in the physical world are constantly queried by
multiple users simultaneously. Our goal is to minimize the
average user query response time and average user query loss
ratio while reducing the energy consumption of sensor nodes.
We propose a simple data caching technique to specifically
address such needs for DISNs. Using some analytical model,
we further show that in multi-user queries, the query loss ratio
can be attributed to not only the packet collisions, but also the
user queries themselves, and we improve the query loss ratio
accordingly.

Recently, web services for sensor networks have been
proposed and studied in both research community and industry
(please refer to Section II for a comprehensive literature re-
view). Web services provide structured data and programmatic
access to functionalities of resource-constrained sensor nodes,
thus enabling interoperability among sensor systems written
in different programming languages and running on different
platforms. However, in terms of design and implementation,
most of the existing work are based on TinyOS [1], the de facto
standard embedded operating systems for sensor networks.
Even though TinyOS is a very mature operating system with
tested industrial strength, its programming paradigm, includ-
ing NesC, wiring, and state-machine abstractions of program
execution, introduces a learning curve for most traditional
programmers.

In this paper, we present our design, implementation and
evaluation of a web service called LiteWS. LiteWS is based
on LiteOS [2, 5], a new operating system for sensor networks
recently developed by UIUC. Our web service middleware
takes advantage of the UNIX-like shell commands as well
as the C programming language supported by LiteOS, which
provides better programming interaction between web service
middleware and sensor networks. We believe that its affinity
to UNIX makes LiteOS easier to be adopted for applications
such as sensor network web services.

The main contributions of our paper are as follows:
• We tackle the multi-user query problem in Internet-based

DISNs, wherein multiple users request different data at
different rates. Using a web service prototype, we show
how it can be solved in an efficient manner.

• We design and implement a web service called LiteWS,
as a module in LiteOS. We identify and improve some
existing limitation of LiteOS for the purpose of efficient

2

multi-user query.
• We propose and implement a data caching sublayer

in LiteWS for performance improvement, and give an
analytical model of how to reduce query loss ratio in our
system.

• Using real implementation based on Crossbow IRIS
motes, we extensively evaluate the system performance
of LiteWS. The average query response time of LiteWS
can be improved 5 to 10 times and the average query loss
ration 2 times with the data caching algorithm.

II. RELATED WORK

There are many Internet-based sensor network applications.
One salient example is Intel’s IrisNet (Internet-scale Resource-
Intensive Sensor Network Services) [10], which provides a
software infrastructure for Internet connected desktop PCs
and inexpensive, commodity off-the-shelf sensors such as
Webcams. Another example is Microsoft’s Virtual Earth [3],
which provides a comprehensive point-of-interest geospatial
imagery database and the capability to search and visualize
the data by business, person and address. Recently, Microsoft
also released the SenseWeb Project [17], which allows users
to publish their sensor data on a portal web site. However,
they do not consider web services as the enabling platform
for their applications.

Muller and Alonso [15] tackle the problem of multi-user
support in sensor networks by transforming it into a multi-
query optimization problem. In their work, the submitted user
queries are merged into a network query which is then sent
to the sensor network for execution. Their goal is to minimize
the energy consumption of sensor nodes and query loss ratio.
We tackle the multi-user program by proposing a programmer
friendly web service system and consider query response time,
query loss ratio and sensor node energy consumption in a
holistic way. Yates et al. [20] study the benefit and cost
of caching data in sensor network monitoring, and evaluate
several approaches of querying and caching. They show that
data accuracy and data delay both play important roles in
reducing query cost, the sensor energy consumption.

Priyantha et al. [19] propose to use web services to support
interoperable and evolvable sensor networks. Their work is the
first to show that web services improve the programmability
of the Internet-based sensor networks. They identify design
choices that optimize the web service operation on resource
constrained sensor nodes and implement the web service on
each individual sensor. Their web services are TinyOS based.
We adopt LiteOS for better programming interaction between
web service middleware and sensor networks. To mitigate
the energy constraint of sensor networks, we implement the
LiteWS middleware on the resource-rich gateway nodes.

To query or access data generated by the sensor nodes, the
sensor network can be viewed as a distributed database. There
have been lots of work to study and develop the database
middleware to support in-network database query operators
such as grouping, aggregation, and joins (for example, [4, 7,
14]). Our work is to design a web service middleware system
which facilitates the interaction between the users and the
sensor networks.

