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ABSTRACT
Many data-intensive sensor network applications are poten-
tial big-data enabler: they are deployed in challenging envi-
ronments to collect large volume of data for a long period
of time. However, in the challenging environments, it is not
possible to deploy base stations in or near the sensor field
to collect sensory data. Therefore, the overflow data of the
source nodes is first offloaded to other nodes inside the net-
work, and is then collected when uploading opportunities
become available. We call this process data preservation in
sensor networks. In this paper, we take into account spa-
tial correlation that exist in sensory data, and study how to
minimize the total energy consumption in data preservation.
We call this problem data preservation problem with data
correlation. We show that with proper transformation, this
problem is equivalent to minimum cost flow problem, which
can be solved optimally and efficiently. Via simulations, we
show that it outperforms an efficient greedy algorithm.
Keywords – Big Data, Data Preservation, Sensor Net-

works, Energy-Efficiency, Spatial Correlation

1. BACKGROUND AND MOTIVATION

Big data refers to a collection of data sets that are so
large and complex, and it becomes difficult to process us-
ing traditional data processing applications. The challenges
of big data include its collection, storage, search, sharing,
analysis, and visualization. One of the highly anticipated
key contributors of the big data is the distributed wireless
sensor networks, which consists of hundreds of thousands of
small sensors with sensing, commuting, and communication
capacities. For example, the Internet of Things (IoT) [2]
is a futuristic network of physical objects embedded with
RFID (Radio-Frequency Identification Technology) sensors,
to track and manage a large number of uniquely identifiable
objects.
With the advances in MEMS technology and the widely

used sensors including video cameras, microphones, RFID
readers, telescopes and seismometers, a whole new array of
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data-intensive sensing applications have been researched and
developed recently. These emerging sensor network applica-
tions include underwater or ocean sensor networks [15, 29],
acoustic sensor networks [17], and sensor networks monitor-
ing volcano eruption and glacial melting [19, 33]. In these
challenging environments with very limited accessibility, it
is not possible to deploy a base station with power outlet
near or inside the sensor network to collect the data. There-
fore, the generated sensory data is first stored inside the
network, and then being uploaded periodically to the re-
mote base station by data mules [12, 13], or through low
rate satellite link [20].

Gathering the large volume and wide variety of the sen-
sory data is critical in above emerging sensor networks. Each
sensor node has limited storage capacity and a finite, unre-
plenishable battery power supply. Sensor nodes close to the
event of interest constantly generate large amounts of sen-
sory data, which can quickly exhaust their limited storage
capacity. For example, a distributed acoustic monitoring
and trace retrieval system, called EnviroMic [17], was de-
signed and deployed to monitor the social behaviors of ani-
mals in the wild. In EnviroMic, an acoustic sensor with 1GB
flash memory will run out of its storage in just seven hours,
when it samples the entire audible spectrum. We refer to
these sensor nodes with exhausted data storage as source
nodes. Other sensor nodes that are relatively far away from
the event of interest and still have available storage are re-
ferred to as storage nodes (sensor node whose generated data
has not exceeded its storage capacity is still considered as
a storage node). In order to prevent data loss, the overflow
data generated at source nodes needs to be offloaded to the
storage nodes before above uploading opportunities become
available. The storage nodes that finally store offloaded data
are referred to as destination nodes. We refer to this pro-
cess wherein overflow data is offloaded from source nodes
to destination nodes to be preserved as data preservation in
sensor networks.

Since different sensor nodes partially monitor the same
spatial region, the generated sensory data is often corre-
lated. That is, nodes close to each other while monitoring
the same event of interest often produce similar or same
readings about the event, resulting in multiple observations
of the same event. During data preservation, it is not neces-
sary to offload all such redundant information for the follow-
ing reasons. First, the redundant information may not con-
tribute to the sensor network application if a smaller amount
of sensor measurements is adequate to tell the event features
within a certain reliability/fidelity level. Second, more im-



portantly, preserving any measurements inside the network
costs participating nodes’ battery power, which is finite and
unreplenishable. Therefore, it is not desirable to offload all
the generated data when a clear correlation existing among
them. The goal of the problem is to minimize the total bat-
tery power consumption of data preservation while offload-
ing only one observation of each event, considering that each
event has multiple observations in the network due to spatial
correlation. We refer to this problem as data preservation
problem with data correlation.

Paper Organization. The rest of the paper is organized as
follows. In Section 2, we discuss the related work in the field
of big-data and sensor networks. In Section 3, we identify
and formulate data preservation problem with data corre-
lation, and show that with proper transformations, it can
be modeled as a minimum cost flow problem. We present
and analyze the simulation results in Section 4. Section 5
concludes the paper and points out some future work.

