
Delay Efficient Data Gathering in
Sensor Networks

Xianjin Zhu, Bin Tang, and Himanshu Gupta

Department of Computer Science,
State University of New York at Stony Brook, Stony Brook, NY 11794

{xjzhu, bintang, hgupta}@cs.sunysb.edu

Abstract. Data gathering is a very important functionality in sensor
networks. Most of current data gathering researches have been empha-
sized on issues such as energy efficiency and network lifetime maximiza-
tion; and the technique of data aggregation is usually used to reduce
the number of radio transmissions. However, there are many emerging
sensor network applications with different requirements and constraints.
Rather, they are time critical, i.e., delivering sensed information of each
individual sensor node back to a central base station quickly becomes
most important. In this paper, we consider collision-free delay efficient
data gathering problem in sensor networks, assuming that no data ag-
gregation happens in intermediate nodes. We formally formulate this
problem and propose optimal and near-optimal algorithms for different
topologies. Particularly, in general topology, we present two approxima-
tion algorithms with performance ratio of 2 and 1+1/(k+1), respectively.

1 Introduction

1.1 Motivation

Recent advances in miniaturization of computing devices with advent of efficient
short-range radios have given rise to strong interest in sensor networks [1],[2].
Sensor networks are ad hoc multi-hop wireless networks formed by a large num-
ber of low-cost sensor nodes with limited battery power and processing capacity.
Wireless sensor networks are expected to be used in a wide range of applica-
tions, such as military surveillance, environmental monitoring, target tracking,
etc. One of the most important communication primitives that has to be provided
by sensor networks is data gathering, i.e., information collected at sensors has to
be transmitted back to a sink node, which is responsible for further processing
for end-user queries.

Since sensor nodes are usually deployed in adverse environments, it is often
not feasible to replace or recharge their batteries. In order to prolong network
lifetime, how to maintain energy efficient data gathering has attracted a lot of at-
tention. Most of current data gathering researches have been conducted towards
this goal [3],[4],[5],[6]. Some works also use data aggregation techniques [7],[8],[9]
to reduce the number of radio transmissions, which is the main drain of the

X. Jia, J. Wu, and Y. He (Eds.): MSN 2005, LNCS 3794, pp. 380–389, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Delay Efficient Data Gathering in Sensor Networks 381

battery of sensor nodes. Data aggregation is especially appropriate when sensor
networks have high density and as a result, data sensed at neighboring nodes
are either highly correlated or simply redundant.

However, there are many emerging sensor network applications with differ-
ent requirements and constraints. Rather, they are time critical, i.e., delivering
sensed information of each individual sensor node back to a central base sta-
tion as fast as possible becomes most important. Since the data is usually time
varying in sensor networks, it is essential to guarantee that data can be suc-
cessfully received by the sink the first time instead of being retransmitted due
to collisions. In such scenarios, efficient data gathering scheduling is needed,
which speciftes how the data collected at each individual node is transmitted
to the sink or base station without any collisions, within the shortest period of
time. In this paper, we restrict our focus on collision-free delay efficient data
gathering problem in sensor networks, assuming that no data aggregation hap-
pens in intermediate nodes. We first use a concrete example to motivate our
research.

Motivating Example. For patient monitoring in hospital, a sensor network
may consist of many sensor instruments, which are attached to patients to mon-
itor their physical conditions. Medical data sensed at each sensor is transmitted
back to a central platform for diagnosis. Due to the short radio transmission
range, sensed data is transmitted in multi-hop manner. Such application has
several characteristics. First, energy is not a concern as the battery of each sen-
sor can be easily replaced. Secondly, the data collected from each individual
patient is independent and not correlated in anyway. All the illness information
of each patient has to be sent back to the central platform separately and no
aggregation on the intermediate nodes is desired. Thirdly, the time criticality of
such application is obvious without further explanation.