LiteOS [2, 5] is a newly developed operating system for
embedded sensor networks. It creates a familiar UNIX-like
environment for users where they can interactively command
the entire sensor network to perform tasks such as reprogram-
ming, data retrieval, or network reconfiguration. This could
potentially expand the circle of sensor network developers by
leveraging their knowledge such as Unix and threads. Our
experience proves that LiteOS serves as a good platform to
develop the web service. Another way to reduce the learn-
ing curve of sensor network programming is to treat each
individual sensor as a full-fledged IP node. Arch Rock [6]
provides a Web-based access to individual sensor nodes using
the standard TCP/IP protocols, and enables users to configure,
monitor and manage a sensor network from a secure browser.
The authors in [8, 9, 11] also treat sensor nodes as IP or
IPv6 nodes to support network layer interoperability. We use
LiteWS to focus on the application middleware to improve
the query response time and reduce query loss rate in data
intensive sensor networks.

Surprisingly, not much research has been done specifically
for DISNs despite their potential scientific applications. So
far, researchers address the challenges of DISNs mainly by
studying the medium access control (MAC) protocols [12,
13, 18]. The authors either study the medium access us-
ing simulations, or study the trust management in DISNs.
Obviously the efficiency of MAC plays a key role in the
achievable throughput of a high data rate wireless network.
We study DISNs from a different angle of optimizing multi-
user data queries, and focus on designing techniques to reduce
query response time and query loss ratio under correlated
and uncorrelated query traffic, using real implementation. Our
work is orthogonal to above approaches, and can be used in
combination with them to further address the challenges in
data intensive sensor applications.

III. MULTI-USER DATA QUERY PROBLEM IN DATA
INTENSIVE SENSOR NETWORKS

In this section, we first present our network model and
sensory data model, and multi-user query problem in DISNs.
Then we discuss our data caching algorithm. Finally, we derive
the query loss ratio based on the data caching algorithm and
propose solution to further reduce it.

A. Models and Problem Statement

Network Model and Data Model. The network model of our
data query problem in DISNs is illustrated in Figure 1.
There are N sensor nodes in the sensor field and one base
station1, which serves as the communication hub between
sensor network and its Internet-based user queries. We assume
that the sensor nodes are commodity-manufactured and each
node only has one radio interface. There is one wireless
channel available. There are t different types of data (or
physical phenomena) such as temperature, light, magnet and
acceleration to be sensed from the physical environment.
They could also be scientific data collected and queried by

1We use base station and gateway node interchangeably.

3

domain scientists in scientific applications, or medical data of
patients in sensor network-based health monitoring systems.
Each sensor node can sense any data type, and sense only
one type at a time. The varying of the values of data type i
(1 ≤ i ≤ t) with respect to time is characterized by function
f i(j), where j = 0, 1, 2, ... is time slot of fixed-length interval.

���� ����� ���	
��
� ������ ����� ���	
��
� ������ ����� ���	����� ����� ���	
��
� ��
���	����������������������	 ������������
���

���� � ��! "#�$ #� %&#'$&#'�()*�� ��#�(��'�*� '*(�� +,- .-/- 01 2��3�

�	�
��
� ��2��3�

�	�
��
� ��2��3�

�	��2��3�

�	�
��
� 4�
5 ��!
6&$& 7&78�#� 9(&$�(

:�'�*� ;�$<*�=�>�? :��@#7� 5 ��!5 ��!5 ��!5 ��!5 ��!A�� "$
���� � ��!:�'�*� '*(�

BCDDEFGHIFJKHLFGHM

Fig. 1. Multi-user data query problem in data intensive sensor networks.

User Queries. The DISNs are query invoked – sensors are
asleep until they are activated by queries to sense and send
data to base station. The base station implements the web
service middleware, which handles all the user queries. Like
the sensory data, the user queries arrive in a time-slotted
manner (we introduce more detailed query arrival models in
Section IV). There are m user queries: query i has the form
(i, sensori, arrivaltimei, typei, numberi, intervali), where
sensori is the sensor the user wants to query, arrivaltimei is
the time slot at which query i arrives at the base station, typei

is the type of data readings requested by query i, numberi

is the number of data readings requested by query i starting
from time slot arrivaltimei, and intervali is the interval,
or sampling period (in number of time slots) of data readings
requested by query i.
Multi-user Data Query Problem in DISNs. Since there is only
one channel and one radio interface, the base station can
communicate with one sensor node at a time. When mul-
tiple queries are present at the base station simultaneously,
each query’s response time may increase significantly due to
medium contention, and some requested data readings may get
lost due to packet collision. We define the following metrics.