2. RELATED WORK

In the last few years, “Data-Intensive Sensor Networks”
have been used in literature to represent one trend of sen-
sor network development [6, 24]. That is, sensor networks
are beginning to generate large amount of data. Recently,
it further takes a “big-data” perspective and rethinks some
of the research problems in traditional sensor network [26].
Takaishi et al. [26] observed that although the data gener-
ated by an individual sensor may not appear to be signifi-
cant, the overall data generated across numerous sensors in
the densely distributed sensor network can produce a signif-
icant portion of the big data.
Inspired by above work, we envision a data-intensive sen-

sor network wherein a large volume of sensory data are gen-
erated therefore energy-efficiency becomes a even more crit-
ical problem in emerging sensor networks. In this paper, we
consider a sensor network that is deployed in remote area or
inhospitable region, therefore there is no base station avail-
able in the sensor network. How to effectively preserve the
generated sensory data inside the network becomes a new
challenge. The first line of work is a sequence of system
research in disconnection-tolerant storage sensor networks
[17, 18, 32, 36]. The authors in these papers design acoustic
sensor networks, which monitor the social behavior of an-
imals in the wild. Since no base station is available, they
design cooperative distributed storage systems specifically
for disconnected operations of sensor networks, to improve
the utilization of the network’s data storage capacity. The
other line of research instead takes an algorithmic approach
by focusing on the hardness of the problems and the optimal-
ity of their solutions [11, 25, 27, 28, 34]. Tang et al. [25, 28]
address the energy-efficient data redistribution problem in
data-intensive sensor networks, and propose efficient cen-
tralized and distributed algorithms. Hou et al. [11] and
Takahashi et al. [25] study how to maximize the minimum
remaining energy of the nodes that finally store the data,
in order to store the data for long period of time. Xue
et al. [34] consider that sensory data from different source
nodes have different importance, and study how to preserve
data with highest importance. All above work, however,
does not consider spatial correlation of sensory data, which
could be utilized to achieve energy efficient data preserva-
tion. By introducing spatial correlation, we generalize the

energy-efficient data redistribution problem studied in [28].
There has been very active research in data spatial corre-

lation in sensor networks. Vuran et al. [30] establish a theo-
retical framework that captures and exploits the data corre-
lation in order to develop efficient communication protocols
in sensor networks. Jindal et al. [14] create a mathematical
model to generate synthetic and spatially correlated data.
In terms of specific research thrusts, data spatial correlation
has been used in data aggregation and routing algorithms
[5, 23], MAC protocol design [31], data storage and querying
[16], and data encoding and compression [23, 37]. All above
work assume existence of a base station so that the corre-
lated data can be transmitted from sensor nodes to the base
station directly. Our work does not assume the existence of
base stations (due to the challenging environments in which
the sensor network applications are deployed), rather it fo-
cuses on how to offload data from storage-depleted source
nodes into the sensor network. Therefore, the spatial cor-
relation addressed in this paper adopts a totally different
network model compared to all the existing spatial correla-
tion research in sensor networks.

Network flow algorithms (including maximum flow [3],
minimum cost flow [9, 22, 28], and multi-commodity flow
[35]) have been used to model and solve several problems
in sensor network research. Bodlaender et al. [3] study
the integer maximum flow problem in wireless sensor net-
works with energy constraint. They show that despite the
efficiency of traditional maximum flow problems, the inte-
ger maximum flow in sensor network is indeed strongly NP-
complete and in fact APX-hard. Patel et al. [22] study min-
imizing the energy cost of sending data packets from sensor
nodes to base stations while satisfying the capacity limits
of wireless links. They propose a routing protocol based on
minimum cost flow algorithm. Ha et al. [9] adopt minimum
cost algorithm with the aim of increasing the monitoring
coverage and the operational lifetime of mesh-based sensor
networks. Tang et al. [28] formulate the energy-efficient data
redistribution problem in data-intensive sensor networks as
a minimum cost flow problem. Xue et al. [35] model energy
efficient routing for data aggregation in sensor networks as
a multicommodity flow problem, where a commodity repre-
sents the data generated from a sensor node. However, none
of above work addresses data spatial correlation in sensor
networks. The data aggregation model in [35] assumes that
information from different source nodes can be assembled at
relay nodes when they are transmitted to the base station.
However, no explicit spatial correlation model is given and
therefore it is unclear the role of spatial correlation in the
data aggregation process. To the best of our knowledge, this
work is the first one to formulate data spatial correlation in
sensor networks as a minimum cost flow algorithm and solve
it optimally.

