
Maximizing Number of Satisfiable Routing
Requests in Static Ad Hoc Networks

Zane Sumpter1, Lucas Burson1, Bin Tang2, Xiao Chen3
1Department of Electrical Engineering and Computer Science,

Wichita State University, Wichita, KS, USA
2Department of Computer Science, California State University, Dominguez Hills, CA, USA

3Department of Computer Science, Texas State University, San Marcos, TX, USA
Email: {zpsumpter, ljburson}@wichita.edu, btang@csudh.edu, xc10@txstate.edu

Abstract— We study an energy-efficient routing problem in
static ad hoc networks. The problem, referred to as maxR,
is to maximize the number of routing requests that can be
satisfied in the network, under the constraint that each node
has finite battery power. The online version of the problem,
where the sequence of messages that has to be routed over
the network is not known ahead of time, has been studied
extensively. In this paper, we study the offline version of the
problem where the sequence of requests is pre-known. As
far as we know, the offline maxR problem, its hardness and
approximability have not been well studied. We show that
after appropriate transformation, offline maxR is equivalent
to the well-known maximum disjoint path problem, which is
NP-hard. We propose a greedy algorithm called GDP that
has a constant approximation ratio to the optimal algorithm.
GDP can be used as a benchmark to evaluate the performance
of online algorithms as it is known that the best offline
algorithm performs better than any online algorithm. We then
put forward a new online algorithm called MECBE to solve
the online maxR problem. Simulation results show that GDP
outperforms MECBE, which outperforms the state-of-the-art
online algorithm OML, in terms of the number of satisfiable
requests, the average energy consumption per request, and the
number of energy-depleted nodes.

Keywords – Static ad hoc networks, message routing, en-
ergy efficiency, approximation algorithm, heuristic algorithm.

I. INTRODUCTION

Ad hoc networks are multihop communication networks
consisting of small computing devices with wireless in-
terfaces. They are mainly used by a group of users for
spontaneous communication among themselves without the
support of preexisting infrastructure. In this paper, we focus
on static ad hoc networks, which find many applications in
less mobile and dynamic environments [1], [2]. For example,
in an ad hoc meeting, several authors can establish a wireless
ad hoc network using their laptops to access or modify
the same document (e.g., powerpoint slides, an article, or
a book). In this scenario, even though the communication
is facilitated by an ad hoc network, the users (i.e., the ad
hoc nodes) are mainly static. After the ad hoc nodes form
a network, pairs of nodes exchange messages according to
the application requirement [12]. For example, in the above
ad hoc meeting scenario, to further divide and conquer
the editing task, pairwise communication can exist among
multiple source-destination pairs.

On the other hand, because of the limited power in ad hoc
nodes and the ad hoc nature of such networks, energy effi-
ciency has always been a consideration for routing algorithms
in ad hoc networks. Routing is a process to send a message
from one node (called source node) to another node (called
destination node) in the network. Every node involved in the
routing process uses its battery power. Therefore, to maintain
proper network operation, it is critical that every attempt to
transmit a message succeeds. Hence, we are interested in
designing energy-efficient routing algorithms in static ad hoc
networks with the objective of maximizing the total number
of messages (requests) that can be successfully satisfied,
under the energy constraint of each node. We refer to the
problem as maxR.

The online version of the problem, wherein the sequence
of messages is not known ahead of time, has been extensively
studied (CMAX [7], MRPC [11], OML [12]). However, the
research for offline maxR remains scarce. The offline maxR
problem is to maximize the number of satisfiable requests
by assuming that the sequence of requests is pre-known. In
applications wherein ad hoc nodes work towards the same ap-
plication goal with well-coordinated communication, it could
be the case that the sequence of requests has been decided.
Therefore, how to maximize the total number of routing
requests that can be satisfied given the known sequence of
requests is a relevant and important problem. To the best of
our knowledge, the offline algorithm for maxR problem has
not been well investigated. It is only mentioned in CMAX
[7] to show the performance difference between the offline
and online algorithms. The solution to the offline problem
itself, its hardness and approximability, remain unclear and
has not been well studied.

