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Abstract— In intermittently connected sensor networks, wherein
sensor nodes do not always have connected paths to the base
station, preserving generated data inside the network is a new
and challenging problem. We propose to preserve the data items
by distributing them from storage-depleted data generating nodes
to sensor nodes with available storage space and high battery
energy, under the constraints that each node has limited storage
capacity and battery power. The goal is to maximize the minimum
remaining energy among the nodes storing the data items, in
order to preserve them for maximum amount of time until next
uploading opportunity arises. We first give feasibility condition of
this problem by proposing and applying a Modified Edmonds-Karp
Algorithm (MEA) on an appropriately transformed flow network.
We then show that when feasible solutions exist, finding the optimal
solution is NP-hard. We develop a sufficient condition to solve the
problem optimally. We then design a centralized greedy heuristic
with less time complexity than that of the optimal, which also
works when feasibility can not be satisfied and network partitions
arise. Via extensive simulations, we show that the heuristic performs
comparably to optimal.

Keywords – Data Preservation, Intermittently Connected Sen-
sor Networks, Network Flow-Based Algorithms

I. Background and Motivation

Many of the modern sensor network applications, such as
solar-powered sensor networks [12], underwater or ocean sensor
networks [4], and sensor networks monitoring volcano eruption
and glacial melting [7, 13], are deployed in remote areas and
challenging environments, where the deployed sensor network
must operate without a closeby base station for a long period of
time. In these applications, a large volume of generated data is
first stored inside the network, and then uploaded to the distant
base station via low rate satellite link [8], or periodic visit by
data mules [3]. In a challenging environment, however, such
uploading opportunities would be unpredictable and rare, mak-
ing network connectivity to the distant base station inherently
intermittent. We refer to such sensor networks as intermittently
connected sensor networks.

When events of interest take place, sensors close to them
may collect data more frequently than nodes far away, therefore
run out their storage space more quickly than others and can
not store newly generated data. The overflow data thus must
be distributed/offloaded to other sensor nodes with available
storage space to avoid getting lost. Besides, all the sensor nodes
have finite and unreplenishable battery power, and are awake
all the time monitoring while waiting for the data uploading
opportunities, draining their battery energy constantly (Duty-
cycling, in which individual sensor node activates very briefly for
sensing and communication and stays in dormant state for a long
period of time, is beyond the scope of this paper). It is therefore
preferable that data is offloaded to sensor nodes with not only
free storage space, but also high battery energy, to be preserved
for a longer time. In this paper, we aim to preserve the overflow
data for maximum amount of time by distributing it from storage-

depleted data generating nodes (referred to as data generators)
to sensor nodes with available storage space and high battery
power (referred to as destination nodes), while considering that
each sensor node has limited battery power and storage capacity.
Note that there could be data generating nodes whose storage is
not depleted yet and therefore can store more data - they are
not considered as data generators in this paper. We refer to this
problem as storage-depletion induced data preservation problem
(SDP). The SDP is naturally divided into two sub-problems:

• Feasibility of Data Preservation. Due to energy constraint
at sensor nodes and in the event of network partitions, it is
possible that not all the overflow data items can be offloaded.
In this case, we say that the data preservation is infeasible.
For any instance of SDP, we must decide whether the data
preservation is feasible. If not, we endeavor to offload as many
data items as possible.

• Data Preservation Maximization. When feasible solutions
exist, it is important to achieve energy balancing among nodes
that store data, to preserve all the data items. We assume that
data preservation fails when the first data loss occurs, and
are interested in maximizing the minimum remaining energy
of destination nodes, after all the data items are successfully
distributed. The challenge is that we not only need to find
destination nodes to store the data items, but also need to find
the paths along which each data is distributed from its data
generator to destination node.

II. Problem Formulation of Data Preservation
Maximization

Network Model. The sensor network is represented as an
undirected connected graph G(V,E), where V = {1, 2, ..., N}
is the set of N nodes, and E is the set of edges. There are p
storage-depleted data generators, denoted as Vs. Without loss of
generality, let Vs = {1, 2, ..., p}. Data generator i is referred to
as DG i. The sensory data are modeled as a sequence of raw
data items, each of which has the same unit size. Let si denote
the number of data items DG i needs to distribute (that is, the
amount of overflow data at DG i). Let q =

∑p
i=1 si be the total

number of data items to be distributed in the network. Let mi

be the available free storage space (in terms of number of data
items) at non-DG sensor node i ∈ V − Vs.