- For each user query, we define the query response time
as the time elapse between the slot when the base station
receives the query and the slot when the base station
receives the first data reading for that query. To focus
on our web service performance, query response time
excludes the time taken from the web users to base
station.

- To characterize the data reading loss, we define the query
loss ratio of each query as the ratio of the number of
incorrect (or lost) readings divided by the total number
of requested readings of that query.

We call our problem multi-user data query problem in
DISNs. The goal of the problem is to minimize the average
user query response time and average query loss ratio of all

the queries received while reducing the energy consumption
of sensor nodes, under the constraint that there is one single
channel and a single radio interface of each sensor node.

B. Data Caching Algorithm

The data caching technique works as follows. There are two
kinds of caches: Node Cache and BS Cache. Each sensor
node maintains a Node Cache to store the latest transmitted
data reading of each type (if the sensor node is not yet invoked
to sense and transmit data, the cache is empty). The base
station maintains a BS Cache, which saves the most recent
reading received for each data type from each sensor node.
Below we explain the data caching algorithm in details.
Node Side. After each sensor node senses a new reading,
if the difference between the new reading and the one in
its Node Cache is bigger than some threshold, the sensor
node updates the Node Cache and then transmits the updated
reading to the base station. (As the future work, we plan to
adopt some statistical methods to more accurately characterize
the threshold and decide whether two consecutive readings are
close or similar enough.)
Base Station Side. To decide the freshness of the data readings
in the BS Cache, the base station maintains a queue for each
queried sensor node and each queried data type, called current
query list, as shown in Figure 1. The current query list of
each data type of each sensor node stores all the user queries
currently requesting that data type from that sensor node in
the order of their arrival time. The empty queue of a type
indicates that currently no query is requesting that data type
from that sensor node, meaning the data in the corresponding
BS Cache may not be fresh.

When the base station receives the query
(i, sensori, arrivaltimei, typei, numberi, intervali), it
first checks the current query list of typei for sensori. If
it is not empty (which means there are queries currently
requesting the data type typei from sensori), user query
i will read the data directly from the BS Cache of typei

and sensori for numberi times, with interval as intervali.
Otherwise, the base station begins to invoke sensor node
sensori for query i’s readings.
Active Queries. We call the first query in each current query
list the active query, since active query actually invokes the
data sensing and transmission. When the active query i finishes
its numberi number of readings for typei, the base station
removes query i from its corresponding current query list.
After this, if the queue is not empty, the base station chooses
the next query in the queue as the active query, and invokes
sensori to transmit the same type of data.
Discussion of the Algorithm. Our data caching algorithm
works the best for the scenario where data readings are not
changing constantly. This assumption can be justified by the
observation that most of the physical phenomenon usually
do not change much for a period of time. Still, due to the
data intensive nature of our problem, collision and contention
are the major reasons for data query response delay and data
reading loss. As a result, the fact that the current query list is
non-empty can not guarantee that the data in the corresponding

4

���� ������	
 ��	
 ��� ���

��� �� ��

�� �� ��
������� �������������	 ���������������	 �������������	

� !"# $%&&'()! *%+!��	
, � �-�� �.
�	
������	 , � �-�� �. /��������	
Fig. 2. Analyzing the query loss ratio for one user querying one data type.

BS Cache is fresh – due to collision and contention, the
readings sent from sensor nodes to the base station may get
lost, thus failing to update the corresponding BS Cache. Query
loss ratio we defined is to quantify such effect. Below, we
show that the query loss ratio are attributed to not only the
packet collisions, but also the multi-user queries themselves.
We quantify the query loss ratio in above caching-based multi-
user queries and propose solution to further reduce it.

