
PAM & PAL: Policy-Aware Virtual Machine
Migration and Placement in Dynamic Cloud Data

Centers
Hugo Flores, Vincent Tran, and Bin Tang

Department of Computer Science
California State University Dominguez Hills, Carson, CA 90747, USA

Email: {hflores27,vtran42}@toromail.csudh.edu, btang@csudh.edu

Abstract—We focus on policy-aware data centers (PADCs),
wherein virtual machine (VM) traffic traverses a sequence of
middleboxes (MBs) for security and performance purposes, and
propose two new VM placement and migration problems. We
first study PAL: policy-aware virtual machine placement. Given
a PADC with a data center policy that communicating VM
pairs must satisfy, the goal of PAL is to place the VMs into
the PADC to minimize their total communication cost. Due to
dynamic traffic loads in PADCs, however, above VM placement
may no longer be optimal after some time. We thus study
PAM: policy-aware virtual machine migration. Given an existing
VM placement in the PADC and dynamic traffic rates among
communicating VMs, PAM migrates VMs in order to minimize
the total cost of migration and communication of the VM
pairs. We design optimal, approximation, and heuristic policy-
aware VM placement and migration algorithms. Our experiments
show that i) VM migration is an effective technique, reducing
total communication cost of VM pairs by 25%, ii) our PAL
algorithms outperform state-of-the-art VM placement algorithm
that is oblivious to data center policies by 40-50%, and iii) our
PAM algorithms outperform the only existing policy-aware VM
migration scheme by 30%.

Index Terms—Policy-Aware Data Centers, Virtual Machine
Placement, Virtual Machine Migration, Algorithms

I. INTRODUCTION

Recently, middleboxes (MBs) [10], such as firewalls, load
balancers, and network address translators, are introduced into
cloud data centers to improve security and performances of
virtual machine (VM) applications [40]. In particular, data
center policies (or service function chaining) are established
that require VM traffic to traverse a chain of MBs [26], [30],
[45]. Fig. 1(a) shows such an example. Traffic generated at
VM vm1 goes through a firewall, a load balancer, and a
cache proxy before arriving at VM vm′1. In doing so, this
policy filters out malicious traffic, diverts trusted VM traffic
to avoid network congestion, and finally caches the content to
share with other cloud users. We refer to cloud data centers
that implement such policies as policy-aware data centers
(PADCs). Fig. 1(b) shows a small PADC that implements the
same data center policy in Fig. 1(a). A firewall, a load balancer,
and a cache proxy are installed on switches s2, s3, and s4,
respectively. There are four physical machines (PMs), pm1,
pm2, pm3, and pm4, each can store one VM due to its limited
cloud resources (i.e., CPU, memory, and disk I/O).

!"2 pm3

!"$%

s1
s2 s3

s5

pm4

pm1

!"1 pm2s4

VM PM

VM communication
VM migration

Switch !"'%

firewall

load balancer

cache proxy

!"' !"'%

(a) (b)

Fig. 1. (a) A data center policy. (b) A PADC example.

We identify, formulate, and solve two new VM placement
and migration problems in PADCs. Measurements from Face-
book and other production data centers show that traffic loads
(i.e., transmission rates) of communicating VM applications
are highly diverse and dynamic [9], [36]. One such example is
cloud chatbots (e.g., Slack [4] and Amazon Lex [1]), wherein
VMs could send to each other low-bandwidth texts at one
instant then switch to high-bandwidth live-streaming videos
at another and vice versa, while the duration of each com-
munication varies considerably. Thus it is important to design
resource-efficient VM placement and migration for dynamic
cloud data centers. This is especially crucial for PADCs –
as the VM communication must go through a sequence of
MBs, it generates more network traffic and consumes more
network resources such as bandwidths compared to traditional
cloud data centers. In this paper we focus on pairwise VM
communication as the east-west traffic within data centers
accounts for 75.4 percent of data center traffic [2], and most
east-west traffic in cloud data centers is pairwise [33].

Initially, when new cloud applications are launched as VMs
in PADCs, it needs to decide how to place them for resource-
efficient communication. We refer to this problem as PAL:
policy-aware VM placement in PADCs. Given a PADC with a
data center policy that communicating VM pairs must satisfy,
PAL studies how to place the VMs with diverse traffic rates
into the PMs to minimize their total communication cost while
satisfying resource constraints of PMs. Fig. 1(b) shows that
two VM pairs (vm1, vm

′
1) and (vm2, vm

′
2), with the traffic

load of the former much larger than that of the latter, are
to be placed. To reduce network traffic and communication
delay, it is preferred that vm1 and vm′1 communicates along

a route that is “shorter” than that of vm2 and vm′2. One
solution is to place vm1 and vm′1 on pm1 and pm2, and vm2

and vm′2 on pm3 and pm4, with their respective policy-aware
communication routes shown in black dashed lines.

However, such initial VM placement may become subop-
timal due to dynamic traffic in PADCs. In Fig. 1(b), if the
traffic load of (vm2, vm

′
2) emerges as much larger than that of

(vm1, vm
′
1), the aforesaid VM placement becomes inefficient

– as vm2 communicates with vm′2 via a route much longer
than that of (vm1, vm

′
1), it generates more network traffic

and consumes much of the network bandwidths. To tackle
such problem, we observe that migrating VMs from one PM
to another might be an effective technique. In Fig. 1(b), it
might be a good idea to “swap” these two VM pairs using VM
migration routes shown in red solid lines. Given an existing
placement of communicating VM pairs with dynamic traffic
rates, a data center policy that they must satisfy, we study how
to migrate VMs to minimize the total cost of migration and
communication of all the VM pairs. We refer to this problem
as PAM: policy-aware VM migration in PADCs.

Consider that VM migration incurs traffic overhead, and that
a large scale PADC typically has tens of thousands of PMs, as
well as hundreds of thousands of communicating VMs with
wide range of changing traffic rates, how to effectively place
and migrate VMs in PADCs becomes challenging problem.
In this paper we addresses this challenge by formulating PAL
and PAM and design optimal, approximation, and heuristic
policy-aware algorithms to solve them. The PAM & PAL duo
potentially achieves ideal resource utilization for a PADC’s
lifetime - after the PAL algorithms create the initial VM
placement to optimize a PADC’s cloud resource utilization, the
PAM algorithms can then be executed periodically to optimize
a PADC’s network resource utilization while adatping dynamic
VM traffic. To the extent of our knowledge, PAL and PAM
are new problems that have not been studied before.

Using traffic patterns and flow characteristics found in
production data centers, we show that VM migration re-
duces the total communication costs of VM pairs by 25%,
demonstrating that it is an effective technique to alleviate
dynamic VM traffic in PADCs. We also show our policy-
aware algorithms outperform the only existing policy-aware
VM migration algorithm [15] by 30%, and the state-of-the-
art VM placement algorithm that is oblivious to data center
policies [33] by 40-50%.

II. RELATED WORK

Service function chaining (SFC) has been an active research
in recent years. It mainly focused on virtual network functions
(VNFs) (i.e., virtual MBs) with their implementation and
realization [35], [19], [20], [45], [25], VNF placements [27],
[34], VNF migrations [17], [31], and other issues such as avail-
ability [18], flow control [38], and finding shortest SFC [37].
However, given that virtual MBs cannot yet match the per-
formance of hardware MBs thus many network functions still
rely on dedicated hardware, and much existence of hardware
MBs in enterprise networks [24], [39], we consider hardware

MBs in this paper. As such, once they are installed inside data
centers, they cannot be easily moved around.