Energy Model. Sensor node i (including DGs) has a finite and
unreplenishable initial energy Ei, which is an integer number. In
our energy model, for each node, sending a data item costs 0.5
unit of energy and receiving a data item costs 0.5 unit of energy.
If a node is the DG offloading its data item or a destination node
receiving the data item, it costs 0.5 unit of energy; if a node is
an intermediate node relaying the data item, it costs one unit of
energy (0.5 receiving and 0.5 sending).



Problem Formulation. Let D = {D1, D2, ..., Dq} denote the
set of q data items to be distributed in the entire network. Let
S(i) ∈ Vs, where 1 ≤ i ≤ q, denote the DG of data item
Di. A distribution function is defined as r : D → V − Vs,
indicating that data item Dj ∈ D is distributed from S(j) to
its destination node r(j) ∈ V − Vs. Let Vd denote the set of
destination nodes, i.e., Vd = {r(j)|1 ≤ j ≤ q} ⊆ V − Vs. Let
Pj : S(j), ..., r(j), referred to as the distribution path of Dj , be
the simple path (i.e., a set of distinct sensor nodes) along which
Dj is distributed from S(j) to r(j) (note that r(j) 6= S(j), since
each item must be offloaded from its storage-depleted DG). Let
xij be the energy cost incurred by sensor node i in the process of
distributing data item Dj from S(j) to r(j), and let E′

i denote i’s
energy level after all the q data items are distributed. Then, E′

i =
Ei−

∑q
j=1 xij ,∀ i ∈ V , where xij = 1 if i ∈ Pj−{S(j), r(j)},

xij = 0.5 if i ∈ {S(j), r(j)}, and xij = 0 otherwise.
The objective of the data preservation maximization problem

is to find a distribution function r and a set of paths P =
{P1, P2, ..., Pq}, to distribute each of the q data items to its
destination node, such that the minimum energy among all the
destination nodes is maximized post distribution, i.e.

maxr,P min1≤i≤q E
′
r(i), (1)

under the energy constraint that each node can not spend more
energy than its initial energy level, E′

i ≥ 0,∀ i ∈ V , and
the storage capacity constraint that the number of data items
offloaded to node i is less than or equal to node i’s storage
capacity, |{j | r(j) = i, 1 ≤ j ≤ q}| ≤ mi,∀ i ∈ V .

Fig. 1. Illustration of the SDP problem.

EXAMPLE 1: Fig. 1 gives an example of the SDP in a small
linear sensor network with four sensor nodes. The initial energy
level of each node is also indicated. Nodes 1 and 2 are DGs, with
2 and 2 data items to offload respectively. Nodes 3 and 4 are
non-DGs, with 4 and 4 available storage spaces, respectively. The
optimal solution is that all the data items are offloaded to node
3, resulting in the minimum remaining energy of destination
nodes as 1 (node 3’s remaining energy post distribution). Other
solutions that one or more data items are offloaded to node 4
are not optimal. �

Theorem 1: The data preservation maximization problem is
NP-hard.
Proof: We prove it by reducing the maximum 3-Dimensional
matching problem [2] to data preservation maximization prob-
lem. The proof is omitted due to space constraints.

Related Work. Tang et al. [10] have studied energy-efficient
data redistribution problem in data-intensive sensor networks.
Valero et al. [11] combine both data redistribution and retrieval
into a single problem and propose an energy efficient approach
to preserve the data in cases where communications with the
sink are disrupted. However, both work implicitly assume that
each sensor node has infinite energy level. Consequently, their
objectives are to minimize the total energy consumption in data
redistribution (and retrieval), which are shown to be solvable
optimally in polynomial time. In this paper, we consider that

each node has finite and unreplenishable energy. To preserve data
for longest time, it is more desirable to maximize the minimum
remaining energy of the destination nodes, which is shown to be
NP-hard.