In this paper, We first show that after appropriate trans-
formation, the offline maxR problem is equivalent to the
well-known maximum disjoint path problem [8], [9], which
is NP-hard. We then propose an approximation algorithm
called Greedy-Disjoint-Paths algorithm (GDP). We show that
the number of satisfiable requests yielded by GDP is within
a constant ratio of that of the optimal algorithm. It is known
that the best offline algorithm performs better than any online
algorithm [12]. So GDP can be served as a benchmark to
evaluate the performance of online algorithms that aim to
maximize the number of requests in ad hoc networks. In addi-

2
tion, we propose a new online algorithm called MECBE that
tackles the online version of maxR problem by Minimizing
the total Energy Consumption and Balancing node Energy in
the network. Simulation results show that GDP outperforms
both MECBE and OML, while MECBE outperforms OML,
in terms of the number of satisfiable requests, the average
energy consumption per request, and the number of energy-
depleted nodes.

The rest of the paper is organized as follows: Section II
introduces the network model and energy model, formulates
the maxR problem, and gives an overview of the related
works. Section III presents our proposed algorithms. Sec-
tion IV compares our algorithms with the existing one and
presents the simulation results. And section V concludes the
paper and points out the future work.

II. PROBLEM FORMULATION AND RELATED WORKS

A. Network and Energy Models

An ad hoc network can be represented by a general
undirected graph G(V,E), where V = {1, 2, ..., n} is a set of
n ad hoc nodes and E is a set of m edges. There is an edge
(u, v) ∈ E connecting node u and node v iff a single-hop
transmission between u and v is possible.

We assume that each node u has a finite and unreplen-
ishable initial energy εu, which is a non-negative integer
value. For the energy consumption of sending and receiving
a message by a node, we adopt the first order radio model [5]
where for k-bit data over distance l, the transmission energy
ET (k, l) = Eelec × k + εamp × k × l2, and the receiving
energy ER(k) = Eelec × k, where Eelec = 50nJ/bit and
εamp = 100pJ/bit/m2. When the distances among nodes
are in the order of one hundred meters, the term with εamp is
much larger than the term with Eelec. Therefore, we assume
that for each node, sending one unit-sized message costs
one unit of energy while receiving one message costs zero
energy. This assumption is adopted also for the purpose of
fair comparison later - Park and Sahni [12] assume no energy
consumption during message reception in OML.

B. Problem Formulation

We formulate the maxR problem as follows: There are a
set of p routing requests R = {r1, r2, · · · , rp} in the network
where each request ri = (si, ti) represents that message mi

is sent from source node si to destination node ti, 1 ≤ i ≤ p.
We assume that each message is of unit size.

Let Pi = {si, · · · , ti} (1 ≤ i ≤ p) be the routing path of
message mi, denoting the sequence of distinct nodes along
which mi is routed from si to ti. Let xuj be the energy
cost incurred by node u in routing the message mj , and let
ε
′

u denote node u’s remaining energy level after all of the
messages are routed. Then,

ε
′

u = εu −
∑p

j=1 xuj , ∀u ∈ V, (1)

where xuj = 1 if u ∈ Pj − {tj}, and xuj = 0 otherwise.
That is, if u is a source node or an intermediate relaying
node of mj , its energy cost is one; if it is a destination node

or is not involved in the routing of mj at all, its energy cost
is zero.

The objective of the offline maxR is to find a subset Psat

of the set of routing paths P = {P1, P2, ..., Pp}, such that
the number of messages routed in Psat is maximized, i.e.

max |Psat|, (2)

under the energy constraint that ε
′

u ≥ 0,∀u ∈ V , which
implies that any node can not spend more energy than its
initial energy level.

The online version of maxR assumes that the sequence of
messages that has to be routed over the network is not known
ahead of the time while offline maxR assumes the message
sequence is pre-known. The major difference in algorithm
design between the two is that the online algorithms have to
satisfy the requests in the given order while the offline ones
do not have to.

C. Related Works
The online version of the maxR problem is one of

the approaches to realize energy-efficient routing in ad
hoc networks. Several researchers have developed energy-
efficient algorithms [6], [10], [13] either through maximizing
the lifetime (time at which a communication fails first) or
through maximizing the capacity (the number of successful
communications over some fixed period of time).