There is vast amount of literature of VM migration in cloud
data centers [41], [44], [8], [42], [43], [16]. In particular,
Shrivastava et al. [41] proposed an application-aware VM
migration that minimizes data center network traffic while
considering the combined effects of application dependencies
and network topology. Zhang et al. [44] analyzed how much
bandwidth is required to guarantee the total migration time
and downtime of a live VM migration. Wang et al. [42]
studied how to migrate multiple VMs at the same time with
available bandwidth, and designed a fully polynomial time
approximation algorithm. Cui et al. [16] assumed that data
center topologies are adaptive with reconfigurable wireless
links or optical circuit switches, and proposed VM migration
algorithm with constant approximation ratio.

VM migration studied in this paper, however, differs from
aforesaid work in both goals and models. While existing VM
migration work achieved various objectives such as server
consolidation and energy efficiency, load balancing and fault
tolerance, our work focuses on the dynamic communication
traffic rates existing among VMs. Besides, none of the above
work considered data center policies, thus falling short of
achieving performance and security guarantees brought about
by various of MBs deployed inside PADCs.

Meng et al. [33] designed one of the first policy-oblivious
VM placement algorithms. It is traffic-aware in that it assigns
VMs with large communications to the same PMs or PMs
in close proximity. As PAL is the first to study policy-aware
VM placement thus no closely related work to compare with,
we compare our work with this traffic-aware VM placement.
Alicherry and Lakshman [7] designed optimal and approxi-
mation algorithms that place VMs to minimize data access
latencies. Li et al. [29] studied the VM placement to reduce
the data center network cost as well as the cost utilizating
PMs. Again, they are policy-oblivious thus do not achieve
performance and security guarantees brought by PADCs.

PACE [28] was one of the first to study policy-aware
VM placement. However, it only considers one type of MB
thus does not study data center policy addressed in this
paper. The only closely related work to ours is by Cui et
al. [15], [14]. They proposed PLAN, the first policy-aware
VM migration scheme for all-pair VM communications, and
provided heuristic algorithms for ordered policies. In contrast,
we focus on pairwise VM communication. We design optimal,
approximate, and heuristic algorithms for both ordered and
unordered policies and show they all outperform PLAN.

One salient feature of our research is that it integrates
VM migration and VM placement, two most significant VM
management mechanisms, into one framework. Existing VM
migration and placement research seems achieving disparate
goals – While VM placement optimizes communication costs
among VMs such as energy cost, data access delay, and
bandwidth usage [7], [33], [29], [12], VM migration optimizes
migration costs of VMs including migration time, downtime,
and service degradation during migration [42], [44], [16]. By

modeling topology-aware VM migration and communication
costs, we are able to jointly optimize VM placement and
migration for the overall resource utilization in PADCs. We
believe our work is the first that takes a holistic approach to
solve VM placement and migration in PADCs.

III. SYSTEM MODELS

Network Model. We use fat tree [6] to illustrate the problems
and their algorithmic solutions. However, as the problems are
applicable to any data center topology, we model a PADC as
an undirected general graph G(V,E). V = Vp ∪ Vs is a set
of PMs Vp = {pm1, pm2, ..., pm|Vp|} and a set of switches
Vs. E is a set of edges, each connecting either one switch to
another switch or a switch to a PM. Fig. 2 shows a k = 4
PADC where k is the number of ports each switch has.

There are a set of n MBsM = {mb1,mb2, ...,mbn} inside
the PADC, with mbj installed at switch swj ∈ Vs. We adopt
the bump-off-the-wire design [26], which uses a policy-aware
switching layer to explicitly redirect traffic to off-path MBs.
Fig. 2 shows three MBs mb1, mb2 and mb3 installed using
this design. As a switch and its attached MB are connected by
high-speed optical fibers, the delay between them is negligible
compared to that among switches and PMs [22].

Core Switches

Aggregation
Switches

Edge
Switches

pm1 pm4 pm11 pm16
v2’

v1

mb1

mb2

: PM
: VM
: MB

mb3

v2

Ordered Policy Traversal Unordered Policy Traversal

v1’

Fig. 2. A PADC with 16 PMs: pm1, pm2, ..., and pm16, 3 MBs: mb1,
mb2, and mb3, and two VM pairs: (v1, v′1) and (v2, v′2). • and I indicate
source and destination VM respectively.

There are l pairs of communicating VMs P =
{(v1, v′1), (v2, v

′
2), ..., (vl, v

′
l)} that are already placed into the

PMs. For any VM pair (vi, v
′
i), 1 ≤ i ≤ l, vi and v′i are

referred to as its source and destination VM respectively.
Denote the traffic rate or transmission rate of (vi, v

′
i) as λi, and

the traffic rate vector as
−→
λ = 〈λ1, λ2, ..., λl〉. In a dynamic

PADC,
−→
λ is not a constant vector as the VM traffic rates

change over time. In Fig. 2, there are two VM pairs: (v1, v
′
1)

and (v2, v
′
2), with

−→
λ = 〈100, 1〉.

Let V = {v1, v′1, v2, v′2, ..., vl, v′l}. We assume that it needs
one unit of cloud resource to create and execute a VM in
V and leave the more general case with varying resource
demands as future work. Here the resource is an aggregated
characterization of a PM’s hardware resources such as CPUs,
memories, and disk I/O. Denote the resource capacity of PM
pmi as rci, meaning that pmi has rci resource slots. As there
are 2 · l VMs and each needs one resource slot, it must be that∑|Vp|
i=1 rci ≥ 2 · l. Table I shows all the notations.

TABLE I
NOTATION SUMMARY

Notation Description
Vp Vp = {pm1, pm2, ..., pm|Vp|} is the set of |Vp| PMs
Vs Set of switches in a PADC
M M = {mb1,mb2, ...,mbn} is the set of n MBs
P P = {(vi, v′i), ..., (vl, v′l)} is the set of l VM pairs
V V = {v1, ..., vl, v′1, ..., v′l}
λi Traffic rate between vi and v′i, 1 ≤ i ≤ l−→
λ

−→
λ = 〈λ1, λ2, ..., λl〉

rci Resource capacity of PM pmi, 1 ≤ i ≤ |Vp|
swj Switch where mbj is installed, 1 ≤ j ≤ n
c(i, j) Communication cost between PMs (or switches) i and j
p(v) PM where the VM v is placed with VM placement p
πi Order at which (vi, v

′
i) visits MBs in unordered policy

−→π −→π = 〈π1, π2, ..., πl〉
Cc(p) Total communication cost with p in ordered policy
Cc(p,

−→π) Total communication cost with p in unordered policy
µ Migration coefficient
m(v) PM where the VM v migrates to under VM migration m
Cm(m) Total migration cost with migration m
Cc(m) Total communication cost after migration m
Ct(m) Total migra. and comm. cost with m in ordered policy
Ct(m,

−→π) Total migra. and comm. cost with m in unordered policy

Cost Model. We model the VM communication and migration
cost as either the delay or energy cost of the network traffic
inside PADCs. We adopt a topology-aware model [33] and
define the communication cost of any VM pair as the number
of network links its traffic traverses multiplied by its traffic
rate (however, our problems and solutions still hold for that
different edges have different costs). The migration cost of
migrating any VM v from PM i to PM j is µ · c

(
i, j
)
. Here,

c(i, j) is the minimum number of hops between any PM (or
switch) i and j, and µ is a migration coefficient that depends
on VM sizes and available network bandwidths.
Justifications. Our VM migration model is different from the
one adopted by most existing literature. Mann et al. [32] fo-
cused on pre-copy [11], one of the original live VM migration
techniques, and modeled the cost of migrating a VM v as
Ms · 1−(Pr/Ba)

n+1

1−(Pr/Ba)
. Here Ms is the image size of v, Pr is its

page dirty rate, Ba is the available bandwidth, and n is number
of pre-copy phases. They suggested the migration cost be a
constant quantity measured by the hypervisor. In contrast, by
acknowledging network delay or energy consumption incurred
by VM migration traffic, our topology-aware model is more
conducive to designing VM migration algorithms for a large-
scale and dynamical traffic environment targeted by this paper.