Takahashi et al. [9] propose data preservation heuristics in
intermittently connected sensor networks. However, it assumes
that each data generator has only one data item and each
sensor node has one storage capacity, and presents only heuristic
algorithms. Our work generalizes their work by permitting each
data generator to have an arbitrary number of data items and
each node to have arbitrary storage capacity. Furthermore, we
present an optimal solution under some conditions.

Our work was inspired by a sequence of system research in
disconnection-tolerant storage networks (EnviroStore [6], Envi-
roMic [5], SolarStore [14], and AdaptSens [12]). EnviroStore and
EnviroMic are cooperative distributed storage systems designed
for disconnected operations of sensor networks, to improve the
utilization of the network’s data storage capacity. EnviroStore
provides more general storage balancing solutions, while Envi-
roMic focuses on acoustic monitoring, storage and trace retrieval.
SolarStore and AdaptSens extend both above storage systems
by considering solar energy and data reliability, and present
an adaptive data collection, replication, and storage service for
solar-powered sensor networks. In contrast, our work models the
data preservation, coupled with storage and energy dynamics and
balancing, as graph-theoretic problems. More specifically, our
work has the theoretical roots in network flows, while address-
ing a specific sensor network application with storage/energy
constraints of sensor nodes. We focuses on the hardness of the
problems and try to achieve the optimality for the algorithm.

All of the above works do not identify and solve the feasibility
problem in data preservation. As a result, their proposed tech-
niques are not applicable for data preservation under challenging
environment, wherein network partitions and energy-depleted
sensor nodes are common.

III. Feasibility of Data Preservation

To find if any given instance of SDP is feasible, we first
transform undirected graph G(V,E) into a new directed graph
G′(V ′, E′) as follows:
1. Replace each undirected edge (i, j) ∈ E with two directed
edges (i, j) and (j, i). Set the capacities of all the directed
edges as infinite.

2. Split node i ∈ V into two nodes: in-node i′ and out-node
i′′. Add a directed edge (i′, i′′) with capacity of Ei, the initial
energy level of node i. All the incoming directed edges of node
i is incident on i′ and all the outgoing directed edges of node
i emanate from i′′.

3. Add a new source node s, connect it to in-node i′ of DG
i ∈ Vs with an edge of capacity si. Add a sink node t, and
connect out-node j′′ of non-DG node j ∈ V − Vs to t with an
edge of capacity mj .
Figure 2 (a) shows the transformed network graph correspond-

ing to the linear sensor network in Figure 1.

Modified Edmonds-Karp Algorithm (MEA). Edmonds-Karp
algorithm [1] is an efficient maximum flow algorithm, wherein
it always finds a shortest path between source and sink in the
residual graph, and uses it as the next augmenting path. Next
we present a modified Edmonds-Karp algorithm, called MEA
(Algorithm 1), and demonstrate that it can be applied to above
transformed G′ to test the feasibility of any given instance of
SDP. We first give below definitions.



Definition 1: (Sending Edge and Receiving Edge in a residual
graph of G′(V ′, E′)) In any residual graph of G′(V ′, E′) with
some flow, for an s-t augmenting path, the second edge and the
penultimate edge are defined as sending edge and receiving edge,
respectively. The capacities of the sending and receiving edges
represent the current energy level of the corresponding DG and
non-DG nodes. �

Algorithm 1: Modified Edmonds-Karp Algorithm (MEA).
Input: G′(V ′, E′)
Output: flow f
0. Notations:

f : current flow from s to t

G
′

f : residual graph of G′ with flow f

cf (u, v): residual capacity of edge (u, v)

1. f = 0; G
′

f = G′

2. while (G
′

f contains an s-t path P using BFS)
3. for each edge (u, v) in P
4. if (u, v) is the sending edge or the receiving edge
5. cf (u, v) = 2× cf (u, v)
6. Let cf (P ) = min{cf (u, v) : (u, v) ∈ P}
7. Augment flow f along P
8. for each edge (u, v) in P
9. if (u, v) is an sending edge or the receiving edge
10. cf (u, v) = 0.5× cf (u, v)− 0.5× cf (P )
11. cf (v, u) = cf (v, u) + 0.5× cf (P )
12. else
13. cf (u, v) = cf (u, v)− cf (P )
14. cf (v, u) = cf (v, u) + cf (P )
15. end while;
16. RETURN f

Fig. 2. (a) The transformed graph G′(V ′, E′) of the linear sensor network
G(V,E) in Figure 1 for feasibility problem. Whether there exists a maximum
flow of 4 in the transformed graph indicates whether there exists a feasible data
preservation strategy in the original linear sensor network. (b) The transformed
graph G′′(V ′′, E′′) of the linear sensor network G(V,E) in Figure 1, given
that the optimal destination nodes (node 3), and the minimum energy destination
node np (node 3) with its energy level post distribution E′

np
are all known.