Misra and Banerjee [11] propose the MRPC (maximum
residual packet capacity) lifetime-maximization heuristic
where routing is done along a path with maximum lifetime.
A conditional MRPC algorithm CMRPC is also proposed
that attempts to balance energy consumption. Kar et al. [7]
develop a capacity-competitive (the capacity is the number
of messages routed over some time period) algorithm called
CMAX (capacity maximization) with logarithmic compet-
itive ratio. To achieve logarithmic competitive ratio, the
CMAX algorithm does admission control, that is, it rejects
some routes that are possible. Park and Sahni [12] study
how to route a sequence of messages for source and des-
tination pairs. They propose a heuristic algorithm, called
online maximum lifetime (OML), and show via simulations
that OML is superior to both CMAX and MRPC in terms
of network lifetime maximization, energy consumption and
energy balancing. Therefore, in this paper, we compare our
algorithms with OML.

All of the above algorithms are online algorithms. The
offline algorithm is only mentioned in CMAX as a theoretical
comparison. A most related work that has studied offline
problem in terms of energy consumption is done by Shpungin
[3]. They give fundamental bounds on the expected total
energy consumption and the network lifetime in the optimal
offline solution. However, our goal (maximizing the total
number of satisfiable requests) is different from that of
[3]. To the best of our knowledge, the offline algorithm of
maximizing satisfiable routing requests has not been well
studied.
OML Online Algorithm [12]. To make the paper self-
inclusive, we introduce the OML algorithm in detail as
follows.

3
Algorithm OML: Online Maximum Lifetime heuristic algo-
rithm

1: for each request ri ∈ R = {r1, r2, · · · , rp} do
2: Step 1: [Compute G′′]
3: G′ = (V,E′) where E′ = E − {(u, v)|ce(u) <

w(u, v)}.
4: Let P ′

i be a shortest si to ti path in G′.
5: If there is no such P ′

i , the route request fails, stop.
6: Compute the minimum residual energy minRE for

sensors other than ti on P ′
i .

7: Let G′′ = (V,E′′) where E′′ = E′ − {(u, v)|ce(u)−
w(u, v) < minRE}.

8: Step 2: [Find route path]
9: Compute the weight w′′(u, v) for each edge of E′′.

10: Let P ′′
i be a shortest si to ti path in G′′.

11: Use P ′′
i to route from si to ti.

12: end for
Fig. 1. The OML algorithm

The main idea of OML is that to maximize lifetime, delay
as much as possible the depletion of a sensor’s energy to a
level below that needed to transmit to its closest neighbor.
OML achieves this by a two-step process to find a path
for each routing request ri = (si, ti). In the first step, all
edges (u, v) such that ce(u) < w(u, v) are removed from
G because these edges require more energy than available
for a transmit. Let the resulting graph be G′ = (V,E′).
Next, determine the minimum energy path, P ′

i from si to ti
in the pruned graph G′. This may be done using Dijkstra’s
shortest path algorithm [4]. In case there is no si to ti path
in the pruned graph G′, the routing request ri fails. So,
assume such a P ′

i exists. Using P ′
i , compute the residual

energy, re(u) = ce(u) − w(u, v) for (u, v), an edge on
P ′
i . Let minRE = min{re(u)|u ∈ P ′

i and u 6= ti}. Let
G′′ = (V,E′′) be obtained from G′ by removing all edges
(u, v) ∈ E′ with ce(u) − w(u, v) < minRE. That is, all
edges whose use would result in a residual energy below
minRE are pruned from E′. This pruning is an attempt to
prevent the depletion of energy from sensors that are low on
energy.

In the second step, find the path to route request ri. For
this, we begin with G′′ as above and assign weights to each
(u, v) ∈ E′′. The weight assignment is done so as to balance
the desire to minimize total energy consumption as well
as the desire to prevent the depletion of a sensor’s energy.
Let eMin(u) = min{w(u, v)|(u, v) ∈ E′′} be the energy
needed by sensor u to transmit a message to its nearest
neighbor in G′′. Let ρ be defined as below.

ρ(u, v) =

{
0 if ce(u)− w(u, v) > eMin(u)
c otherwise,

where c is a nonnegative constant and is an algorithm
parameter. For each u ∈ V , define

α(u) =
minRE

ce(u)
.