Data Center Policies. Depending on the application require-
ments, some policies require that the VM traffic to go through
the MBs in a strict order. We refer to such policies as ordered
policies and denote them as (mb1,mb2, ...,mbn). On the other
hand, as MB functions are mostly independent from each
other, some data center policies are considered satisfied as
long as all its MBs are visited by the VM traffic. We refer
to such policies as unordered policies and denote them as
{mb1,mb2, ...,mbn}. In Fig. 2, (v1, v

′
1) traverses MBs under

ordered policy (mb1,mb2,mb3), resulting in communication
cost of 100 × 10 = 1000 (solid blue line), (v2, v

′
2) traverses

MBs under unordered policy {mb1,mb2,mb3}, resulting in
communication cost of 1× 8 = 8 (dashed black line).

We refer to the first (and last) visited MB in a policy as
ingress (and egress) MB, and the switch where the ingress
(and egress) MB is installed as ingress (and egress) switch. For
ordered policy, the ingress switch is sw1 and egress switch is
swn. For unordered policy, it needs to find out sw1 and swn as
well as the MB sequence along which VM pair communicates.
As one data center policy as the one shown in Fig. 1(a) is
generally sufficient to serve both security and performance
purposes, we assume there is one data center policy (ordered
or unordered) in a PDDC at a time. We adopt FlowTags [19], a
SDN architecture that provides consistent policy enforcement
during VM migration by adding tags in packet headers.

EXAMPLE 1: Fig. 3 shows a k = 2 linear fat tree PADC
with two PMs: pm1 and pm2. Each PM has two resource
slots; the four of them are {rs1, rs2, rs3, rs4}. Two MBs, mb1
and mb2, are installed on edge switch sw1 and aggregation
switch sw2, respectively. There are two VM pairs (v1, v

′
1) and

(v2, v
′
2), v1 and v2 are placed on pm1 while v′1 and v2

′ on
pm2.

−→
λ = 〈100, 1〉 and µ = 1. Before migration, the total

communication cost in Fig. 3(a) is 606 under both (mb1,mb2)
and {mb1,mb2}. By migrating v′1 to pm1 and v2 to pm2

with migration cost of 12 (solid red line in Fig. 3(a)), the
total communication cost (dotted and dashed black lines in
Fig. 3(b)) becomes 410, a 30% of total cost reduction. We
show this migration is indeed optimal in Section V-A. �

IV. PAL: POLICY-AWARE VM PLACEMENT IN PADCS

A. Ordered Policy.

1) Problem Formulation: Under ordered policy, for any
VM pair communication, the ingress switch is always sw1

and the egress switch is always swn. Given a VM placement
function p, denote the total communication cost of all the l
VM pairs under p as Cc(p). We have Cc(p) =

=

l∑
i=1

λi ·
n−1∑
j=1

c
(
swj , swj+1

)
+

l∑
i=1

λi ·
(
c
(
p(vi), sw1

)
+ c
(
swn, p(v

′
i)
))
.

(1)

The objective of PAL is to find a VM placement p to
minimize Cc(p) while satisfying resource constraint of PMs:
|{v ∈ V|p(v) = i}| ≤ rci,∀i ∈ Vp. As the first term on the
r.h.s. of Eq. 1 is fixed under ordered policy, we only need to
minimize the second term. Below we design an optimal and
efficient algorithm to solve PAL.

2) VM Placement Algorithm for Ordered Policy: To save
communication costs for VM pairs, the key is to find a set of
resource slots close to the ingress (and egress) switch to place
source (and destination) VMs. We give below definitions.

Definition 1: (Ingress/Egress Costs, Ingress/Egress Re-
source Sets, Optimal Ingress/Egress Sets) A resource slot
rs’s ingress (and egress) cost, denoted as cin(rs) (and ce(rs)),
is the cost between its belonged PM and the ingress switch sw1

(and egress switch swn). Let pm(rs) be the PM rs belongs
to, cin(rs) = c

(
pm(rs), sw1

)
, ce(rs) = c

(
pm(rs), swn

)
.

pm1 pm2

mb2

mb1

mb2

mb1

pm1 pm2

(a) Before migration (b) After migration

rs1
rs2

rs3
rs4

v1
v1’

v2
v2’

sw2

sw1

λ
!"
=<100,1>

rs1
rs2

rs3
rs4

v1
v2

v1’
v2’

! = 1

VM migration VM communication

Fig. 3. VM migration achieved 30% of total cost reduction in a linear PADC.

An ingress (and egress) resource set (IRS and ERS) is a
set of l resource slots that store the l source (and destination)
VMs. The cost of an IRS (and ERS) is the sum of the ingress
(and egress) costs of its resource slots. A pair of IRS and ERS
is optimal, denoted as (Iopt, Eopt), if the sum of their costs
is the minimum among all pairs of IRS and ERS. �

Iopt and Eopt are structures that uniquely arise in PAL.
Algo. 1 below finds such a pair (lines 1-22) and then places
the l VM pairs (in non-ascending order of their traffic rates)
into it (lines 23-30). Its time complexity is O(|Vp|2 · m̄2),
where m̄ is the average resource capacity of a PM.

Algorithm 1: PAL Algorithm for Ordered Policy.
Input: A PADC with ordered policy (mb1,mb2, ...,mbn),

VM pairs P , Vp = {pmi}, resource capacity rci.
Output: A placement p and the total comm. cost Cc(p).
Notations: I and E : arrays of resource slots, each of size 2l.
i, j: indices for I and E respectively.
k: index for Iopt and Eopt.
sel(rsi): initially false, true if rsi is put into Iopt or Eopt.
1. i = j = k = 1, Cc(p) = 0, p = φ;
2. Sort resource slots in non-descending order of their ingress

(and egress) costs, store the top 2l in arrays I (and E);
3. while (k ≤ l) // find optimal resource slots for (vk, v

′
k)

4. if (sel[I[i]] == true) i++;
5. if (sel[E [j]] == true) j++;
6. if (I[i] 6= E [j]) // both optimal resource slots are found
7. Iopt[k] = I[i], Eopt[k] = E [j];
8. sel[I[i]] = sel[E [j]] = true;
9. i++, j++;
10. else // one found, now find the other
11. if (cin(I[i]) + ce(E [j + 1]) ≤ cin(I[i+ 1]) + ce(E [j]))
12. Iopt[k] = I[i], Eopt[k] = E [j + 1];
13. sel[I[i]] = sel[E [j + 1]] = true;
14. i++, j += 2;
15. else
16. Iopt[k] = I[i+ 1], Eopt[k] = E [j];
17. sel[I[i+ 1]] = sel[E [j]] = true;
18. i += 2, j++;
19. end if;
20. end if;
21. k++;
22. end while;
23. WLOG, λ1 ≥ λ2... ≥ λl;

24. for (1 ≤ i ≤ l) // place VM pairs and calculate cost
25. Place vi at Iopt[i], v′i at Eopt[i];
26. p = p ∪ {(Iopt[i], Eopt[i])};
27. Cc(p) += λi ∗

(
cin(Iopt[i]) + ce(E

opt[i])
)
;

28. end for;
29. Cc(p) +=

∑l
i=1 λi

∑n−1
j=1 c

(
swj , swj+1

)
;

30. RETURN p and Cc(p).

EXAMPLE 2: Fig. 4(a) shows how Algo. 1 could place
the two VM pairs (v1, v

′
1) and (v2, v

′
2) into the same PADC

in Fig. 3. It gives I = E = {rs1, rs2, rs3, rs4}, from which
it computes Iopt = {rs1, rs3} and Eopt = {rs2, rs4}. It thus
places v1 and v′1 in pm1 and v2 and v2

′ in pm2 with total
communication cost of 100 · 4 + 1 · 10 = 410. �

VIopt
VEopt v1’ v2’ vr’ vl’

Algo. 1

Optimal,
Case 1

Optimal,
Case 2

v1 v2 vr vl

VIopt
VEopt v1’ v2’ vr’

v1 v2 vs vr

VIopt
Vv1’ v2’ vt’ vr’

v1 v2 vs vr

1 2 r u v l

(b)

rs1 rs2 rs4

rs1 rs2 rs4rs3
rs3

rs2 rs4

rs1 rs3Iopt
Eopt

(a)

Eopt

Fig. 4. (a) A working example and (b) optimality proof for Algo. 1.