3. DATA PRESERVATION PROBLEM WITH DATA

CORRELATION

Network Model. The sensor network is represented as an
undirected graph G(V,E), where V = {1, 2, ..., N} is the set
of N nodes, and E is the set of edges. There are a sequence
of events occurred inside the network, each is sensed and
observed by multiple sensor nodes (therefore referred to as
source nodes). Thus each event corresponds to multiple ob-
servations, each is stored at a different source node. The



sensory data is therefore modeled as a sequence of observa-
tions, each of which has the same size of k bits. Without
loss of generality, let V1 = {1, 2, ..., p} be the p source nodes
(with depleted storage space), and V2 = {p+1, p+2, ..., N}
be the set of storage nodes (V1 ∩ V2 = ∅, V1 ∪ V2 = V ).
Let di be the total number of observations source node i
needs to offload. Let a =

∑p
i=1 di denote the total number

of observations to be offloaded in the network. Let mi be
the available free storage space at storage node i ∈ V2, mea-
sured in number of observations (that is, storage node i can
store mi more observations). If i ∈ V1, then mi = 0, imply-
ing that a source node has zero available storage space. If
i ∈ V2, then mi ≥ 0, implying that storage node i can store
another mi observations. We assume that the total size of
the observations to be preserved is less than or equal to the
size of the total available storage space in the network, that
is, a ≤

∑N
i=p+1 mi.

Energy Model. We adopt the first order radio model [10]
wherein for a k-bit observation data sent over distance l me-
ters, the transmission energy (on the sender side) is Et(k, l) =
ϵelec ∗ k+ ϵamp ∗ k ∗ l2, the receiving energy (on the receiver
side) is Er(k) = ϵelec ∗ k. Here ϵelec = 100nJ/bit is the
energy consumption per bit on the transmitter circuit and
receiver circuit, and ϵamp = 100pJ/bit/m2 calculates the en-
ergy consumption per bit on the transmit amplifier. Let wu,v

denote the total energy consumption when node u sends a
k-bit observation data to its one hop neighbor v over their
distance lu,v, then wu,v = Et(k, lu,v) + Er(k). Note that
receiving energy is independent of distance between sender
and receiver, and that wv,u = wu,v. Now for any arbitrary
two nodes i and j in the network that are multiple hops away
from each other, let ci,j be the minimum energy consump-
tion of sending one observation from i to j along path SPi,j .
Here SPi,j is referred to as the minimum energy consump-
tion path between i and j. Then ci,j =

∑
(u,v)∈SPi,j

wu,v,

wherein both ci,j and SPi,j can be easily obtained using Di-
jsktra’s shortest path algorithm by assigning weight wu,v to
edge (u, v) ∈ E.

Problem Formulation. We first present the spatial cor-
relation model, then formulate the problem. It should be
noted that data preservation with temporal correlation can
be treated in a much simpler way, considering that all the
temporally-correlated observations are generated at the same
source node. A source node can therefore choose one copy
from the set of temporally-correlated observations to offload.
For research of temporal correlation in sensor networks with
base stations, please refer to [30].

Data Spatial Correlation Model. In our spatial correlation
model, the observations from different source nodes for the
same event is identical. Thus each event corresponds to mul-
tiple identical observations, each is from a different source
node. To conserve energy, we would like to preserve only one
observation for each event, to indicate the existence of such
event. Specifically, out of the total a observations, there are
only b < a unique events D = {D1, D2, ..., Db}, each with
k bits.1 Let nj denote the number of observations event
Dj has, and Dj,k denote the kth observation of Dj . Let
s(j, k) ∈ V1 denote the source node of Dj,k, where 1 ≤ j ≤ b

and 1 ≤ k ≤ nj . We have
∑b

j=1 nj = a. Therefore, it needs

1Our work generalizes the work of [28], which assumes b = a
therefore data spatial correlation does not exist.

Figure 1: Data preservation problem with data cor-
relation is equivalent to minimum cost flow Prob-
lem. The first number in each parenthesis is edge
capacity, the second is edge cost.

to decide:

1) out of nj observations each unique event Dj , which one is
selected to offload,

2) a preservation function r : D → V2, indicating one obser-
vation of Dj is offloaded to destination node r(j) via the
minimum energy consumption path between s(j, k) and
r(j), assuming the kth copy of Dj is selected to offload.