The weight w′′(u, v) assigned to edge (u, v) ∈ E′′ is

w′′(u, v) = (w(u, v) + ρ(u, v))(λα(u) − 1),

where λ is another nonnegative constant and an algorithm
parameter. As can be seen, this weighting function, through
ρ, assigns a high weight to edges whose use on a routing
path cause a sensor’s residual energy to become low. Also,
all edges emanating from a sensor whose current energy is
small relative to minRE are assigned a high weight because
of the λ term. Thus, the weighting function discourages the
use of edges whose use on a routing path is likely to result
in the failure of a future route.

Time Complexity of OML. OML performs two shortest path
computation per route request. The shortest path algorithm
can be implemented based on a Fibonacci heap, and can be
computed in O(m+nlogn) [4]. The time complexity of OML
is therefore O(m+ nlogn) per route request. Therefore, the
time complexity of OML is O(p× (m+ nlogn)).

III. THE ALGORITHMS

In this section, we first propose an offline greedy algorithm
GDP to address the maxR problem and then put forward a
new online heuristic algorithm MECBE.

A. The Greedy Disjoint Path (GDP) Algorithm

Before presenting the algorithm, we transform the undi-
rected graph G(V,E) into a directed graph G′(V ′, E′), and
show that offline maxR on G′ is equivalent to the well-
known maximum disjoint path problem [8], [9].

1) Graph Transformation: First, replace each undirected
edge (u, v) ∈ E with two directed edges (u, v) and (v, u),
and set the capacity of all the directed edges to infinity. Then
split each node u ∈ V into two nodes: in-node uin and out-
node uout, and add a directed edge (uin, uout) with capacity
εu, which is the initial energy of node u. All the incoming di-
rected edges of node u are incident on uin and all the outgo-
ing directed edges of node u emanate from uout. Now the ini-
tial routing requests (s1, t1), (s2, t2), ..., (sp, tp) in G become
the new routing requests (sin1 , tin1), (sin2 , tin2), ..., (sinp , tinp) in
G′(V ′, E′). Note that it is the in-node of each destination
node that becomes the new destination node, due to the fact
that receiving messages does not cost energy in our model.
Assume that there are m′ and n′ number of edges and nodes
in G′(V ′, E′), then n′ = 2n and m′ = n+ 2m.

Fig. 2 shows an example of an ad hoc network before and
after the transformation. It is a 3×3 grid network, with three
source-destination pairs: (3, 8), (6, 4), and (7, 2). After the
transformation, the three source-destination pairs are: (3in,
8in), (6in, 4in), and (7in, 2in).

Theorem 1: If all the nodes have the same initial energy
levels, then offline maxR in G′(V ′, E′) is equivalent to
maximum disjoint path problem in G′(V ′, E′).

Proof: The maximum disjoint path problem [8], [9] is
as follows: Given a directed graph G′(V ′, E′), an integer
capacity c of each edge, and a set of p connection request
pairs R: {(s1, t1), ..., (sp, tp)}, the goal is to find a realizable
subset I of R with maximum size. A subset I of R is

4

(a) (b)

Fig. 2. An ad hoc network of 9 nodes before and after transforma-
tion. (a) shows the three source-destination pairs before transforma-
tion: (3, 8), (6, 4), and (7, 2). (b) shows the three source-destination
pairs after transformation: (3in, 8in), (6in, 4in), and (7in, 2in). In
(b), the capacity of edge (uin, uout) is εu, which is the initial energy
of node u, while the capacity of other edges is infinity.

realizable in G′ if all the requests in I can be satisfied while
each edge in G′ is used at most c times.

