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DAL: A Distributed Localization in Sensor
Networks Using Local Angle Measurement

Bin Tang, Xianjin Zhu, Anandprabhu Subramanian, Jie Gao

Abstract—We study the localization problem in sensor net-
works by using local angle measurement. Localization using
local angle information was recently proposed as an effective
localization technique, which can be used for geographical rout-
ing with guaranteed delivery. However, the existing approach is
based on linear programming (LP) and can not be implemented
distributedly. We propose, design, and evaluate DAL: a purely
distributed localization protocol in sensor networks using local
angle measurement. Localization with local angle poses unique
challenge in sensor networks due to information uncertain-
ties identified in this paper. DAL specifically addresses these
challenges. Via extensive simulations using ns2 and our own
simulator, we show that the performance of DAL is comparable
with that of the centralized LP approach in most cases. Our
preliminary results with noisy angle measurement show that
DAL keeps the global geometry of the sensor network fairly
well.

I. INTRODUCTION

Wireless sensor networks have been used in a wide range
of applications such as military surveillance, environmental
monitoring, and target tracking. In all these applications, the
information collected by sensor nodes are useful only when
coupled with the nodes’ physical locations. How to obtain
the location information of the sensor nodes or the target
of interest correctly and efficiently becomes very important.
Global Positioning System (GPS) is a widely used location
services. However, the cost and nice environment requirement
of GPS makes it not applicable in many sensor network
applications.

Many existing non-GPS localization techniques use dis-
tance measurement that starts from a fixed set of anchor
nodes and apply trilateration technique to obtain location
information for other nodes [10, 19, 21]. One limitation of
distance measurement is flip ambiguity, which results in
incorrect location information even without violating distance
constraint. This problem can be circumvented by local angle
measurement, wherein each sensor node measures its local
angle of two adjacent edges between itself and two neighbor
nodes, as shown in Figure 1 (a). The local angle information
at each sensor shows the relative direction and order of
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its neighbors, thus the localization problem could be made
easier. Local angles between adjacent edges can be measured
by using multiple ultrasound receivers [17] or by using
directional antennas [9, 20]. In our work, we assume that
each node is equipped with such antenna array so that it
can measure the local angle between two edges of itself and
two neighbor nodes.

Localization using local angle information was recently
proposed as an effective localization technique, which can
be used for geographical routing with guaranteed delivery
[5]. However, the existing approach is based on linear pro-
gramming and can not be easily implemented in a distributed
manner. In this paper, we propose, design and evaluate DAL:
a Distributed, local Angle-based Localization protocol in
sensor networks. Since the nodes only measure local angles,
our approach does not rely on any pre-defined orientation.

Anchor-free local angle-based localization does not yield
ground truth coordinates. It is subject to not only scaling,
but also global translation and rotation. We show that with
only one anchor node, DAL can overcome these limitations
and give absolute coordinates for the sensor nodes. Besides,
in DAL, we identify some other information uncertainties,
which pose unique challenge to localization in sensor net-
works, and show how DAL addresses these issues.

DAL consists of several stages and thus some synchro-
nization is needed. In each stage, however, all the nodes
communicate with each other simultaneously (using node
IDs and other simple information), therefore preventing the
error estimation from accumulating and propagating into a
global scope. For the noisy angle measurement, we propose
modified mass string optimization technique in DAL. Via
extensive simulations using both ns2 simulator and our own
simulator, we show DAL performance is comparable with the
existing linear programming approach in most cases.

II. RELATED WORK

Localization has its deep root in graph theory known as
the graph embedding problem, which studies how to draw a
graph on a Euclidean space while preserving the locality in
the graph structure. Localization with angle measurement in
sensor networks has been studied vigorously in theory. Bruck
et al. [5] prove the NP-hardness of this problem and propose
a practical anchor-free embedding scheme by solving a linear
program. Katz et al. [8] study how to find the maximum rigid



2

components as means for direction-based localization. Basu
et al. [2] study the problem of localization with noisy distance
and angle information.