Theorem 1: Algo. 1 finds the VM placement that mini-
mizes total communication cost for the l VM pairs.
Proof Sketch. First, we prove by induction that (Iopt, Eopt)
computed in Algo. 1 (lines 1-22) is a pair of optimal IRS
and ERS. Second, we prove by contradiction that the VM
placement on Iopt and Eopt in Algo. 1 (lines 23-30) yields
minimum total communication cost. Assume that Algo. 1 is
not optimal and that r, 1 ≤ r ≤ l, is the smallest index at
which Iopt[r] or Eopt[r] store different pair of VMs for Algo. 1
and Optimal. Two cases are shown in Fig. 4(b). Case 1: one
of the two resource slots, Iopt[r] or Eopt[r], stores different
VMs. For example, both algorithms stores v′r at Eopt[i] while
Algo. 1 stores vr and Optimal stores vs at Iopt[i]. Case 2:
both slots store different VMs. For example, Optimal stores
vs at Iopt[r] and v′t at Eopt[r] (with s, t > r), and stores vr
at Iopt[u] and v′r at Eopt[v] (with u, v > r). In both cases, we
can swap VMs in Optimal following blue curved arrow lines
to further reduce its cost, due to λ1 ≥ λ2... ≥ λl.
B. Unordered Policy.

1) Problem Formulation.: In unordered policy, besides a
VM placement function p, PAL needs to find the order
for each VM pair to visit the MBs. For (vi, v

′
i) we define

such order as an MB traversal function πi : [1, 2, ..., n] →
[1, 2, ..., n], a permutation function indicating the jth MB
that (vi, v

′
i) visits is mbπi(j). Given p and πi, denote

(vi, v
′
i)’s communication cost as cp,π

i

i . Then cp,π
i

i = λi ·
c
(
p(vi), sw

(
πi(1)

))
+ λi ·

∑n−1
j=1 c

(
sw
(
πi(j)

)
, sw

(
πi(j +

1)
))

+λi ·c
(
sw
(
πi(n)

)
, p(v′i)

)
. Let −→π = 〈π1, π2, ..., πl〉. The

objective of PAL under unordered policy is to minimize total

communication cost Cc(p,−→π) =
∑l
i=1 c

p,πi

i while satisfying
|{v ∈ V|p(v) = i}| ≤ rci,∀i ∈ Vp. Below we show that PAL
is NP-hard even for one pair of VMs. We then propose an
approximation algorithm for this special case that yields total
cost at most twice of the optimal.

Theorem 2: Under unordered policy, PAL is NP-hard even
for one pair of VMs (v1, v

′
1) (i.e., l = 1).

Proof: We reduce s-t traveling salesman path problem (TSPP)
[23], which is NP-hard, to this problem. Given a complete
undirected graph K = (VK , EK) with edge cost d : EK →
R+ and a pair of pre-specified vertices s, t ∈ VK , TSPP finds
a shortest Hamiltonian path that starts at s, visits each vertex
exactly once, and ends at t. d satisfies triangle inequality, i.e.,
d(u, v) ≤ d(u, v) + d(v, w) for all u, v, w ∈ VK , When s = t,
TSPP becomes well-known traveling salesman problem (TSP)
[13], which finds a shortest Hamiltonian cycle.

Given VM pair (v1, v
′
1) and an instance of PADC graph

G(V = Vp ∪Vs, E), we construct |Vp| · (|Vp|+ 1)/2 instances
of complete graphs Ki,j = (V i,jK , Ei,jK), 1 ≤ i ≤ |Vp|,
i ≤ j ≤ |Vp|. Here, V i,jK = {pmi, pmj , sw1, sw2, ...swn} and
for (u, v) ∈ Ei,jK , its cost d(u, v) is the cost of the shortest
path connecting u and v in G. Now, if Ka,b has a shortest
Hamiltonian path whose cost is the minimum among the
shortest Hamiltonian paths in all the instances, then placing v1
to pma and v′1 to pmb must give the minimum communication
cost for (v1, v

′
1) in G, and vice versa.

2) VM Placement Algorithm for Unordered Policy:
Definition 2: (Optimal Policy Route (OPR).) In a PADC

graph, a policy route of any pair of PMs (pmi, pmj) is a path
or walk starting pmi, visiting all the n MBs at least once, and
ending at pmj . An OPR of (pmi, pmj) gives the minimum
cost, denoted as opr(i, j), among all its policy routes. �

OPR of (pmi, pmj) is essentially the shortest s-t Hamilto-
nian path [23] with s = pmi and t = pmj in a complete
graph of pmi, pmj and all MBs (when pmi = pmj , it
is a Hamiltonian cycle). The existing algorithm achieves
approximation ratio of 5

3 and takes O(n3) [23], where n is the
number of MBs. Below we instead propose another O(n3) but
simpler algorithm to compute a policy route for (pmi, pmj)
and show it has an approximation ratio of 2.

Algorithm 2: Compute A Policy Route for (pmi, pmj).
Input: A PADC graph G, a pair of PMs (pmi, pmj),

and an unordered policy {mb1,mb2, ...,mbn}.
Output: pr(i, j), cost of a policy route for (pmi, pmj).
1. V i,jK = {pmi, pmj , sw1, sw2, ...swn};
2. Construct complete graph Ki,j = (V i,jK , Ei,jK). For edge

(u, v) ∈ Ei,jK , its cost d(u, v) is the cost of the shortest
path connecting u and v in G;

3. Compute a minimum spanning tree MST for Ki,j ;
4. Compute a walk W from pmi to pmj on MST that visits

all vertices in MST using each edge at most twice. Let
the cost of W be pr(i, j);

5. RETURN pr(i, j).

Using Algo. 2, Fig. 5 shows in blue dashed lines all three
possible policy routes in the linear PADC of Fig. 3.

5
6

1
sw2

sw1

pm1

pm2

1
2 4

pm1

1

2
1

sw2

sw1

1
5

sw2

sw1
4

pm2

K1,1 K1,2 K2,2

(a) (b) (c)

Fig. 5. How Algo. 3 works for PADC in Fig. 3. Blue dashed lines show the
policy route of (a) (pm1, pm1), (b) (pm1, pm2), and (c) (pm2, pm2).

Lemma 1: pr(i, j) ≤ 2 · opr(i, j), ∀pmi, pmj ∈ Vp.
Proof: Denote the cost of the MST computed in line 3 of
Algo. 2 as c(MST), c(MST) ≤ opr(i, j). Since the walk W
found in line 4 uses each edge of the MST at most twice,
pr(i, j) ≤ 2 · c(MST). Thus we have pr(i, j) ≤ 2 · opr(i, j).

Next we present our PAL algorithm Algo. 3. It first com-
putes the policy routes for all the |Vp|·(|Vp|+1)/2 pair of PMs
using Algo. 2 and orders them in the non-descending order of
their costs (lines 1-8). It then places the VM pairs (in the non-
ascending order of their traffic rates) onto the first available
PM pair, and updates the total communication cost accordingly
(lines 9-21). Running time of Algo. 3 is O(|Vp|2 · n3 + l).