In maxR, assume that the initial energy levels of
all the nodes are equaled to ε. Then finding the
maximum number of satisfiable routing requests from
(sin1 , tin1), (sin2 , tin2), ..., (sinp , tinp) in G′(V ′, E′) is exactly the
maximum disjoint path problem in G′(V ′, E′) with R =
{(sin1 , tin1), (sin2 , tin2), ..., (sinp , tinp)} and ε = c. �

The maximum disjoint path problem is NP-hard [8], [9].
Following the idea of Theorem 1 and inspired by the works
in [8], [9], we present a greedy algorithm called Greedy-
Disjoint-Paths (GDP) algorithm in Fig. 3. GDP starts with
each edge of weight 1, and works in iterations. In each iter-
ation it tries to find the minimum weighted path connecting
a source and destination pair while satisfying the capacity
of each edge. Once the minimum weighted path is selected,
the weights of all the edges on that path are multiplied by a
constant β (β > 1). Here, β = m′1/(ε+1), where m′ is the
total number of edges in G′. The intuition behind setting β
like this is that an edge will gain more weight if it has been
used, which encourages other edges to be selected to route
the following messages.

Theorem 2 shows that the GDP algorithm is an approxi-
mation algorithm with performance guarantee.

Theorem 2: The GDP algorithm is a 1/(2εm′1/(ε+1) +1)
approximation algorithm. That is, the total number of satis-
fiable requests by GDP is at least 1/(2εm′1/(ε+1)+1) times
of the maximum number of satisfiable requests in optimal
solution.

Proof: Here we give a proof sketch for ε = 2 (for more
detailed proof, please refer to page 630, [9]). Let I∗ be the set
of routing requests satisfied in an optimal solution, and I be
the set of requests satisfied by GDP algorithm. We consider a
path Pi selected by GDP to be short if its length is less than
β2 (recall that Pi for 1 ≤ i ≤ p is the routing path of request
ri). Let Is denote the set of short path selected by GDP. Let
l̄ be the length function at the first iteration in GDP at which
there are no more short paths left to select. For a path P ∗

i

in the optimal solution I∗, it is short if l̄(P ∗
i) < β2. We

Algorithm GDP: a Greedy-Disjoint-Paths algorithm to find
the maximum number of completed (satisfiable) requests on
G′(V ′, E′).

1: Notations: m′ is the total number of edges in G′; ε is
the initial energy of all the nodes; β = m′1/(ε+1)

2: I = Ø, I is the set of completed requests
3: For all e ∈ E′, set its weight to 1
4: while There are still requests that can be satisfied do
5: Let Pi be the minimum weighted path so that adding

Pi to the selected set of paths does not use any edge
more than ε times, and Pi connects some (si, ti) pair
not yet connected

6: Add i to I and use path Pi to route the message from
si to ti

7: Multiply the length of all edges along Pi by β
8: end while

Fig. 3. The GDP algorithm.

have the first observation (denoted as OB (a)): For a request
i ∈ I∗ that is not satisfied by GDP (that is, i ∈ I∗ − I),
l̄(P ∗

i) ≥ β2.
At the iteration that no short paths is left to choose, the

total length of the edges in the graph is
∑

e l̄e. The sum of the
edges in the graph starts out as m′ (length 1 for each edge, as
indicated in GDP). Adding a short path to the solution Is can
increase the length by at most β3, as the selected path has
length at most β2, and the lengths of the edges are increased
by a β factor along the path. We therefore have the second
observation (denoted as OB (b)):

∑
e l̄e ≤ β3|Is|+m′.

Consider OB (a) and all paths in I∗ − I , we get∑
i∈I∗−I l̄(P

∗
i) ≥ β2|I∗ − I|. On the other hand, each edge

is used by at most two paths in the solution I∗, so we have∑
i∈I∗−I l̄(P

∗
i) ≤

∑
e 2l̄e. Combining these with OB (b),

we get β2|I∗| ≤ 2(β3|I|+m′) + β2|I|. Finally, divide both
sides by β2, and consider that |I| ≥ 1 and β = m′1/3, we
get |I∗| ≤ (4m′1/3 + 1)|I|. For any energy level ε, if we
choose β = m′1/(ε+1), and consider paths to be short if their
length is at most βε, we get |I| ≥ |I∗|/(2εm′1/(ε+1)+1). �
Time Complexity of GDP. The time complexity of GDP is
determined by the minimum weighted path (i.e., the shortest
path) computation, which takes O(m′ + n′logn′). There are
at most p rounds. In each round it finds among at most p
requests one minimum weighted route that can be satisfied.
Since n′ = 2n, m′ = n + 2m, and m = O(n2), the time
complexity of GDP is O(p2 × (n + 2m + 2nlog(2n))) =
O(p2 × (m+ nlogn)).