Discussion of MEA. The time complexity of MEA is the
same as Edmonds-Karp, which is O(|V ′||E′|2) = O(N5) [1].
However, there are several significant differences between MEA
and Edmonds-Karp algorithm. First, in MEA, to find an s-t path
in G

′

f using BFS (line 2), all sending and receiving edges in G
′

f

with residual capacity greater than zero are considered (therefore
an sending or receiving edge with capacity 0.5 will still be a
valid edge in any s-t path). Second, to find residual capacity of
an augmenting path P (line 6), the capacities of sending and
receiving edges are doubled (lines 3-5). This is because that
residual capacity of any augmenting path should be a positive
integer while residual capacities of sending or receiving edges
could be multiples of 0.5. Therefore, the residual capacities of

sending and receiving edges are doubled first in order to find the
amount of flow (data items) that can be sent along P . Third, in
line 10, the residual capacities of the sending and receiving edge
in P are first halved, to bring back to their correct values; then
reduced by half of the residual capacity of path P , since it costs
0.5 unit of energy for the DG node (resp. destination node) to
send (resp. receive) one data item.

Theorem 2: For any instance of the SDP, it is feasible to
distribute all the q data items from DGs to other nodes if and
only if that there is a maximum s-t flow of value q generated by
the MEA in G′(V ′, E′). MEA also gives the distribution path
for each data items.
Proof: The proof is omitted due to space constraints.

Below corollary immediately follows.
Corollary 1: When not all the data items can be offloaded

due to energy constraint of sensor nodes, the MEA gives
maximum number of data items that can be offloaded and each
data item’s distribution path.

IV. Centralized Algorithms for Data Preservation
Maximization

A. Optimal Data Preservation Algorithm When Vd is Known

Theorem 3: When feasibility satisfies for a sensor network
G(V,E), in the optimal solution, if the set of destination nodes
Vd, the minimum energy destination node (np) and its energy
post distribution (E

′

np
) are known, then finding the q correspond-

ing distribution paths is equivalent to finding the maximum flow
of value q on an appropriately transformed graph G′′(V ′′, E′′)
using MEA.
Proof: First we transform undirected graph G(V,E) into a new
directed graph G′′(V ′′, E′′).
1. Replace each undirected edge (i, j) ∈ E with two directed
edges (i, j) and (j, i). Set the capacities of all the directed
edges as infinity.

2. Split node i ∈ V into two nodes: in-node i
′

and out-node i
′′

.
Add a directed edge (i

′
, i

′′
): if i ∈ Vd, set the edge capacity as

Ei−E
′

np
(note that Ei−E

′

np
is always greater than or equal to

zero); otherwise, set the edge capacity as Ei, the initial energy
of node i. All the incoming directed edges of node i is incident
on i

′
and all the outgoing directed edges of node i emanate

from i
′′

.
3. Add a new soruce node s and connect it to in-node i′ of DG
i ∈ Vs, and set the edge capacity as si. Add a new sink node t,
and connect out-node j′′ of destination node j ∈ Vd to t with
an edge of capacity mj .
The rest of the proof is similar to that for Theorem 2.
Figure 2 (b) shows the transformed graph assuming that

destination nodes (node 3) are given and node 3 is node np.
Note the differences between Figure 2 (a) and Figure 2 (b): in
Figure 2 (a), new sink node t is connected to all the non-DG
nodes while in Figure 2 (b), t is connected to all the destination
nodes; besides, some edge capacities are different.

Optimal Algorithm When Vd is Known. With the support of
Theorem 3, next, we show that if the optimal destination set
Vd is given, then the optimal data distribution can be found in
polynomial time, using Algorithm 2. The key observation is that
for each destination node i ∈ Vd, it participates in at most q times
of data relaying, therefore its energy level after distribution E′

i

satisfies: Ei − q ≤ E′
i ≤ Ei. Algorithm 2 works as follows.