Algorithm 3: PAL Algorithm for Unordered Policy.
Input: A PADC with unordered policy {mb1,mb2, ...,mbm},

VM pairs P , Vp = {pmi}, resource capacity rci.
Output: A placement p and the total comm. cost Cc(p,−→π).
Notations: X: all PM pairs with their policy route costs.
avail(pmi): available resource slots at pmi, initially rci.

1. X = φ; avail(pmi) = rci, ∀pmi ∈ Vp;
2. for (i = 1; i ≤ |Vp|; i++)
3. for (j = i; j ≤ |Vp|; j++)
4. Compute pr(i, j) using Algo. 2;
5. X = X ∪ {(i, j, pr(i, j))};
6. end for;
7. end for;
8. Sort X in non-descending order of pr(i, j). Let X be

{(s1, t1, pr(s1, t1)), (s2, t2, pr(s2, t2)), ...};
9. i = 1, j = 1, p = φ, Cc(p,−→π) = 0, λ1 ≥ λ2... ≥ λl;

// i, j: indices for VM pairs and PM pairs respectively.
10. while (i ≤ l) // not all VM pairs are placed yet
11. do
12. Place vi at PM sj , v′i at PM tj ;
13. p = p ∪ {(sj , tj)};
14. Cc(p,

−→π) += λi ∗ pr(sj , tj);
15. avail(sj)−−, avail(tj)−−;
16. i++;
17. if (i > l) break;
18. while

(
(sj 6= tj ∧ avail(sj) ≥ 1 ∧ avail(tj) ≥ 1)
∨ (sj == tj ∧ avail(sj) ≥ 2)

)
;

19. j++; // the next available PM pairs
20. end while;
21. RETURN p and Cc(p,−→π).

EXAMPLE 3: Fig. 5 shows how Algo. 3 places (v1, v
′
1)

and (v2, v
′
2), with

−→
λ = 〈100, 1〉, in the linear PADC in Fig. 3.

It computes X = {(1, 1, 4), (1, 2, 6), (2, 2, 10)}. Thus (v1, v
′
1)

is placed at pm1 and communicates in blue dashed line in
Fig. 5(a). As pm1 is now full, (v2, v

′
2) is placed at pm2

and communicates in blue dashed line in Fig. 5(c). The total
communication cost is 100 · 4 + 1 · 10 = 410. �

Theorem 3: Algo. 3 achieves 2-approximation when l = 1.
Proof: Let the placement of (v1, v

′
1) computed by Algo. 3

be (pma, pmb). Let the optimal placement of (v1, v
′
1)

be (pma′ , pmb′) thus their optimal communication cost is
opr(a′, b′). From Lemma 1, we have pr(a′, b′) ≤ 2·opr(a′, b′).
As the costs of all PM pair routes are sorted in non-descending
order in Algo. 3, pr(a, b) ≤ pr(a′, b′) ≤ 2 · opr(a′, b′).

V. PAM: POLICY-AWARE VM MIGRATION IN PADCS

A. Ordered Policy.

1) Problem Formulation: In PAM, the initial VM place-
ment is given by a placement function p : V → Vp,
indicating that VM v ∈ V is at PM p(v) ∈ Vp. The total
communication cost of all the l VM pairs with placement p is
thus Cc(p) (Eq. 1). Next, define a VM migration function as
m : V → Vp, meaning that VM v will be migrated from PM
p(v) to PM m(v) (m(v) = p(v) if v does not migrate). Let
Cm(m) = µ ·

∑l
i=1

(
c
(
p(vi),m(vi)

)
+ c
(
p(v′i),m(v′i)

))
be

the total migration cost of all VM pairs with migration m. Let
Cc(m) be the total communication cost of all VM pairs after
m. Let Ct(m) be the total migration and communication cost
of all pairs after m. Then Ct(m) = Cm(m) + Cc(m)

=

l∑
i=1

λi ·
n−1∑
j=1

c
(
swj , swj+1

)
+

l∑
i=1

(
µ · c

(
p(vi),m(vi)

)
+ λi · c

(
m(vi), sw1

))
+

l∑
i=1

(
µ · c

(
p(v′i),m(v′i)

)
+ λi · c

(
swn,m(v′i)

))
.

(2)

The objective of PAM is to find a VM migration m that
minimizes Ct(m) while satisfying resource constraint of PMs:
|{v ∈ V|m(v) = pmi}| ≤ rci,∀pmi ∈ Vp. As the first term
on the right hand side in Eq. 2 is fixed under ordered policy, we
only need to minimize the sum of the last two terms. Below we
show that PAM under ordered policy is equivalent to minimum
cost flow problem [5] in a properly transformed flow network.

2) Minimum Cost Flow (MCF) Problem: MCF is formally
defined as follows. Let G = (V,E) be a directed graph.
Denote the capacity and cost of an edge (u, v) ∈ E as
ca(u, v) and d(u, v), respectively. The amount of supply
from source node s ∈ V equals the amount of demand
at sink node t ∈ V . Denote a flow on edge (u, v) as
f(u, v), f : E → R+. f(u, v) is subject to (a) capacity
constraint: f(u, v) ≤ ca(u, v),∀(u, v) ∈ E and (b) flow
conservation constraint:

∑
u∈V f(u, v) =

∑
u∈V f(v, u), for

each v ∈ V \{s, t}. The goal of MCF is to find a flow function
f such that the total cost of the flow Σ(u,v)∈E

(
d(u, v)·f(u, v)

)
is minimized. MCF can be solved efficiently and optimally by
many combinatorial algorithms [5]. In this paper, we adopt
the scaling push-relabel algorithm proposed by Goldberg [21]
as it works well over a wide range of problem classes. The
algorithm has the time complexity of O(A2 ·B · log(A · C)),

!

s t

v1
pm1

Vp

Sink
(demand=2#)

(1, 0) (rcj, 0)

Source
(supply=2#)

vi

vl
’

pmj

pm|Vp|

vi
’

(1, ' () * +, , *-. + 0, ()(*-., 121))

(1, ' () * +,4 , *-. + 0, () *-., 125)

!

s t

v1

pm1

Vp

Sink

(1, 0)

(1, 0)

(2, 0)

(2, 0)
(supply=4)

v2

v2
’

pm2v1
’

(1, 100)

(1, 506)
(1, 1)
(1, 11)
(1, 206)
(1, 400)
(1, 8)
(1, 4)

(1, 0)
(1, 0)Source

(demand=4)

(1, 0)

(1, 0)

(1, 0)

(a) (b)
Fig. 6. (a) PAM under ordered policy is equivalent to MCF. (b) Graph transformation and MCF results (highlighted lines) for the PADC in Fig. 3(a).

where A, B, and C are the number of nodes, number of edges,
and maximum edge capacity in the flow network, respectively.

Transforming a PADC to a Flow Network. We transform
a PADC G(V,E) into a flow network G′(V ′, E′) following
below five steps, as shown in Fig. 6(a).
Step I. V ′ = {s} ∪ {t} ∪ V ∪ Vp, where s is the source node
and t is the sink node in the flow network.

Step II. E′ = {(s, v)}∪{(v, pmj)}∪{(pmj , t)}, where v ∈ V
and pmj ∈ Vp. Note that it is a complete bipartite graph
between V and Vp.

Step III. For each edge (s, v), set its capacity as 1 and cost
as 0. For each edge (pmj , t), set its capacity as rcj , the
resource capacity of pmj , and cost as 0.

Step IV. For each edge (vi, pmj), set its capacity as 1 and
cost as µ · c

(
p(vi), pmj

)
+ λi · c

(
pmj , sw1

)
. For each edge

(v′i, pmj), set its capacity as 1 and cost as µ·c
(
p(v′i), pmj

)
+

λi · c
(
pmj , swn

)
.