B. The MECBE Algorithm

The new online algorithm MECBE is shown in detail in
Fig. 4. It tries to satisfy the maximum number of requests
through minimizing total energy consumption and energy
balancing in message routing: on one side, it minimizes
the total energy consumption by finding the shorter path
between source and sink nodes and on the other side, it favors
nodes with higher remaining energy. The MECBE algorithm
achieves these goals by finding a path between the source

5
Algorithm MECBE: Minimizing total Energy Consumption
and Balancing node Energy to maximize the number of
completed requests. Here, w(u, v) is the energy required for
a single-hop transmission from node u to v, ce(u) is the
current energy of node u.

1: for each request ri ∈ R = {r1, r2, · · · , rp} do
2: G′ = (V,E′) where E′ = E − {(u, v)|ce(u) <

w(u, v)}
3: In G′, find the path {si, u1, u2, · · · , uq, ti} from si to

ti that can minimize metric
∑q

j=1
1

ce(uj)

4: if the returned path is NULL then
5: Stop the program
6: end if
7: for each node ui on the path found except the sink

node do
8: ce(ui) = ce(ui)− w(u, v)
9: end for

10: end for
Fig. 4. The MECBE algorithm.

 0

 20

 40

 60

 80

 100

 120

25 50 75 100

N
u
m

b
e
r

o
f
C

o
m

p
le

te
d
 R

e
q
u
e
s
ts

Number of Requests

OML
MECBE

GDP

(a) 10x10 Network.

 0

 50

 100

 150

 200

50 100 150 200

N
u
m

b
e
r

o
f
C

o
m

p
le

te
d
 R

e
q
u
e
s
ts

Number of Requests

OML
MECBE

GDP

(b) 20x20 Network.

Fig. 5. Number of satisfiable requests in the network.

and destination that can minimize the metric
∑q

j=1
1

ce(uj)
,

where ce(uj) is the current energy of node uj . Intuitively,
a shorter path with higher energy nodes will be selected
to route the message. As OML, MECBE first deletes those
edges (u, v) where node u’s current energy ce(u) is below the
required energy w(u, v) for a single-hop transmission from
u to v. In this paper, w(u, v) is 1. Then, it selects a path that
minimizes the metric between a source and a destination.
For example, suppose there are two paths between si and ti:
{si, u1, u2, ti} and {si, u3, u4, ti}. The current energy levels
of u1, u2, u3, u4 are 2, 3, 3, 4, respectively. According to the
metric, the value for the first path is: 1

2 + 1
3 = 5

6 and the
value for the second path is: 1

3 + 1
4 = 7

12 . The second value
is smaller, so the second path will be chosen.

Time Complexity of MECBE. In MECBE, it takes O(m +
nlogn) per route request, where m and n are the number of
edges and number of nodes in the original graph G(V,E).
And there are p requests. Therefore, the time complexity of
MECBE is O(p× (m+ nlogn)).

IV. PERFORMANCE EVALUATION

In this section, we compare our algorithms with the
existing algorithm. Simulations reported in the literature have
already established the superiority of OML over CMAX and

 0

 5

 10

 15

 20

 25

25 50 75 100

E
n
e
rg

y
 c

o
s
t
p
e
r

re
q
u
e
s
t

Number of Requests

OML
MECBE

GDP

(a) 10x10 Network.

 0

 5

 10

 15

 20

 25

50 100 150 200

E
n
e
rg

y
 c

o
s
t
p
e
r

re
q
u
e
s
t

Number of Requests

OML
MECBE

GDP

(b) 20x20 Network.

Fig. 6. Energy consumption per completed request.

MRPC [12]. Thus, we compare our algorithms GDP and
MECBE with OML.

The comparison was conducted using a custom simulator
in C. We assumed that ad hoc nodes were connected in a grid,
wherein the distance between any two neighbors is one unit.
All of our algorithms can be applied to a general network
topology.