C. Query Loss Ratio of Multi-User Queries

Let TQ denote the query message transmission time from a
base station to a sensor node, and TR denote the response
message transmission time from a sensor node to a base
station. We assume that TQ = TR = δ considering the sizes
of both query message and response sensory data are small.
We assume the data values are changing between high and
low alternatively. We believe this is a simple but well-justified
model to characterize the data variation in data intensive
applications. We assume the data type changes between high
and low values every f time slots, i.e., the sensor detects a
different data reading every f readings and sends it back to
the base station. We first analyze the query loss ratio for one
user querying one sensor node. We then show how it can be
extended into multiple user queries.
One User Query for One Sensor Node. Let Tu and Ts denote
user query interval and sensor sensing interval respectively.
Number of requested data readings by the user is nu. Then
the total query time is nu × Tu. The time slot when the
query receives its first reading is time slot 0. As mentioned
above, after the sensor node senses a new reading, if the new
reading is different from the one in its Node Cache more
than some threshold, the sensor node sends a update message
with the sensory data back to the base station (in our above
assumption, this happens when the data type value changes
from high to low or from low to high). However, as shown
in Figure 2, during the time period when an update message
has already been sent out by the sensor and before it reaches
the base station, if the query reads from the BS Cache, it
gets an incorrect reading, resulting in a query loss. We call
such time periods the Query Loss Time Zones. There are
nt = nu×Tu/(Ts×f) such zones: [Ts×f−δ, Ts×f], [2Ts×
f − δ, 2Ts × f], ..., [ntTs × f − δ, ntTs × f]. Therefore, there
still exists query loss even though there is no contention and

collision. To calculate such query loss ratio, we need to find
for each of the nu user readings, whether it falls into one of
the zones. We use al = 1 to indicate that the lth (1 ≤ l ≤ nu)
query reading incurs a query loss, and al = 0 otherwise, as
follows.

al =





1 if (kTs × f − δ)/Tu ≤ l ≤ (kTs × f)/Tu,
where 1 ≤ k ≤ nt

0 otherwise

Then the total query loss ratio of a single user is∑nu

l=1 al/nu. The query losses can be avoided with the fol-
lowing simple algorithm. For the user’s lth (1 ≤ l ≤ nu)
query reading, if (kTs × f − δ)/Tu ≤ l ≤ (kTs × f)/Tu

where 1 ≤ k ≤ nt, the query waits for another δ time beyond
its preset query reading time, until a new sensor reading is
updated at BS Cache. Otherwise, the user follows the preset
query reading time.
Multiple User queries for One Sensor Node. Multiple users
scenario is a summation of each individual user’s single user
scenario. There are total m users. Let τ(i) and Tu(i) be
the arrival time slot and the query period of the ith user
respectively. Let a(l, i) = 1 indicate that the lth query of the
ith user gets a query loss, a(l, i) = 0 otherwise. Then,

a(l, i) =





1 if (kTs × f − δ)/Tu ≤ l ≤ (kTs × f)/Tu

and τ(i) ≤ Tu(i), where 1 ≤ k ≤ nt

0 otherwise

Then the total query loss ratio for m users is∑m
i=1

∑nu

l=1 a(l, i)/nu. Each user can use the same above
algorithm to avoid such query loss.

IV. EXPERIMENTAL EVALUATION

Our testbed, shown in Figure 3, comprises of five sensor
nodes, one base station and one web server. Each sensor
node is a Crossbow’s IRIS Mote coupled with a sensor board
(MTS310). IRIS Mote offers up to three times improved radio
range and twice the program memory over previous MICA
Motes, which makes them an ideal platform for our web
service development.

A. Reducing the Response Time in LiteOS

We found that the interactivity offered by LiteOS signifi-
cantly contributes to the round trip time delay between the
base station and the sensor nodes. In LiteOS, in order to get
the sensor readings, a sequence of “ls” and “cd” commands
are called. Notice that LiteOS is a stateless operating system.
Whenever commands like “ls” and “cd” are executed, base
station internally keeps channel and sensor node ID infor-
mation rather than the sensor node keeps those information.
For example, when “./light” command is executed, its packet
information includes both channel and node ID. Consequently,
the sequence of “ls” and “cd” commands can be completely
removed, thus resulting much lower communication delay. By
simply handling and sending a packet information of ”./light”
command to a sensor node, the response time dramatically
improves from 2114 ms to an average of 70 ms.

5

����
���� �	�	
�������
 ��	� ������

� �
�

Fig. 3. The sensor field in LiteWS testbed.