The first work to study the distributed localization in sensor
networks using angle of arrival (AoA) is by Nasipuri et
al. [11]. They propose a localization technique by which
the sensor nodes determine their positions with respect to
a set of fixed beacon nodes that are capable of covering the
entire network area by powerful directional wireless trans-
missions. Niculescu et al. [13, 14] present methods to infer
both position and orientation in ad hoc networks where nodes
can measure AoAs with their immediate neighbors. Two
algorithms are proposed: DV-Bearing and DV-Radial, each
providing different signaling-accuracy-coverage-capabilities
tradeoff. Peng et al. [15] propose a probabilistic model
which can achieve better accuracy and precision than those
in [13]. AoA approach requires that each node measures
the angle between the direction of a received signal from a
beacon node and some reference direction or orientation. In
many sensor network applications in harsh or inaccessible
environment, however, the reference direction can not be
easily identified and supported. Moreover, most of the work
require the existence of a number of anchor nodes; and the
localization algorithms usually start with these anchor nodes
and incrementally localize other nodes. A drawback of such
incremental approach is that the local measurement errors are
propagated, resulting in poor overall localization – as a result,
an optimization phase is usually adopted in these algorithms
to fix such error.

The angle-based localization is currently available in sen-
sor nodes developed by the Cricket Compass project [18].
Nasipuri et al. [12] present an experimental prototype of an
indoor localization system that uses angle estimation. The
system uses three rotating optical beacon signal generators
that are built using commonly available off-the-shelf compo-
nents. These initial realizations prove the potential feasibility
of angle measurement capability. Efrat et al. [6] show that
incorporating the local angle information can significantly
improve the performance of mass-spring relaxation for sensor
localization.

III. NETWORK MODEL AND DEFINITIONS

We model the sensor network as a unit-disk graph (UDG),
G(V, E), where V is the set of sensor nodes and E is the
set of edges. For a pair of nodes u, v in UDG, the edge uv
exists if nodes u, v are within the transmission range of each
other. For simplicity, we assume all the nodes have the same
transmission range.

Given a sensor network UDG G, we define a triangle
chain as a maximal subgraph of G in which any two nodes
are connected through a sequence of triangles. We define
the cluster of node A as the subgraph of G by A and all
its neighbor nodes, and A is the cluster head of its cluster.
Each cluster is a basic local coordinate system, for which
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Fig. 1. (a) Each node measures all the angles between two adjacent edges
of itself and two neighbor nodes. In this case, node A measures θ1, ..., θ5.
(b) In A’s localized coordinate system, AB is positive x-axis. |AB| = 1.
A has two subclusters, the one with AB is its primary subcluster. E has
one subcluster. F and G have zero subcluster. (c) Two triangle chains are
connected either by a common node or by a linear topology.

the cluster head is the origin (with coordinate (0, 0)). In the
cluster, the direction of the edge which belongs to largest
number of triangles is designated as the positive x-axis and
the edge length is set as 1 (when there is a tie, the edge
whose the other node has a smaller ID is chosen). For each
node, its subcluster is defined as a maximal subgraph in
its cluster, wherein any two nodes are connected through a
sequence of triangles. Each subcluster is assigned a subcluster
ID. The subcluster with positive x-axis is called the primary
subcluster. For nodes only having one or more dangling
edges (the edges not in any triangles), we say they have zero
subcluster. Figure 1 (b) shows that in the local coordinate
system of node A, edge AB is chosen as the positive x-axis
and |AB| = 1. A has two subclusters, the one with AB is
its primary subcluster. E has one subcluster. F and G have
zero subcluster.

IV. DAL: DISTRIBUTED ANGLE-BASED LOCALIZATION
PROTOCOL

In this section, we first present the DAL protocol. We then
discuss the fundamental limitations of angle-based localiza-
tion and our solutions in DAL.