Parameter Setting. In our simulations, we used two settings
of grid network topology: 10 × 10 and 20 × 20, with 100
and 400 nodes, respectively. We generated a sequence of
requests R = {r1, r2, · · · , rp} with sources and destinations
randomly selected from the nodes. In all simulation figures
below, each data point is an average of five runs with
95% confidence interval. When comparing all of the three
algorithms: GDP, MECBE, and OML, we set the initial
energy level of all the nodes to 5 so that not all the request
sequences could be finished by all of the algorithms all the
time. For 10×10 and 20×20 network, the number of edges
are 180 and 760, respectively. So the number of edges m′

in the transformed graphs are 460 and 1920, respectively.
Therefore, β = m′1/(ε+1) = m′1/6, which equals 2.78 and
3.52 for 10× 10 and 20× 20, respectively. When setting the
parameters for OML, since we used a grid network, we set
the energy consumption w(u, v) of sending a message from
u to v to 1. The eMin(u) in OML, which is the energy
needed by u to transmit a message to its nearest neighbor,
also equals 1. In OML, ρ(u, v) is defined to be zero if node
u’s current energy is greater than the sum of w(u, v) and
eMin(u), which is always the case in our paper. Therefore
ρ(u, v) in OML is set to 0. The algorithm parameter λ in
OML is set to 1011 because it gave a stable performance to
OML [12]. Please refer to [12] for more detailed definitions
of all of the above parameters.

Number of Completed Requests. Figure 5 shows the num-
ber of requests completed (satisfied) for all three algorithms
in the 10× 10 and 20× 20 grid networks, respectively. The
results show that when the number of requests is small (e.g.
25), all algorithms can complete all the requests, indicat-
ing that the performance difference among the algorithms
is small in a less stressful scenario. However, when the
number of requests increases, the GDP algorithm satisfies
the most number of message requests, with 30 - 40% more
requests satisfied in GDP than MECBE and OML. Mean-
while, MECBE outperforms OML with around 20% more
requests satisfied. This is because GDP is an approximation

6

 0

 20

 40

 60

 80

 100

25 50 75 100N
u
m

b
e
r

o
f
E

n
e
rg

y
-D

e
p
le

te
d
 N

o
d
e
s

Number of Requests

OML
MECBE

GDP

(a) 10x10 Network.

 0

 50

 100

 150

 200

 250

 300

50 100 150 200N
u
m

b
e
r

o
f
E

n
e
rg

y
-D

e
p
le

te
d
 N

o
d
e
s

Number of Requests

OML
MECBE

GDP

(b) 20x20 Network.

Fig. 7. Number of energy-depleted nodes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

25 50 75 100

S
T

D
 o

f
R

e
m

a
in

in
g
 E

n
e
rg

y

Number of Requests

OML
MECBE

GDP

(a) 10x10 Network.

 0

 0.5

 1

 1.5

 2

 2.5

 3

50 100 150 200

S
T

D
 o

f
R

e
m

a
in

in
g
 E

n
e
rg

y

Number of Requests

OML
MECBE

GDP

(b) 20x20 Network.

Fig. 8. Standard deviation of remaining energy of nodes.

algorithm with performance guarantee, while MECBE tries
to minimize total energy consumption as well as to balance
energy consumption among individual nodes.

Energy Consumption Per Completed Request. Figure 6
compares the energy consumption per completed request,
which is equal to total energy consumption divided by the
total number of completed requests, for all three algorithms.
The results show similar performance comparison in all three
algorithms in most cases, with more evident performance dif-
ference in larger networks with more message requests. This
indicates that even though GDP completes more requests
than the other two algorithms, it does not incur much more
energy consumption. However, in less challenging scenarios
(25 requests in 10 × 10 networks, and 50 and 100 requests
in 20× 20 networks), we notice that the MECBE algorithm
gives less consumed energy per completed request than the
GDP does. This indicates that the GDP is probably not the
best offline algorithm for maxR, even though it has a constant
performance guarantee.

Number of Energy-depleted Nodes. Figure 7 shows the
number of energy-depleted nodes resulted from the three
algorithms. It shows that in all cases, the number of energy-
depleted nodes in OML is much larger than that in the other
two algorithms. If the number of energy-depleted nodes is
an indicator of the lifetime of ad hoc networks, Figure 7
demonstrates that both MECBE and GDP algorithms result
in longer network lifetime than OML does.