Our goal is to offload one observation for each event into
the network to be preserved, such that the total preservation
cost τ is minimized, where

τ =

b∑
j=1

min1≤k≤nj cs(j,k),r(j), (1)

under the storage capacity constraint that the total number
of observations offloaded to node i ∈ V2 is less than or equal
to i’s available storage capacity, i.e.,

|{j|r(j) = i, 1 ≤ j ≤ b}| ≤ mi, for all i ∈ V2.

Minimum Cost Flow Solution. We show that the prob-
lem of data preservation with correlation is equivalent to the
minimum cost flow problem [1, 21], which is stated as below.
Given a graph in which each edge has a capacity and a cost,
some nodes are supply nodes and some are demand nodes,
the goal is to find flows from supply nodes to demand nodes
with minimum cost such that the capacity constraint of each
edge is satisfied.

Theorem 1. The problem of data preservation with data
correlation is equivalent to the minimum cost flow problem.

Proof: We first transform sensor network graph G(V,E)
into a new graph G′(V ′, E′) as follows, shown in Fig. 1:



1. V ′ = V ∪{s′}∪ {t′}∪D, where s′ is the new source node,
t′ is the new sink node.

2. E′ include following edges (from left to right in Fig. 1):

• {(s′, Dj), Dj ∈ D}: capacity and cost of each edge
are 1 and 0, respectively.

• {(Dj , i), Dj ∈ D and i ∈ V1}, if i is a source node
of Dj : capacity and cost of each edge are 1 and 0,
respectively. Note that not every pair of Dj and i are
connected by an edge.

• {(i, j), i ∈ V1 and j ∈ V2}: capacity and cost of edge
(i, j) are di and ci,j , respectively.

• {(i, t′), i ∈ V2}: capacity and cost of edge (i, t′) are
mi and 0, respectively.

3. Set both the supply at s′ and the demand at t′ as b, the
number of unique events. The supply of other nodes in V ′

is set as 0.

Now b amount of valid flow from s′ to t′ must include 1
amount on edge (s′, D1), 1 amount on (s′, D2), ..., and 1
amount on (s′, Db). This achieves our goal that only one
observation of each event is offloaded. b is the amount of
maximum possible flow in the network. Solving the min-
imum cost flow problem on G′(V ′, E′) gives the minimum
preservation cost in the data preservation problem with data
correlation in G(V,E).

Minimum Cost Flow Algorithm. Minimum cost flow prob-
lem can be solved efficiently and optimally [1]. We adopt
minimum cost flow algorithm proposed in [7, 8]. It is based
on scaling push-relabel method and its implementation works
well over a wide range of problem classes. This algorithm has
the time complexity of O(n2mlog(nc)), where n, m, and c
are the number of nodes, the number of edges, and the max-
imum capacity of an edge in graph G′. With above transfor-
mation, n = 2+b+N , m <= b+b×p+p×(N−p)+N−p =
(p+1)× (N−p+b), c = max(maxi{di},maxi{mi}). There-
fore the time complexity of the minimum cost flow algorithm
in G′ is p(b + N)2(N − p + b)log((b + N)c) = O

(
p × (b +

N)3 × log((b+N)c)
)
.

For the transformation part, we adopt Djkstra’s shortest
path algorithm with Fibonacci heap, which takes O(|E| +
N logN) [4]. Therefore finding the minimum energy con-
sumption paths of all pairs of source and storage nodes takes
O(p× (N − p)× (|E|+N logN)), which is still less than the
time complexity of minimum cost flow algorithm.

Greedy Algorithm. Next we present a simple but more
efficient greedy algorithm (Algorithm 1) and compare it with
optimal minimum cost flow algorithm. For each unique
event, it finds the closest storage node (with available space)
to one of the source nodes of that event, and offloads its ob-
servation from this source node to this storage node. It
stops until one observation of all the b events are offloaded.
Finding the minimum energy consumption paths of all pairs
of source and storage nodes (line 1) takes O(p × (N − p)×
(|E|+N logN)), the rest of Algorithm 1 takes O((N−p)×a),
where a is the total number of observations. Therefore, the
time complexity of Algorithm 1 is O(p × (N − p) × (|E| +
N logN) + (N − p)× a).
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Figure 2: Performance Study of the Optimal Algorithm.

Algorithm 1. Greedy Data Preservation Algorithm.
Input: Sensor Network Graph G(V,E)
Output: Total preservation cost τ
0. Notations:

minj: minimum energy cost of offloading Dj;
1. Calculate ci,j for all i ∈ V1, j ∈ V2;
2. τ = 0;
3. for (1 ≤ j ≤ b)
4. minj = ∞;
5. for (1 ≤ k ≤ nj)
6. for (p+ 1 ≤ l ≤ N);
7. if (cs(j,k),l < minj)
8. minj = cs(j,k),l;
9. end for;
10. end for;
11. τ = τ +minj;
12. end for;
13. RETURN τ .