Step V. Set the supply at s and the demand at t as 2l.
Theorem 4: PAM in ordered policy is equivalent to MCF

in G′(V ′, E′) thus can be solved optimally and efficiently.
Proof Sketch: Due to space constraint, we only give a high
level sketch of the proof. By applying MCF algorithm upon
the above flow network, it is able to achieve that a) every
VM in the l VM pairs is assigned to exactly one resource slot
in a PM while b) satisfying the resource capacity constraints
of PMs and c) achieving the minimum total migration and
communication cost for all the l VM pairs.

Time Complexity. As the number of nodes, edges, and maxi-
mum edge capacity in G′(V ′, E′) are m̄ · |Vp|, m̄ · |Vp|2, and
m̄ respectively, the MCF takes O

(
m̄3 · |Vp|4 · log(m̄2 · |Vp|)

)
.

EXAMPLE 4: Fig 6(b) illustrates how above transforma-
tion and MCF work for the same PADC in Fig. 3(a). MCF
migrates v1 and v′1 to pm1, and v2 and v′2 to pm2, with
total cost of 100+11+206+4+101=422. Here 101 is the total
communication cost between ingress switch sw1 and egress
switch sw2. This migration reduces the total cost of 606 before
migration by 30%. Note that as v1 is initially located at pm1

and v′2 at pm2, only v′1 and v2 actually migrate. �
3) State-of-the-Art VM Migration Scheme: Cui et al. [15]

proposed a policy-aware VM management scheme named
PLAN. The core concept of PLAN is utility of a VM mi-
gration. It is defined as a VM’s communication cost reduction
due to migration minus its migration cost. The goal of PLAN
is to find a migration scheme that maximizes the total utility

of migrating all the VMs. PLAN is a greedy algorithm that
works in rounds. In each round, it computes that which VM
is migrated to which PM with available resources, such that
the utility of this migration is the maximum among all the
VMs that have not been migrated. This continues until all
the VMs are migrated, or no more VM migration gives any
positive utility. For the two VM pairs in Fig. 3(a), as there is
no available resource slots, the migration cannot take place for
PLAN. PLAN is however a heuristic algorithm that does not
offer any performance guarantee. We prove in Lemma 2 below
that its goal of maximizing the total utilities is equivalent to
our goal of minimizing total communication and migration
cost in PAM, thus we can compare our algorithms with PLAN.

Lemma 2: Minimizing total cost Ct(m) in PAM is equiv-
alent to maximizing total utility in PLAN.
Proof: Denote the utility of migrating VM v as u(v). Under
migration function m, the utility of migrating vi from its
current PM p(vi) to another PM m(vi) is the reduction
of its communication cost to the ingress switch minus the
incurred migration cost. Thus u(vi) = λi ·

(
c
(
p(vi), sw1

)
−

c
(
m(vi), sw1

))
− µ · c

(
p(vi),m(vi)

)
. Similarly, u(v′i) = λi ·(

c
(
p(v′i), swn

)
− c
(
m(v′i), swn

))
− µ · c

(
p(v′i),m(v′i)

)
.

Given a p and a
−→
λ , the total communication cost of the

VMs Cc(p) can be computed using Eq. 1. Thus minimizing
Ct(m) is equivalent to maximizing Cc(p) − Ct(m)

Eqs. 1,2
=∑l

i=1 λi ·
(
c
(
p(vi), sw1

)
+ c
(
swn, p(v

′
i)
)
− c
(
m(vi), sw1

)
−

c
(
swn,m(v′i)

))
− µ ·

∑
v∈V c

(
p(v),m(v)

)
=
∑l
i=1

(
u(vi) +

u(v′i)
)
, which is the total utility of migrating all the VMs.

B. Unordered Policy.
1) Problem Formulation: Under unordered policy, besides

a VM migration function m : V → Vp, it defines for each
VM pair (vi, v

′
i) an MB traversal function πi : [1, 2, ..., n]→

[1, 2, ..., n]. πi is a permutation function indicating that after
VM migration, the jth MB that (vi, v

′
i) visits is mbπi(j). Let

−→π = 〈π1, π2, ..., πl〉 and let Ct(m,−→π) denote the total cost
of all the VM pairs with m and −→π . Then Ct(m,−→π) =

l∑
i=1

(
µ · c

(
p(vi),m(vi)

)
+ µ · c

(
p(v′i),m(v′i)

))
+

l∑
i=1

λi ·
(n−1∑
j=1

c
(
sw
(
πi(j)

)
, sw

(
πi(j + 1)

))
+

c
(
m(vi), sw

(
πi(1)

))
+ c
(
sw
(
πi(n)

)
,m(v′i)

))
.

(3)

The first and second terms in Eq. 3 are the total migration
cost and total communication cost respectively. The objective
of PAM under unordered policy is to find an m and a −→π to
minimize Ct(m,−→π) while satisfying resource constraints of
PMs: |{v ∈ V|m(v) = i}| ≤ rci,∀i ∈ Vp.

2) VM Migration Algorithm for Unordered Policy: Algo. 4
below first computes costs for all the |Vp| · (|Vp| + 1)/2
policy routes (lines 2-6). Then for each VM pair (in the non-
ascending order of their traffic rates), it finds a PM pair to
migrate to, such that the resulted cost for this VM pair is the
minimum among all the unassigned VM pairs in this round
(lines 7-22). After the entire migration scheme m is computed,
it finally migrates the VMs and returns the total cost (lines 23
and 24). Its takes O(|Vp|2 · (n3 + l)).

Algorithm 4: PAM Algorithm for Unordered Policy.
Input: A PADC with unordered policy {mb1,mb2, ...,mbn},
Vp = {pmi}, resource capacity rci, VM pair placement p.

Output: A migration scheme m and the total cost Ct(m,−→π).
Notations: i, j: indices for PM pairs; k: index for VM pairs.
ci,j : the total cost of a VM pair if its source VM is

migrated to pm(i) and destination VM to pm(j).
a, b: indices of a PM pair that gives minimum total cost.
avail(pmi): number of available slots at pmi, initially rci.

1. m = φ, Ct(m,−→π) = 0, k = 1, λ1 ≥ λ2... ≥ λl;
2. for (i = 1; i ≤ |Vp|; i++)
3. for (j = i; j ≤ |Vp|; j++)
4. Compute pr(i, j) using Algo. 2;
5. end for;
6. end for;
7. while (k ≤ l) // find PM pair for VM pair (vk, v

′
k)

8. cmin =∞; // minimum total cost for (vk, v
′
k)

9. for (i = 1; i ≤ |Vp|; i++)
10. if (avail(pmi) == 0) continue; // pmi is full
11. for (j = i; j ≤ |Vp|; j++)
12. if

(
(avail(pmj) == 0) ∨ // pmj is full

(i == j ∧ avail(pmj) ≤ 1)
)

continue;
13. ci,j = 0;
14. c(pmi) = µ · c(p(vk), pmi), // cost of migrating vk

c(pmj) = µ · c(p(v′k), pmj); // to pmi, v′k to pmj

15. ci,j = λk · pr(i, j) + c(pmi) + c(pmj);
16. if (ci,j < cmin) a = i, b = j, cmin = ci,j ;
17. end for;
18. end for;
19. m = m ∪ {(pma, pmb)}; // update migration scheme m
20. Ct(m,

−→π) += cmin; // update total cost
21. avail(pma)−−, avail(pmb)−−;
22. end while;
23. Migrate (v1, v1

′), ..., (vl, vl
′) according to m;

24. RETURN m and Ct(m,−→π).

EXAMPLE 5: For the two VM pairs stored in the PADC
of Fig. 3 (a), Algo. 4 will migrate both v1 and v′1 to pm1,
resulting in cost of 406 for this pair. As pm1 is now full, it
will then migrate both v2 and v′2 to pm2, resulting in cost of
16 for this pair. The total cost of the two pairs is 422. �

Theorem 5: Under unordered policy, PAM is NP-hard even

for one pair of VMs (i.e., l = 1).
Proof: We reduce a variation of the s-t traveling salesman
path problem to this special case. By variation, we mean that
in complete graph K = (VK , EK), each node in VK has a cost.
Thus the cost of the s-t shortest Hamiltonian path includes the
costs of s and t. The rest of the proof is then similar to that in
Theorem 2 with one augmentation: For pmi, its cost c(pmi)
is the migration cost of v1 from p(v1) to pmi; for pmj , its
cost c(pmj) is the migration cost of v1′ from p(v′1) to pmj .