A. Distributed Localization Protocol

DAL consists of three stages: local clustering, inner trian-
gle chain merging, and inter triangle chain merging.

1) Local Clustering: Each node broadcasts a HELLO
message to all its neighbors thus each node has the list of all
its neighbors. It measures all the angles between two adjacent
edges between itself and two neighbor nodes, as shown in
Figure 1 (a). It then sends to each neighbor node the list
of local angles involving such neighbor, and the ID of the
third node involved. When each neighbor receives the list, it
checks if the third node is also its neighbor. If so, it concludes
that the three nodes form a triangle.

At the end of the local clustering, each node will get hold
of all the triangles of which it is a vertex. It chooses the edge
which is common to the largest number of such triangles
as the positive x-axis in its local coordinate system, and
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the subcluster with such edge as the primary subcluster. By
the fact that it knows the angle between any two adjacent
edges, the relative angle of every edge e, which is the
clockwise angle between the positive x-axis and e, can be
uniquely determined. The relative lengths of all edges in
its primary subcluster can also be determined using Law of
Sines. Therefore, the local coordinates of all the nodes in the
primary subcluster can be calculated accurately. Nodes not
in the primary subcluster are localized in the next two stages
of DAL.

2) Inner Triangle Chain Merging: In this stage, the co-
ordinate systems of different local clusters are merged into
a consistent coordinate system in the same triangle chain.
Nodes make merging decisions based on their IDs — node
with a larger ID merges into the coordinate system of node
with a smaller ID. Specifically, each node maintains two state
variables: SubgraphId and SubgraphSize, indicating
which node’s coordinate system it is currently in and how
many nodes are in it. The initial value of SubgraphId
and SubgraphSize are -1 and 1 respectively. The use
of SubgraphSize will become clear in the stage of inter
triangle chain merging.

To reduce network traffic, the following mechanism is used
in DAL. Each node having one or more subclusters sets its
SubgraphId with its ID, and sends a packet to each neigh-
bor in its primary subcluster; nodes with zero subcluster do
not change its initial values and do not send any packet. The
format of the packet sent from node j to node i is: (sender’s
ID j, j’s SubgraphId, j’s SubgraphSize, j’s current
coordinate, i’s relative length, i′s relative angle). When node
i receives the packet, it compares its own SubgraphId with
the sender’s. If it is smaller than or equal to the sender’s
SubgraphId, it drops the packet and stops. Otherwise,
i updates its SubgraphId with j’s SubgraphId and
its SubgraphSize with j’s SubgraphSize + 1. i also
calculates and updates its coordinate in j’s coordinate system
using the relative length and relative angle information in
the received packet. Next, for each of i’s neighbor k from
the same subcluster as that of j, i calculates and updates
k’s relative length and angle and sends k a packet with
such information. This process stops until no node receives
any packets. Finally, one more round of message passing is
needed to update the SubgraphSize of all the nodes in the
same triangle chain with the actual size (number of nodes)
of the triangle chain.

3) Inter Triangle Chain Merging: For two connected trian-
gle chains, they either share a common node or are connected
by one or more edges in a linear topology, as shown in Figure
1 (c). Inter triangle chain merging transforms the different
coordinate systems of different triangle chains into a globally
consistent system for the whole sensor network.

In this stage, merging is based on SubgraphSize, the
size of each triangle chain. Triangle chain with smaller
size will be merged into the coordinate system of triangle
chain with larger size, because the triangle chain with the

largest size is the backbone of the network. We show in
simulation that this maintains the network topology fairly
well. To reduce traffic, only following nodes broadcast a
packet to all its neighbors initially: nodes having more than
one subclusters or nodes having one subcluster and one or
more dangling edges. The format of the packet sent from j to
i is: (sender’s ID j, j′s SubgraphID, j′s SubgraphSize,
j′s current coordinate, i′s relative angle). Note i′s relative
length is not included sine the absolute distances among
nodes have been obtained in inner triangle chain merging.
When a node receives the packet, if its SubgraphSize is
smaller than that of the sender, it updates its relative angle
and broadcasts. Tie is broken by SubgraphId. Otherwise,
it discards the packet and stops. For the dangling edges, we
assume their lengths are the transmission range.