4. PERFORMANCE EVALUATION

We study the performances of algorithms for the data
preservation with data correlation, viz. the minimum cost
flow algorithm (referred to as Optimal) and the greedy al-
gorithm (referred to as Greedy). For fair comparison, both
algorithms take the same input file, which specifies network
topology, set of source nodes, number of events, number
of observations at each source node, and storage capacity of
each storage node. Each data point below is an average over
five runs. In all plots, the error bars indicate 95% confidence
interval.

Simulation Setup. We wrote our own simulator in Java. We
generate a 100-node sensor network in a 1000m × 1000m
field, using a recursive graph construction technique. First
a sensor node is randomly placed, then a random angle (be-
tween 0◦ and 360◦) and a random distance (less than or
equal to transmission range) to that node are picked, at
which the second node is placed. Each iteration one node is
generated to branch off the existing graph. This is repeated
until all 100 nodes are generated. In contrast to the tradi-
tional sensor network generation, wherein a number of sen-
sor nodes are randomly generated inside the network, above
graph construction technique guarantees that the sensor net-
work constructed is always connected. Along the graph con-
struction, nodes are randomly picked to be source nodes.
Afterwards, observations of each event are randomly gener-
ated and distributed among the source nodes. There are 50
unique events, each has 5 copies of observations due to spa-
tial correlation. Each observation data is of size 400 Bytes.
The storage capacity of each storage node is 10 KByte (the
size of 25 observation data).

Performance of Optimal. Figure 2 shows the performance of
Optimal by varying the transmission ranges and the num-
ber of observations preserved for each event.2 Figure 2 (a)
shows that when transmission range is small, the total en-
ergy consumption linearly increases with the number of ob-
servation copies offloaded; while when transmission range
gets larger, the total energy consumption increases faster.
This is because when transmission range is small, the obser-
vation data offloading takes place in a multiple hop manner
while when transmission range is large, more nodes are di-
rectly connected and thus can communicate with with each
other directly. It has been shown in wireless communica-
tion that it costs more energy to send from one node to
another directly than by way of multiple hops, due to the
fact that energy consumption is proportional to the square
of the communication distance. Figure 2 (b) shows the per-
formance comparison when varying number of source nodes
in the network from 10 to 50. It shows that energy con-
sumption increases more dramatically with the increase of
number of preserved copies, when number of source nodes
increase. This is because with more source nodes, it gets
more difficult to offload the observation copies since there
are less number of storage nodes are available.

Comparing Optimal with Greedy. Finally we compare Op-
timal with Greedy. Figure 3 shows that when number of
source nodes are small, both Optimal and Greedy perform
similarly. However, when number of source nodes are large,
Optimal evidently performs much better than Greedy, with

2Minimum cost flow transformation (Fig. 1) can be eas-
ily modified to represent that multiple observations of each
event are preserved.
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Figure 3: Performance comparison between Optimal
and Greedy Algorithms.

less energy consumption incurred for data preservation. This
is because when small number of source nodes are located
randomly inside the network, there are ample number of
storage nodes around each source node, thus the Greedy
can always find a close storage node to preserve each obser-
vation, thus performing as well as the Optimal. However,
when increasing the number of source nodes, the situations
get more stressful as more number of observation copies need
to offload while there are relatively less number of storage
nodes. As a result, the Greedy becomes less effective as
it only focuses on offloading observations from each source
node currently considered in that iteration, and does not
take into account how source nodes are coordinated to of-
fload data. In contrast, minimum cost flow algorithm takes
into account all the factors among source nodes and gives a
cooperative offloading strategies such that the total energy
cost is minimum.

5. CONCLUSION AND FUTURE WORK

When large amounts of data are generated in data-intensive
sensor networks, energy efficiency becomes a more critical
issue. In this paper, we take a “big-data” perspective of sen-
sor networks and focus a new paradigm in emerging sensor
network applications, wherein large volumes of data must
be preserved inside the network due to the absence of base
stations. Preserving large amount of data under the stor-
age space and battery energy constraints of sensor nodes is
a challenging problem. We exploit spatial correlation that
commonly exist among sensory data, and propose a min-
imum cost flow approach to solve data preservation prob-
lem optimally. This paper serves as the first step to study
big data preservation while utilizing data spatial correlation.
Currently, our spatial correlation model assumes that one
event has multiple identical observations. As future work,
we will consider more realistic spatial correlation model wherein
data similarity varies according to distances among sensor
nodes.
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