For each node i ∈ Vd, we assume that it is the node np (i.e.,
the destination node with minimum energy post distribution) and
then run a binary search of its remaining energy E′

np
in the range



[Ei − q, Ei]. We find the maximum E′
np

value that still yields a
maximum flow of value q. Such maximum E′

np
is the maximum

of the minimum remaining energy of all destination nodes.
Algorithm 2: Optimal Algorithm.

Input: G′′(V ′′, E′′), Vd

Output: Minimum remaining energy of destination nodes Emin

1. Emin = 0;
2. for each node i ∈ Vd

3. Let np = i and Enp = Ei;
4. x = Enp

; y = Enp
− q;

5. while (x− y) > 0.5;
6. E

′

np
= (x+ y)/2;

7. Transform G(E, V ) to G′′(E′′, V ′′);
8. Run MEA on G′′(E′′, V ′′);
9. if (maximum flow value == q) and E

′

np
> Emin

10. Emin = E
′

np
; y = E

′

np
;

11. else x = E
′

np
;

12. end while;
13 end for;
14. RETURN Emin.

Time Complexity. The time complexity of the optimal algorithm
is 2(N−p) × (N − p)× log q×N5, without detailed explanation
due to space constraints.

B. BFS-Based Data Preservation Algorithm

The high time complexity of the optimal algorithm and the
fact that it does not work for infeasible data preservation lead
us to design new algorithm. Below we design a Breadth-First-
Search (BFS)-based heuristic algorithm with much lower time
complexity than that of the optimal. The heuristic includes the
following three mechanisms, each starting from a non-DG node
with available storage space X . It eventually finds a DG from
which a data item is offloaded to X .
• modified BFS(X): Using BFS that enqueues only non-
destination nodes that are reachable from X , it finds the first
DG that still has data items to offload. By not enqueuing
destination nodes, it avoids adopting them as relaying nodes,
in order to conserve their energy. It returns NULL if no such
DGs can be reached from X this way.

• modified BFS(X, M): Using BFS that enqueues any nodes
excluding minimum-energy destination nodes M that are reach-
able from X , it finds the first DG that has data items to offload.
By not enqueuing minimum-energy destination nodes, it avoids
lowering the minimum-energy of destination nodes. It returns
NULL if no such DGs can be reached.

• BFS(X): This is the regular BFS which enqueues any nodes
in the network that are reachable from X . It finds the first DG
that still has data items to offload. It returns NULL if no DG
can be reached in this way; in this case, X is isolated and
can not store any data items from DGs even if it has available
storage.
Definition 2: (Data Preserving Node.) In sensor network

graph G(V,E), X ∈ V is a data preserving node if a) it is
a non-DG sensor node, b) it has available storage space, and c)
there is a path between X and a DG that still has data items.
That is, for a data preserving node X , BFS(X) 6= NULL. �

Algorithm 3 is the BFS-based data preservation algorithm. In
each iteration, when there is still data item not yet distributed,
it finds a data preserving node with maximum remaining energy
to receive a data item. When it can no longer find any data
preserving node, the algorithm stops. To maximize the minimum

remaining energy of destination nodes, the algorithm tries to
avoid existing destination nodes, especially destination nodes
with minimum remaining energy, as intermediate relaying nodes.
Algorithm 3 is designed to work for both feasible and infeasible
data preservations. When infeasible data preservation takes place,
it can still offload data as long as there are data preserving nodes
in the same network partition.