B. Information Uncertainties of Local Angle Measurement

There are two limitations of local angle measurement.
First is the problem of scaling, due to the fact that the pure
angle measurement does not yield any information about the
absolute distance between two sensor nodes. Second is that
even within the local cluster of a node, the neighbor nodes
belonging to different subclusters (or from different dangling
edges) can not locate accurately relative with each other. As
a result, the nodes from different triangle chains can not
locate accurately relative with each other; and the nodes on
the dangling edges can not be localized accurately too. We
call these intrinsic limitations the information uncertainties
in local angle localization.

In DAL, we keep the information uncertainties as local
as possible and prevent their effects from propagating into
the whole network. We utilize the following constraints and
techniques to improve the localization effectiveness in DAL.
• Local Clustering Constraint. In local clustering, only

the nodes from the primary subcluster can be accurately
localized in the local coordination systems. Neighbor
nodes from different subclusters must have distance
larger than the transmission range. This can be used
to refine the relative length calculation of nodes from
different subclusters. For example, Figure 1 (b) shows
that since C and D belong to two different subclusters,
|CD| must be greater than the transmission range.
Thus |AC| + |AD| must be grater than transmission
range. Since |AC| is accurately estimated in the primary
subcluster, the estimation of |AD| can be fixed more
accurately in some range.

• Triangle Chain Constraint. We fix the actual distance
among nodes in the same triangle chain as accurately
as possible. We assume the length of the longest edge
is equal to the transmission range of the sensor nodes,
and then all other edges are scaled accordingly.

• Triangle Chain Rotation. Since the actual edge length
is estimated in inner triangle chain merging, when
merging two triangle chains together, only rotation of
their coordinate systems is involved, which keeps the
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general topology of the global system as accurate as
possible.

V. DAL WITH NOISY ANGLE INFORMATION

We extend DAL to noisy angle measurement. We modify
the distance-based mass string optimization model in [1, 16]
and adjust it into our local angle measurement. Our modified
mass string model runs on each node at different stages. In
this paper, we focus on the noise-incurred errors, not the
measurement errors caused by information uncertainties. Due
to space limitations, we only present the modified mass string
optimization for the local clustering stage of DAL. It can be
applied to inner triangle chain merging stage with some twist.

Modified Mass String Model. We explain some notations
first. Consider triangle 4ijk in node i’s local cluster, as
shown in Figure 2. We assume node j and k are in the
primary subcluster of node i. The measured angles are
denoted as ∠m

ijk, ∠m
jki and ∠m

kij , which are the local noisy
angle measurement. Using Law of Sines, node j, k each
has a calculated position (node i’s position is (0,0)). They
send their position information to each other. Each node then
calculates the distance between itself and any neighbors, and
all the inner angles of the triangles formed by itself and two
of its neighbors. The calculated distance between i and k is
denoted lcik, and the calculated angles are denoted as ∠c

ijk,
∠c

jki and ∠c
kij respectively.

The mass string model works as follows. Consider triangle
4ijk, if ∠c

jki 6= ∠m
jki, then a force, denoted as Fik, is

put on node i with the direction perpendicular to edge ik
and Fik = (∠c

jki − ∠m
jki) ∗ lcik. The positive sign of Fik

indicates the force is towards 4ijk while the negative away
from 4ijk. Similarly, a force Fij is put on i too. The
resultant force on node i is given by Fi =

∑
neighbor node j Fij .