Theorem 6: Algo. 4 achieves 2-approximation when l = 1.
Proof: For Algo. 4, let the PM pair that (v1, v

′
1) migrate to be

(pma, pmb). Let their optimal VM migration be (pma′ , pmb′)
and their optimal total cost be Coptt (m,−→π). The total cost of
(v1, v

′
1) computed by Algo. 4 Ct(m,

−→π) = λ1 · pr(a, b) +
µ · c(p(v1), pma) + µ · c(p(v′1), pmb) ≤ λ1 · pr(a′, b′) + µ ·
c(p(v1), pma′) + µ · c(p(v′1), pmb′) ≤ 2 · λ1 · opr(a′, b′) + 2 ·
µ · c(p(v1), pma′) + 2 · µ · c(p(v′1), pmb′) = 2 ·Coptt (m,−→π).

 0

 0.5

 1

 1.5

 2

 2.5

500 1000 1500 2000

T
o
ta

l
c
o
m

m
.
c
o
s
t
(x

1
e
7
)

Number of VM Pairs

Optimal
TrafficAware

(a) Varying l. n = 3, rc = 40.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20 40 60 80

T
o
ta

l
c
o
m

m
.
c
o
s
t
(x

1
e
7
)

Resource Capaity of PMs

Optimal
TrafficAware

(b) Varying rc. l = 1000, n = 3.

Fig. 7. Comparing with TrafficAware in ordered policy, k = 16.

VI. PERFORMANCE EVALUATION

In this section we compare our algorithms with existing
work (Table II). For PAL, we name the optimal algorithm for
ordered policies (Algo. 1) as Optimal and the approxima-
tion algorithm for unordered (Algo. 3) as Approx-PAL, and
compare them with TrafficAware [33], a seminal but policy-
oblivious VM placement algorithm. For PAM, we refer to
the minimum cost flow-based algorithm for ordered policy as
MCF and the approximation algorithm for unordered (Algo. 4)
as Approx-PAM, and compare them with PLAN [15].

TABLE II
COMPARING PAM AND PAL ALGORITHMS.

Ordered Policy Unordered Policy Existing Work
PAL Optimal Approx-PAL TrafficAware [33]
PAM MCF Approx-PAM PLAN [15]

We consider fat-tree PADCs of size k = 8 with 128 PMs
and size k = 16 with 1024 PMs. The traffic rates of VM pairs
are in the range of [0, 1000] – Following flow characteristics
found in Facebook data centers (Section 5.1, [36]), 25% of
VM pairs have light traffic rates in [0, 300), 70% medium
traffic rates in [300, 700], and 5% heavy rates in (700,1000].
As suggested by Cisco design guide [3], we install a number
of MBs on different aggregation switches in the PADC. As
80% of cloud data center traffic originated by servers stays
within the rack [9], for the initial VM placement in PAM, we
place 80% of the VM pairs into the PMs under the same edge
switches while the rest 20% under different edge switches.
Each data point in the plots is an average of 20 runs with

 0

 0.5

 1

 1.5

 2

 2.5

 3

500 1000 1500 2000

T
o

ta
l
c
o

m
m

.
c
o

s
t

(x
1

e
7

)

Number of VM Pairs

Approx-PAL
TrafficAware

(a) Varying l. n = 3, rc = 40.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 3 5

T
o

ta
l
c
o

m
m

.
c
o

s
t

(x
1

e
7

)

Number of MBs

Approx-PAL
TrafficAware

(b) Varying n. l = 1000, rc = 40.

Fig. 8. Comparing with TrafficAware in unordered policy, k = 16.

95% confidence interval. In each run a new set of VM pairs
are placed (for PAL) or migrated (for PAM) in the PADC.

Comparing with TrafficAware. As TrafficAware only assigns
VMs to the same PMs or PMs in close proximity, and does not
consider the proximity of the PMs to the MBs, we implement
TrafficAware as follows for fair comparison. In ordered policy,
it places VM pairs (in non-ascending order of their traffic
rates) to the PMs that are closest to the ingress switch. In
unordered policy, it works like Algo. 3 but only considers
the Hamiltonian cycle case, as TrafficAware always places
VM pairs in the same PM if possible. For ordered policy,
Fig. 7(a) varies the number of VM pairs l and shows that
Optimal yields 46-49% less costs than TrafficAware. Fig. 7(b)
varies resource capacities of PMs rc and shows that Optimal
outperforms TrafficAware by around 48%. Fig. 8 compares
Approx-PAL and TrafficAware under unordered policy. It
varies l as well as number of MBs n and shows that Approx-
PAL outperforms TrafficAware by 37-58% in all scenarios.
Above results are evident as Optimal is optimal and Approx-
PAL is 2-approximation policy-aware algorithms while Traf-
ficAware is policy-oblivious, inducing enormous traffic when
VM communication traverses the MBs.

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l
C

o
s
t

(x
1

e
6

)

Epochs

No migration
MCF, µ =50, rc=40
MCF, µ =50, rc=80
MCF, µ =10, rc=40
MCF, µ =10, rc=80

Fig. 9. Effects of VM migration.

 4.4
 4.6
 4.8

 5
 5.2
 5.4
 5.6
 5.8

 6
 6.2
 6.4

20 50 100 300 500

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Resource Capacity rc

Approx-PAM
PLAN

Fig. 10. Comparing with PLAN.

Effects of VM Migrations. Fig. 9 investigates how much
cost reduction VM migration brings to a PADC (k = 8,
l = 1000, n = 3) compared to without migration. VM
migrations take place in epochs. At the beginning of each
epoch, VM pairs change their traffic rates to new values
in [0,1000] following aforesaid Facebook flow pattern. For
migrations, it then executes MCF and calculates the total
migration and communication cost. For no migration, it simply
recalculates the total communication cost using the new traffic
rates. We set the migration coefficient µ as 10 and 50, and let
the PADC run continuously for ten epochs. Fig. 9 shows the
total cost of VM pairs in each epoch with and without VM
migration, for both rc = 40 and 80. The cost of µ = 50
is larger than that of µ = 10, as migration costs increase

 5.4
 5.6
 5.8

 6
 6.2
 6.4
 6.6
 6.8

 7
 7.2
 7.4

0 50 100 200 300 400 500

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Migration coefficient µ

MCF
PLAN

(a) Ordered Policy.

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

0 50 100 200 300 400 500

T
o
ta

l
c
o
s
t
(x

1
e
6
)

Migration coefficient µ

Approx-PAM
PLAN

(b) Unordered Policy.

Fig. 11. Comparing with PLAN, k = 8, l = 1000, n = 3, rc = 40.

with the increase of µ. In either case, the cost of rc = 80 is
smaller than that of rc = 40, as there are more resource slots
available to achieve cost-efficient VM migrations. In all cases,
VM migration reduces the total costs by up to 25% (µ = 10
and rc = 80) compared to without migration.