Algorithm 3: BFS-Based Data Preservation Algorithm.
Input: G(V,E)
Output: Minimum remaining energy of destination node Emin;
Set of destination nodes with minimum remaining energy M ;
0. M = φ (empty set);

Emin = ∞;
1. while (not all data items are offloaded)
2. Find data preserving node X with maximum energy;
3. if (X == NULL) Stops;
4. if (X is not marked as a destination node)
5. Mark X as a destination node;
6. if (X.energy < Emin )
7. Emin = X.energy; M = {X}
8. if (X.energy == Emin )
9. M = M ∪ {X};
10. S = modified BFS(X);
11. if (S == NULL)
12. S = modified BFS(X, M);
13. if ( S == NULL )
14. S = BFS(X);
15. if (S == NULL)
16. Mark X as a non-data preserving node;
17 continue;
18. end if;
19. sS = sS − 1;
20. mX = mX − 1;
21. Let P be the distribution path from S to X;
22. Update the energy levels of all the nodes in P ;
23. if (there exists a destination node K in P that

K.energy < Emin)
24. M = {K}; Emin = K.energy;
25. if (there exists a destination node K in P that

K.energy == Emin)
26. M = M ∪ {K};
27. For any node in P whose energy level reaches zero,

delete all the edges incident on this node;
28 end while;
29. RETURN M and Emin.

Time Complexity. In each iteration of Algorithm 3, there are at
most three BFS computations, and it takes O(N) to find a data
preserving node. Since the time complexity of a standard BFS
algorithm is O(|V | + |E|) = O(N2), the time complexity of
Algorithm 3 is O(qN3).

V. Performance Evaluation
We adopt grid topology since it facilitates the algorithm

implementation without compromising the algorithms and their
comparison. All the comparisons can be applied to a general
network topology as well. To compare, all the algorithms take the
same input files, which specify network topology, initial energy
of each node, set of DGs, number of data items of each DG, and
storage capacity of each non-DG. Each data point is an average
over five runs, each run we randomly select a set of DGs. The
network size is set as10 × 10 and 20 × 20. We set the number
of data items at each DG as 50 and the storage capacity of each
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(a) 10× 10 network.
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(b) 20× 20 network.

Fig. 3. Minimum remaining energy of destination nodes.
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Fig. 4. Number of successfully offloaded data items.

non-DG node as 100. In all plots, the error bars indicate 95%
confidence interval.

Feasible Data Preservation. In feasible data preservation, since
the Optimal assumes known destination nodes, we decide such
destination nodes as follows. We assume that each destination
node in Optimal has a full storage post data distribution: there-
fore, for x DGs, there are d50x/100e = dx/2e destination nodes.
We choose dx/2e nodes from the non-DG nodes and assign 1200
as their initial energy, and set other nodes energy level in the
range of [1000, 1100]. This way, we try to guarantee that those
dx/2e destination nodes are the optimal destination nodes. Figure
3 shows that the BFS-Based performs very close to the Optimal
in different network sizes.

Infeasible Data Preservation. When total data preservation
becomes infeasible, we are interested in finding for each al-
gorithm, how many data items are successfully offloaded and
more specifically, the energy range the data items fall into. Since
Optimal is not applicable to infeasible case and according to
Corollary 1, the MEA gives maximum number of data items
when not all the data items are offloaded, we compare MEA
with BFS-Based. In all the plots, the initial energy level of each
node is in the range of [10, 40]. Figure 4 shows that in terms
of number of offloaded data items, BFS-Based performs almost
the same as Optimal. Figure 5 shows for both algorithms, the
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(a) 10× 10 network (8 DGs).
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Fig. 5. Number of successfully offloaded data items in each energy
range.

number of data items that “fall into” each energy range. There
are 8 and 20 DGs in 10× 10 and 20× 20 network respectively.
In all the cases, BFS-Based performs the best, offloading data
items to destination nodes with higher energy range of [20, 39]),
while MEA offloads to lower half of the energy range ([0, 19]).
For MEA, since its goal is to offload maximum amount of data
items, it does not pay special attention to destinations with higher
energy when it offloads data.

VI. Conclusion and Future Work
We have formulated and solved data preservation problem

in intermittently connected sensor networks, which is a new
problem that has not attracted much attention. We design several
data preservation techniques that not only try to achieve optimal
performance but also work for challenging network scenarios
such as sensor energy depletion and network partitions. Currently
the SDP is a static problem, in which the data to be offloaded
is generated at the beginning and only once. We would like
to address a real-time problem where data is generated and
transmitted dynamically and periodically. As a second step, we
will consider heterogeneous sensor networks wherein the data
generated by different data generators are of different priorities
and values, which is a more common sensor network scenario,
but no doubt is a more challenging problem compared to the one
studied in this paper.
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