The energy Eij due to the difference in the measured and
calculated angle is the square of the magnitude of Fij .
The total energy of node i is Ei =

∑
neighbor node j Eij =∑

neighbor node j F
2
ij . The total energy of the triangle chain

is given by E =
∑

i in the triangle chain Ei. Each node i can
calculate its energy Ei and move towards the direction of
Fi to reduce this energy such that it is smaller than some
threshold.

VI. PERFORMANCE EVALUATION

We implemented DAL in ns2 simulator [7], which sup-
ports multi-hop wireless networks with physical, data link and
MAC layer models [3]. The propagation model is TwoRay-
Ground. The distributed coordination function (DCF) of IEEE
802.11 is used as the MAC layer. The bit-rate is 2Mb/sec
and the transmission range is 250m. The simulation area
is 3750m × 3750m. We vary the number of sensor nodes
from 200, 400, .., to 1000. Each data point is an average
of simulation results from 5 different random topologies.
When the generated UDG is disconnected, we only show the
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lij

lik

Fig. 2. Modified mass spring model. ∠c
jki is calculated angle, ∠m

jki is
measured angle, lcik is calculated distance.

simulation results on its largest connected component, since
we can work on each connected component separately.

We also implement DAL using our own simulator written
in C. Such simulator does not consider MAC layer effect
such as collision and contention, thus serving as an upper
bound of the system performance of DAL. In this section,
we first study localization with accurate angle measurement,
and compare our approach with the existing LP approach.
We then study localization with noisy angle measurement.

A. Accurate Angle Measurement

We compare DAL with the LP algorithm in [4]. The
authors in [4] proposed a practical anchor-free embedding
algorithm by solving a linear program. To evaluate how
good the resulting coordinates are compared with the actual
coordinates, they define the following metrics. Size of a UDG
is its total number of nodes. Order of a UDG is the number of
nodes in its largest connected component. Distance violation
is the number of non-adjacent node pairs that are mistakenly
connected in the embedding; derror is the ratio between the
minimum distance of such non-adjacent node pairs and the
transmission range1. extra crossing is the number of edge
pairs that do not cross in the original UDG but mistakenly
cross each other in the embedding.

In [4], simulation is done in a 15 × 15 square and each
node has transmission range of 1. And the size of network
is increased from 200, 400, ... to 1000. We mimic such
scenario in ns2 by adopting a 3750m × 3750m field with
fixed transmission range of 250m, and increasing the network
size in the same range. The simulation result of [4] and the
simulation result of our DAL are in Table I.

Comparing these two results, we see that when network
is very sparse (200 nodes), DAL performs as well as the LP
algorithm, with the same distance violation and comparable
derror and extra crossing. However, in a moderately and
highly dense network (400 nodes and larger), DAL does

1In [4], derror is defined as the minimum distance between the non-
adjacent nodes in the embedding. We use ratio here. Because both ns2 and
our C simulator use different transmission range than that in [4]; the ratio
makes the results more comparable.
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TABLE I
PERFORMANCE COMPARISON BETWEEN DAL WITH LP APPROACH. DAL1 , DAL2 ARE THE RESULTS FROM NS2 AND C SIMULATOR, RESPECTIVELY.

size order node degree distance violation derror extra crossing
LP DAL1 DAL2 LP DAL1 DAL2 LP DAL1 DAL2 LP DAL1 DAL2 LP DAL1

200 33.22 28.12 32.5 3.64 3.32 3.36 0.8 0.8 0.5 0.9728 0.828 0.993 0.00 0.0
400 337.96 368.42 359.11 5.45 5.38 5.40 9.68 43.21 28.89 0.7642 0.10 0.479 0.50 25.23
600 596.82 593.81 596 7.91 7.83 7.855 6.50 52.40 25.6 0.8714 0.57 0.425 0.68 126.3
800 799.64 798.22 799.8 10.52 10.35 10.44 1.60 80.02 3.3 0.9568 0.6 0.869 0.10 283.2
1000 999.94 999.62 1000 13.19 12.98 13.01 0.68 29.12 8.89 0.9601 0.756 0.963 0.00 640.3
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(b) Embedded graph by DAL.