B. Experiment Settings

Below, we first discuss the hardware in our experiments. We
then introduce the query models we used in our experiments.
Finally we present the experiment results and analysis.
Varying of Sensory Data. In our testbed environment, the real
sensed data values of the physical phenomena such as light and
temperature do not change much. To emulate a data intensive
application wherein interesting sensory data are generated
dynamically, we construct a sequence of constantly changing
data values. As in the analytical analysis, we adopt that the
data values are changing in a time-slotted manner, between
high and low periodically with interval time slots. We believe
this is a simple but well-justified model to characterize the data
variation in data intensive applications and evaluate LiteWS.
More intricate and close-to-environment sensor data models
will be studied in the future.
User Query Arrival Model. User query arrival occurs at the
beginning boundary of each time slot. We define the query
arrival rate as the probability that a new user query arrives
in a time slot. We use the following two query arrival models.
• Bernoulli model. The probability that there is a user query

arriving in each time slot is identical and independent of
any other time slot. This model refers to uncorrelated
arrivals of the user queries. This probability represents
the query arrival rate.

• Bursty model. User queries are generated by a 2-state
Markovian process which alternates between IDLE and
BUSY states. The process remains in each state for a geo-
metrically distributed number of time slots, with expected
duration E[B] and E[I], respectively. During the BUSY
state, user queries (requesting for randomly different data
type) arrive continuously in consecutive time slots (one
query at one time slot). No queries arrive during the IDLE
state. We set E[B] to be 16 time slots.2 The query arrival
rate is given by p = E[B]/(E[B] + E[I]).

C. Experiment Results and Discussions

In our experiments, we set the duration of each time slot
as 100 ms. For each arriving query, it requests 10 data
readings starting from the time slot it arrives. Each query
randomly selects one of light, temperature, acoustic, magnet,

2The choice of an expected duration of 16 time slots per burst is arbitrary,
but is representative. The same qualitative results are obtained for different
burst lengths.

 1

 10

 100

 10 12 14 16 18 20 22 24

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Query Arrival Rate

With Data Caching
Without Data Caching

(a) Average response time.

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20 22 24

A
ve

ra
ge

 Q
ue

ry
 L

os
s

R
at

e
(m

s)

Query Arrival Ratio

With Data Caching
Without Data Caching

(b) Average query loss ratio.

Fig. 4. Comparison between with and without data caching under Bernoulli
model.

or acceleration as its requested data type. To achieve stability
in performance metrics. each of our experiments is run for a
sufficiently long time (5000 time slots for our experiments).
Considering the instability of wireless medium, each data point
in our experiment results is an average of five time measure-
ments. We compare the average response time and average
query loss ratio between with and without data caching, under
above two query arrival models. In both models, we increase
the query arrival rate from 10% to 24%, beyond which the
query loss ratios for all the scenarios keep unchanged.

Figure 4 shows the comparison under Bernoulli model.
Figure 4 (a) shows the performance of the response time with
respect to the query arrival rate. For without data caching,
since all of data is from sensor node, response time increases
when query arrival rate increases. However, for with data
caching, response time decreases when query arrival rate
increases. This is because when query arrival rate increases,
more queries access to the cached data, which decreases the
average response time. Figure 4 (b) shows the performance of
the query loss ratio with respect to the query arrival rate. With
the increase of the query arrival rate, the query loss ratios of
both with and without caching increase. However, with data
caching has a much lower query loss ratio compared to without
data caching. Generally, the average query response time of
LiteWS is improved 5 to 10 times and the query loss rate
is improved 2 times with data caching. At high query arrival
rate, the average query response time with data caching is two
orders of magnitude better.

Figure 5 shows the performance comparison under Bursty
model. Our observation is that even though without caching
performs not as well as with caching in terms of both average

6

 1

 10

 100

 10 12 14 16 18 20 22 24

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Query Arrival Rate

With Data Caching
Without Data Caching

(a) Average response time.

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20 22 24

A
ve

ra
ge

 Q
ue

ry
 L

os
s

R
at

e
(m

s)

Query Arrival Ratio

With Data Caching
Without Data Caching

(b) Average query loss ratio.

Fig. 5. Comparison between with and without data caching under Bursty
model.

response time and average query loss ratio, it performs much
better under Bursty traffic model than under Bernoulli traffic
model, especially when the query arrival rate is between
10% and 20%. Particularly, the average response time only
increases from 50 ms to 68 ms, and the query loss ratio almost
keeps unchanged, when query arrival rate increases from 10%
to 20%. In higher query arrival rate, the LiteWS performance
is not much different compared to under Bernoulli model.