Comparing with PLAN. We then compare our PAM algo-
rithms with PLAN by increasing migration coefficient µ. As
PLAN is only designed for ordered policy, for the purpose
of comparison in unordered policy, we implement it as below
greedy algorithm. For each VM pair, it finds the MB closest
to the source VM as ingress MB and the one closest to the
destination VM as egress MB. It then finds a MB sequence
by starting from the ingress MB, visiting an unvisited closest
MB, so on and so forth until all the MBs are visited, and
finally visiting the egress MB. Fig. 11(a) shows that under
ordered policy, the MCF outperforms the PLAN by around
20% when µ is small. With the increase of µ, PLAN and MCF
start to perform close due to high migration cost. Fig. 11(b)
shows that under unordered policy, Approx-PAM outperforms
PLAN slightly for the entire range of µ. Finally, Fig. 10
compares Approx-PAM and PLAN by varying rc while fixing
µ as 20, and shows that Approx-PAM outperforms PLAN
for the entire range of rc. With the increase of the rc, the
performance difference between Approx-PAM and Greedy
gets larger, around 30%.

VII. CONCLUSIONS AND FUTURE WORK

We proposed and studied PAL and PAM: VM placement
and VM migration in the PADC, an emerging cloud computing
platform. We demonstrated that VM migration is an effective
technique to alleviate dynamic VM traffic in PADCs. Working
together, PAL and PAM place and then migrate VMs in the
event of dynamic traffic fluctuation, achieving optimal and
near-optimal network resource management for a PADC’s
lifetime. We uncovered a suite of new policy-aware problems
and designed optimal, approximation, and heuristic algorithms.
We also showed that our results outperform the state-of-the-
arts. As future work, we will study if the optimality and
approximability of our algorithms still hold when VMs have
different resource demands. We will also study how VNF
migration mitigates diverse and dynamic traffic and design
a holistic VNF+VM migration scheme to achieve ultimate
resource optimization in PADCs.

ACKNOWLEDGMENT

This work was supported by NSF Grant CNS-1911191.

REFERENCES

[1] Amazon lex. https://aws.amazon.com/lex/.
[2] Cisco global cloud index: Forecast and methodology, 2016 to 2021 white

paper. https://www.cisco.com/c/en/us/solutions/service-provider/global-
cloud-index-gci/white-paper-listing.html.

[3] Cisco virtualized multi-tenant data center, version 2.0 compact pod
design guide. http://hyperurl.co/hpj2xt.

[4] Slack, the collaboration software that moves work forward.
http://slack.com.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, 2008.

[7] M. Alicherry and T.V. Lakshman. Optimizing data access latencies in
cloud systems by intelligent virtual machine placement. In Proc. of
IEEE INFOCOM 2013.

[8] A. Beloglazov and R. Buyya. Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints. IEEE Transactions on Parallel and Distributed
Systems, 24(7):1366 – 1379, 2013.

[9] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proc. of ACM IMC 2010.

[10] B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues, 2002.
https://tools.ietf.org/html/rfc3234.

[11] C. Clark, K. Fraser, and S. Hand. Live migration of virtual machines.
In Proc. of NSDI 2005.

[12] R. Cohen, L. Lewin-Eytan, J. Seffi Naor, and D. Raz. Almost optimal
virtual machine placement for traffic intense data centers. In Proc. of
IEEE INFOCOM 2013.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2009.

[14] L. Cui, R. Cziva, F. P. Tso, and D. P. Pezaros. Synergistic policy and
virtual machine consolidation in cloud data centers. In Proc. of IEEE
INFOCOM 2016.

[15] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao. Plan: Joint
policy- and network-aware vm management for cloud data centers. IEEE
Transactions on Parallel and Distributed Systems, 28(4):1163–1175,
2017.

[16] Y. Cui, Z. Yang, S. Xiao, X. Wang, and S. Yan. Traffic-aware virtual
machine migration in topology-adaptive dcn. IEEE/ACM Transactions
on Networking, 25(6):3427 – 3440, 2017.

[17] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca. An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures. IEEE/ACM
Transactions on Networking, 25(4):2008–2025, 2017.

[18] J. Fan, C. Guan, Y. Zhao, and C. Qiao. Availability-aware mapping of
service function chains. In Proc. of IEEE INFOCOM 2017.

[19] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags. In Proc. of USENIX NSDI 2014.

[20] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. Opennf: Enabling innovation in network function
control. In Proc. of ACM SIGCOMM 2014.

[21] A. V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. J. Algorithms, 22:1–29, 1997.

[22] A. Gushchin, A. Walid, and A. Tang. Scalable routing in sdn-
enabled networks with consolidated middleboxes. In Proc. of ACM
Hotmiddlebox, 2015.

[23] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are
more difficult than cycles. Operations Research Letters, 10:291 – 295,
1991.

[24] H. Huang, S. Guo, J. Wu, and J. Li. Service chaining for hybrid network
function. IEEE Transactions on Cloud Computing, 7:1082–1094, 2019.

[25] Y. Jiang, Y. Cui, W. Wu, Z. Xu, J. Gu, K. K. Ramakrishnan, Y. He,
and X. Qian. Speedybox: Low-latency nfv service chains with cross-nf
runtime consolidation. In Proc. of IEEE ICDCS 2019.

[26] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer
for data centers. In Proc. of ACM SIGCOMM 2008.

[27] T. Kuo, B. Liou, K. C. Lin, and M. Tsai. Deploying chains of virtual
network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking, 26(4):1562–1576, Aug 2018.

[28] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. Wilfong, Y. R.
Yang, and C. Guo. Pace: Policy-aware application cloud embedding. In
Proc. of IEEE INFOCOM 2013.

[29] X. Li, J. Wu, S. Tang, and S. Lu. Let’s stay together: Towards traffic
aware virtual machine placement in data centers. In Proc. of IEEE
INFOCOM 2014.

[30] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin. Improve service chaining
performance with optimized middlebox placement. IEEE Transactions
on Services Computing, 10(4):560–573, 2017.

[31] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu. On dynamic service function
chain deployment and readjustment. IEEE Transactions on Network and
Service Management, 14(3):543–553, 2017.

[32] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer. Remedy: Network-aware steady state vm management for
data centers. In Proc. of the NETWORKING 2012.

[33] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In Proc.
of IEEE INFOCOM 2010.

[34] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K. Ramakrish-
nan, and T. Wood. Virtual function placement and traffic steering in
flexible and dynamic software defined networks. In The 2015 IEEE
International Workshop on Local and Metropolitan Area Networks.

[35] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
Simplefying middlebox policy enforcement using sdn. In Proc. of ACM
SIGCOMM 2013.

[36] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In Proc. of ACM SIGCOMM
2015.

[37] G. Sallam, G.R. Gupta, B. Li, and B. Ji. Shortest path and maximum
flow problems under service function chaining constraints. In Proc. of
IEEE INFOCOM 2018.

[38] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye. Provably efficient algo-
rithms for joint placement and allocation of virtual network functions.
In Proc. of Infocom 2017.

[39] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Proc. of
NSDI 2012.

[40] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud servfce. In Proc. of ACM SIGCOMM 2012.

[41] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.H. Liu, and
S. Banerjee. Application-aware virtual machine migration in data
centers. In Proc. of INFOCOM 2011, mini conference.

[42] H. Wang, Y. Li, Y. Zhang, and D. Jin. Virtual machine migration
planning in software-defined networks. In Proc. of Infocom 2015.

[43] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan. Stochastic
load balancing for virtual resource management in datacenters. IEEE
Transactions on Cloud Computing (Early Access), 2018.

[44] J. Zhang, F. Ren, and C. Lin. Delay guaranteed live migration of virtual
machines. In Proc. of INFOCOM 2014.

[45] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula. Steering: A software-defined networking for inline
service chaining. In Proc. of IEEE ICNP 2013.