Fig. 3. The embedding of UDG with 400 nodes by DAL. The size of largest connected component = 378, average node degree = 5.05, missed connection
is 13, distance violation is 25.

not fare as well as LP algorithm. The reasons are twofold.
First, DAL is a purely distributed protocol and no centralized
knowledge such as the global topology is available. Second,
due to the high density of the network, wireless medium gives
rise to lots of packet loss due to collision in the network.
To evaluate how well DAL actually performs without packet
loss, we implement our own simulator in C code. The C
simulator serves as the upper bound of the performance
of DAL. In C simulator, the transmission range is 10, and
we vary the network size from 200, 400, ..., to 1000 in a
150 × 150 square. Note that the setup is comparable with
the ones used in ns2 and the centralized algorithm. The
simulation results in C simulator is in Table I. It shows
that in both sparse (200 nodes) and dense (800 and 1000
nodes) networks, DAL performs very competitively with the
centralized approach. However, in moderate dense network
(400 and 600 nodes), DAL does not perform as well as
the centralized one. This is because the largest connected
component in moderately dense networks has more dangling
edges or linear topologies than those in sparse or dense
networks, which contributes to the information uncertainties.

Finally, all three simulation results show the same trend
– they obtain better localization results when network size
is either sparse or dense (200, 800, or 1000 nodes), than
those when the network size is moderately dense (400 or 600
nodes). This is attributed to the same fact that there are more
linear topologies or dangling edges in the largest connected

component of a UDG when the network is of moderate size,
causing the same uncertain effect to localization in all three
methods.

To give a view how DAL maintains the global topology
of the UDG, we compare the UDG of a 400 nodes network
before and after the embedding by DAL using ns2 simula-
tion, shown in Figure 3 with statistics included. It shows that
DAL maintains the network topology fairly well.

B. Noisy Angle Measurement

In this part we show some preliminary simulation results
in noisy angle measurement using our C simulator. In the
simulation, 200 nodes are randomly deployed inside a 15×15
square. We assume that each node measures the angle with an
error uniformly distributed in [−4,+4], where4 = 1◦. Due
to noisy measurement, angles with very small value become
useless for localization. Therefore, we adopt a threshold,
which is the smallest angle kept in our algorithm – an-
gles smaller than threshold are simply neglected. We set
threshold = 4◦ in our simulation.

Figure 4 shows the original graph and the embedded one
after DAL with modified mass string model. There are 27
missed connections and 49 distance violations due to noisy
measurement. The missed connections are shown as the red-
colored edges in Figure 4(b). It can be seen that DAL keeps
the global geometry fairly well.
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(a) Original graph. (b) Embedded graph by DAL.

Fig. 4. The embedding of UDG of 200 nodes with noisy angle measurement by DAL. 4 = 1◦, threshold = 4◦, average node degree = 5.63, missed
connection is 28, distance violation is 49.

VII. CONCLUSION AND FUTURE WORK

In this paper we study the problem of localization prob-
lem in sensor networks using local angle information. We
propose, design and evaluate DAL: a distributed protocol
which is only based on node-to-node communication. Using
both ns2 and our own simulator, we compare DAL with
an existing linear programming approach. We show that the
result is competitive. Besides further improving our DAL and
making it more robust, we plan to improve our work in three
directions. First, we plan to incorporate mobility into DAL,
where the node links break and reconnect dynamically. This
is important for mobile sensor network application such as
traffic monitoring in vehicle networks. Second, noisy angle
measurement is rather preliminary. We will further improve
the mass string optimization model and apply it in the inter
triangle chain merging too. Third, as a further comparison
between DAL and the linear programming approach, we will
explore how DAL performs in the geographical routing.
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