The delay efficient data gathering problem is not limited in sensor networks.
It is suitable for any real time data gathering applications. For example, in net-
work monitoring, wherein each individual computer in the network is required to
send back to the server of its own source or traffic information. This monitoring
happens in rounds and all the nodes are synchronized to send the data back.
This way server can gather all the information and generate a complete pic-
ture of the network; and react quickly to coordinate for resource allocation and
traffic congestion control, etc. In this scenario, data aggregation in intermediate
nodes is obvious unwanted. Rather, the delay window (the period within which
messages from all the nodes are received by the base station) is more critical
since the quicker the central server gets all the necessary information, the more
timely decisions it can make as to the actions each node has to take to prevent
undesirable situations from happening.

1.2 Related Work

The work which is most related to the problem we consider in this paper is
[10]. It studies the problems of data distribution and data collection in wireless
sensor networks via simple discrete mathematical models. Our approach differs

382 X. Zhu, B. Tang, and H. Gupta

with it in two aspects. First, instead of solving a converse distribution problem
wherein a base station transmits data packets to nodes as proposed in [10], we
design optimal or near optimal algorithms to directly solve the data gathering
problem. Second, to further reduce delay while avoiding collisions, we introduce
multiple channels in our work. In [10], a transmission from node Ni to node
Nj is successful only if none of the neighbor nodes of receiver Nj is transmit-
ting simultaneously. With this model, they present a strategy for general graph
networks within a factor of 3 of the optimal performance. In our model, each
node is equipped with two channels. This way its two non-adjacent neighbors
can transmit simultaneously as long as they choose different channels. As we
will show later, such model will result in an approximation algorithm with per-
formance ratio 2 in general graph networks. Multiple channels were shown to be
more efficient for multi-hop wireless networks [11],[12].

Another closely related work is [13]. It studies the problem of minimum la-
tency broadcast in ad hoc networks. It presents a collision-free broadcast algo-
rithm which simultaneously produces provably good solutions in terms of latency
and the number of retransmissions. Our proposed problem is not a simple re-
verse engineering of above problem. Unlike [13], in which one single message
is broadcast to all the nodes, our work studies the condition whereby different
messages are gathered and sent back to one node. In this sense, our problem is
conjectured to be even harder than that in [13].

There are some research work [14],[15],[6] also realizing the importance to
consider the delay incurred in gathering sensed data, in addition to minimizing
energy. They capture this with the engergy × delay metric and present schemes
that attempt to balance the energy and delay cost for data gathering from sensor
networks. Our goal in this paper is solely delay minimization.

Paper Organization. The remainder of this paper is organized as follows. In
section 2, we specify our network model and present the problem statement.
In section 3, we design and analyze our data gathering algorithms for different
special topologies. Two heuristics for general topology are then presented in
section 4. We conclude our paper in section 5.

2 Network Model and Problem Statement

Network Model and Assumptions. We model the sensor network as a disk
graph G = (V, E), where V = {1, 2, . . . , N} is the set of sensor nodes and E is the
set of undirected edges. The edge exists between two nodes if their Euclidean dis-
tance is within the transmission range of each other (for simplicity, we assume all
the nodes have the same transmission range). There is only one sink node, which
is used to collect and analyze data for interest queries. All nodes are sensing data
and trying to send/relay data back to the sink node. A collision happens at a
node if it hears a message from more than two transmitters at the same time.
Our goal is to intelligently schedule each node’s receiving/transmitting time in
order to guarantee collision-free data gathering with minimum delay.

Delay Efficient Data Gathering in Sensor Networks 383

We assume that each node has half duplex interface and is equipped with
two channels. Therefore, it can not receive/transmit at the same time, but its
non-adjacent neighboring nodes can transmit simultaneously as long as they
choose different channels. Each node has one message waiting to be transmitted
back to the sink node, but it has limited buffer size such that relay nodes only
perform simple receive and forward type operations, i.e., packets received must
be forwarded in the next time slot following its arrival. Such constraint is also
used in [10]. Furthermore, in this work, we do not consider data aggregations,
which may be explored in future research.