Standard Deviation of Remaining Energy. To further in-
vestigate how balanced the remaining energy of the nodes is,
we calculate the standard deviation (STD) of the remaining
energy of all the nodes. Figure 8 shows that GDP balances
the energy levels in nodes the best in routing, while OML
and MECBE perform similarly in most cases.

V. CONCLUSION AND FUTURE DIRECTION

In this paper, we developed energy-efficient routing al-
gorithms for static ad hoc networks, with the objective of
maximizing the number of satisfiable requests under the
constraint of limited battery power of each node. We first
studied the offline version of the problem and proposed an
approximation algorithm. It can be used as a benchmark for
evaluating the performance of online algorithms. Then we
put forward a new online algorithm MECBE to maximize
the number of satisfiable requests through maximizing the
total energy consumption and balancing node energy in the
network. We showed empirically that MECBE outperforms
the OML algorithm in the number of satisfiable requests
and is close to the benchmark. MECBE and GDP are
also better than OML in terms of energy consumption per
completed request, the number of energy-depleted nodes, and
the energy balancing among individual nodes. As a first step
in our future work, we will consider a more general energy
model where different ad hoc nodes could have different
initial energy levels, and energy consumption of sending
and receiving routing messages depends on the distance
between nodes. We will also design distributed versions of
the proposed algorithms and explore new energy-efficient
routing algorithms in ad hoc networks.

ACKNOWLEDGMENT

This research is partially sponsored by NSF Grants CNS-
1116849 and EPS-0903806.

REFERENCES

[1] X.Y. Li and Y. Wang and H.M. Chen and X. Chu and Y.W. Wu and
Y. Qi, “Reliable and Energy-Efficient Routing for Static Wireless Ad
Hoc Networks with Unreliable Links”, IEEE Trans. on Parallel and
Distributed Systems, vol. 20, issue 10, Oct. 2009, pp. 1408-1421.

[2] H. Hernndez and C. Blum, “Ant colony optimization for multicasting
in static wireless ad-hoc networks”, Swarm Intelligence, vol. 3, issue
2, Oct. 2009, pp. 125-148.

[3] H. Shpungin, “Energy Efficient Online Routing in Wireless Ad Hoc
Networks”, Proc. IEEE SECON 2011.

[4] M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms”, Proc. of the 25th IEEE
Annual Symp. on Foundations of Computer Science, 1984, pp. 338-
346.

[5] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-
efficient Communication Protocol for Wireless Microsensor Net-
works”, Proc. of HICSS, 2000.

[6] R. Kannan and S. Iyengar, “Game Theoretic Models for Reliable Path-
Length and Energy Constrained Routing with Data Aggregation in
Wireless Sensor Networks”, IEEE J. Selected Areas in Comm., vol.
22, no. 6, 2004, pp. 1141-1150.

[7] K. Kar, M. Kodialam, T. Lakshman, and L. Tassiulas, “Routing
for Network Capacity Maximization in Energy-Constrained Ad-Hoc
Networks”, Proc. of IEEE INFOCOM, 2003.

[8] J. Kleinberg, “Approximation Algorithms for Disjoint Paths Prob-
lems”, PH.D. Dissertation, 1996.

[9] J. Kleinberg and E. Tardos, “Algorithm Design”, Addison Wesley,
2005.

[10] A. Mohanoor and S. Radhakrishnan and V. Sarangan, “On energy
aware routing in wireless networks”, Proc. of BROADNETS 2007.

[11] A. Misra and S. Banerjee, “MRPC: Maximizing Network Lifetime for
Reliable Routing in Wireless Environments”, Proc. of IEEE Wireless
Communication and Networking Conference (WCNC), 2002.

[12] J. Park and S. Sahni, “An Online Heuristic for Maximum Lifetime
Routing in Wireless Sensor Networks”, IEEE Trans. on Computers,
vol. 55, no. 8, Aug. 2006, pp. 1048-1052.

[13] G. Zussman and A. Segall, “Energy Efficient Routing in Ad Hoc
Disaster Recovery Networks”, Proc. IEEE INFOCOM, 2003.