V. CONCLUSION AND FUTURE WORK

In this paper we study the multi-user data query problem in
data intensive sensor networks (DISNs) and present our design,
implementation, and evaluation of a web service for DISNs
called LiteWS. The goal of LiteWS is to minimize the average
user query response time and average query loss ratio while
reducing energy consumption of sensor nodes. We propose a
simple caching technique and give analytical analysis of how
to reduce query loss ratio in our system. We plan to continue
our work in the following directions:
• A medium access control (MAC) layer specifically tai-

lored for DISN based web service. Currently, CSMA/CA
is partially implemented in LiteOS/LiteWS for medium
access. A MAC protocol which is designed specifically
for DISN based web services is desired.

• Multi-user data query problem in multi-hop DISNs.
Multi-hopness means larger scale of the DISNs and the
heterogenous energy consumption of the sensor nodes –
nodes close to the base station consumes more energy
than the nodes multiple hops away, which makes the data
query problem in DISNs more challenging.

VI. ACKNOWLEDGEMENT

The authors would like to thank Dr. Qing Cao for the
valuable discussion and suggestions.

REFERENCES

[1] TinyOS: http://www.tinyos.net.
[2] LiteOS: http://www.liteos.net.
[3] Virtual Earth: http://www.microsoft.com/virtualearth/.
[4] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.

In Proc. of the International Conference on Mobile Data Management
(MDM 2001).

[5] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The liteos
operating system: Towards unix-like abstractions for wireless sensor
networks. In Proc. of the 8th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN 2008), pages 233–
244.

[6] Arch Rock Corporation. Demo abstract: A sensor network architecture
for the ip enterprise. In Proc. of the 6th International Conference on
Information Processing in Sensor Networks (IPSN 2007), pages 575–
575.

[7] Amol Deshpande, Suman Nath, Phil Gibbons, and Srini Seshan. Cache-
and-query for wide area sensor databases. In Proc. of the ACM SIGMOD
International Conference on Management of Data (SIGMOD 2003).

[8] A. Dunkels. Full tcp/ip for 8-bit architectures. In Proc. of the 1st
International Conference on Mobile systems, Applications and Services
(MobiSys 2003), pages 85 – 98.

[9] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’Flynn,
Blake Leverett, Eric Gnoske, Michael Vidales, Geoff Mulligan, Nicolas
Tsiftes, Niclas Finne, and Adam Dunkels. Poster abstract: Making sensor
networks ipv6 ready. In Proc. of the 6th ACM conference on Embedded
network sensor systems (SenSys 2008), pages 421–422.

[10] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srinivasan
Seshan. Irisnet: An architecture for a world-wide sensor web. IEEE
Pervasive Computing, 2(4), October-December 2003.

[11] Jonatha W. Hui and David E. Culler. Ip is dead, long live ip for wireless
sensor networks. In Proc. of the 6th ACM conference on Embedded
network sensor systems (SenSys 2008), pages 15–28.

[12] C.-K. Lin. Channel access management in data intensive sensor
networks. 2008. University of Pittsburgh, Ph.D. Dissertation.

[13] C.-K. Lin, V. Zadorozhny, and P. Krishnamurthy. Grid-based access
scheduling for mobile data intensive sensor networks. In Proc. of the
9th International Conference on Mobile Data Management (MDM’08).

[14] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong. Tinydb: An acquisitional query processing system for sensor
networks. ACM Trans. Database Syst, 30(1), 2005.

[15] Rene Muller and Gustavo Alonso. Efficient sharing of sensor networks.
In Proc. of IEEE International Conference on Mobile Adhoc and Sensor
Systems (MASS 2006).

[16] Rohan Narayana Murty and Matt Welsh. Towards a dependable
architecture for internet-scale sensing. In Proc. of the 2nd conference
on Hot Topics in System Dependability (HOTDEP 2006).

[17] Suman Nath, Jie Liu, and Feng Zhao. Challenges in building a portal
for sensors world-wide. In Proc. of First Workshop on World-Sensor-
Web: Mobile Device Centric Sensory Networks and Applications (WSW
2006).

[18] V. Oleshchuk and V. Zadorozhny. Trust-aware query processing in data
intensive sensor networks. In Proc. of International Conference on
Sensor Technologies and Applications (SensorComm 2007).

[19] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao.
Tiny web services: Design and implementation of interoperable and
evolvable sensor networks. In Proc. of the 6th ACM International
Conference on Embedded Network Sensor Systems (SenSys 2008), pages
253–266.

[20] David Yates, Erich Nahum, Jim Kurose, and Prashant Shenoy. Data
quality and query cost in wireless sensor networks. In Proc. of
Fifth Annual IEEE International Conference Pervasive Computing and
Communications Workshops (PerCom Workshops 2007).