Problem Statement. Given a disk graph G = (V, E) and a sink node S,
node Si ∈ V is the source of data item i, our data gathering problem is to
schedule for each data item j and each node Si, the time slot at which node Si

transmits/receives data item j collision-free, such that the time when the last
data item received by S is minimized.

3 Algorithms for Special Topologies

In this section, we address the delay efficient data gathering problem in some
special topologies. We start with the simplest linear topology and prove the
optimality of our solution. Then we propose the approach to solve our prob-
lem in star and tree topologies by exploring the relationship between these two
topologies and the linear topology.

3.1 Linear Topology

In linear topology, all nodes are arranged in a line and the sink node S is at one
end of the line. The case wherein S is at an arbitrary position instead of two
ends of the line can be considered as a special case of star topology, which will
be discussed later in Section 3.2. We label the nodes in sequence from 1 to N ,
with nodes closer to the sink assigned lower IDs (see Fig. 1). Before explaining
the details of our algorithm, we present a method to assign channels for each
node at each time slot, such that nodes two hops away from each other can send
packets simultaneously without causing collisions.

Channel Assignment. Suppose every node can use two channels, viz. channel 1
and channel 2. The sink always listens to and receives packets at channel 1. For
any other node i (1 ≤ i ≤ N), the channel that it should use at time slot t
is chosen based on the values of i and t. Basically, nodes with even IDs switch
between two channels alternatively while nodes with odd IDs always stay at one
assigned channel, so that a node is always assigned a different channel with its
2-hop neighbors and a pair of transmitter and receiver stay on a same channel.
Such assignment guarantees that node i and node i+2 can send packets collision
free at the same time.

Algorithm for Data Gathering. As in channel assignment algorithm, we divide
nodes into two sets based on their IDs, viz. odd set and even set. Similarly,

384 X. Zhu, B. Tang, and H. Gupta

Sink

slot 3

slot 5

slot 7
slot 6

slot 4

slot 2
slot 1

1234

Fig. 1. Scheduling in linear topology: nodes are divided into odd set and even set;
nodes in the same set transmit packets simultaneously

packets are also divided into two sets, viz. packets from nodes in odd set Podd and
from nodes in even set Peven. With the channel assignment presented previously,
for any i > 0, node i and node i+2 use different channels to send packets at any
time slot. Therefore, nodes in the same set can transmit packets collision-free
simultaneously. Since in our network model, every node has a packet to be sent
back to the sink, we let all packets in Podd be transmitted first. During this
process, nodes both in odd set and in even set are involved in relaying those
packets. After the sink gets all packets in Podd, nodes in the even set then start
to transmit their own packets in following time slots. Such scheduling guarantees
that every sender-receiver pair uses the same channel so that each packet can be
forwarded one hop per slot once the transmission starts.

A simple example is illustrated in Fig. 1. Initially, node 1 and 3 simultaneously
send their packets to the sink. At the end of time slot 3, the sink has received
packets both from 1 and 3. Then node 2 and 4 start their transmissions at time
slot 4. The total delay in this example is 7.

Proof of Optimality. In the following, we show the above algorithm is optimal.

Lemma 1. 2N − 1 is the lower bound for delay of data gathering in linear
topology, i.e., for any algorithm, the resulting delay is at least 2N − 1, where N
is the number of nodes in the network excluding the sink.

Proof. In the linear topology, before packets are received by the sink, they must
pass through node 1 (the closest node to the sink). For packets from node
2, 3, . . . , N , each of them needs two slots to be received and forwarded by node
1. For the packet of node 1 itself, it only needs one slot to be sent to the sink.
Thus, the total delay is at least 2(N − 1) + 1 = 2N − 1.

Theorem 1. The above data gathering algorithm in linear topology is optimal.

Proof. First, we prove the delay produced by our algorithm is exactly 2N − 1.
The total delay equals to the time taken by packets in both Podd and Peven to
be received by the sink. For each set of packets, since packets are forwarded one
hop per slot in our scheduling, the delay is bounded by the largest hop count
away from the sink. Thus, the delay is N for one set and N −1 for the other set.
Straightforwardly, total delay is 2N − 1. Since the result delay of our algorithm
exactly matches with the lower bound, our algorithm is optimal.

Delay Efficient Data Gathering in Sensor Networks 385

3.2 Star Topology

In star topology, the sink S has m linear branches. A branch i has arbitrary
number of nodes Ni and the total number of nodes is N =

∑m
i=1 Ni. Each branch

can be assigned channel separately with the channel assignment algorithm for
linear topology1.

slot 8

slot 3

slot 5

slot 7
slot 6

slot 4

slot 2
slot 1

(a) Special case of star topology: sink
has two equal size branches

(b) General star
topology

Fig. 2. Data Gathering in Star Topology

Obviously, the data gathering algorithm for linear topology can also be applied
directly on each branch, and the result delay is 2N − m, since the sink can
receive one packet every two slots on average. However, an ideal scheduling to
get minimum delay in star topology must fill every idle slot so that the sink can
get one packet one slot. In such ideal case, the total delay is N . In a special
case of star topology, wherein the sink only has two equal size branches (see
Fig. 2(a)), transmissions of each branch can be pipelined in a proper way to
meet the target of one packet one slot. Now we generalize the scenario to m
branches (see Fig. 2(b)). If we can divide all branches into two groups which
contain same number of nodes, then transmissions of these two groups can be
pipelined in a similar way to minimize the delay. Thus, the key becomes how to
make such division.

NP-Completeness of Group Division Problem. We prove the NP-completeness of
our group division problem by reduction from the well-known Integer Partition
problem. We first give the decision version of these two problems separately, and
then show the proof.

Definition 1. Group Division problem is defined as: given a star topology with
m branches, is it possible to divide m branches into two groups so that each group
has equal number of nodes?

1 This channel assignment algorithm can also be easily generalized to tree and general
topology. For general topology which can be decomposed into several independent
components, each component can be assigned channel separately. Otherwise, we may
need 3 channels.

386 X. Zhu, B. Tang, and H. Gupta

Definition 2. Integer Partition problem IP = (X, y) is defined as: given a set of
integers X = {x1, x2, . . . , xn} and a target number y. Is there a subset X ′ ⊆ X,
such that the sum of all the elements in X ′ is equal to y?

Theorem 2. Group division problem is NP-complete.

Proof. Given a group division, since there are only polynomial number of nodes
in total, we can decide whether this division is valid or not in polynomial time.
Thus, the group division problem is NP-hard.

To prove it is NP-complete, we show a polynomial reduction from Integer
Partition problem IP = (X, y). For each xi ∈ X , we create a branch with
xi nodes. After doing this, we also create an extra branch with (

∑
xi∈X xi −

2y) nodes. All these branches are connected to the sink. If IP = (X, y) has a
solution, i.e., we can find a subset X ′ such that

∑
xi∈X′ xi = y, there is also a

solution to the group division problem. Since
∑

xi∈X′ xi + (
∑

xi∈X xi − 2y) =
(
∑

xi∈X xi +(
∑

xi∈X xi −2y))/2, the corresponding branches of all xi ∈ X ′ plus
the extra branch contain exact half of the total number of nodes. On the other
hand, if we can divide all branches into two equal sets, the extra branch with
(
∑

xi∈X xi − 2y) nodes must be in one set. Then, the integers corresponding to
the rest branches in this set make up of the solution to the integer partition
problem, since (

∑
xi∈X xi + (

∑
xi∈X xi − 2y))/2 − (

∑
xi∈X xi − 2y) = y.

3.3 Tree Topology

In a tree topology with the sink S as the root, all N other nodes are arranged
as an arbitrary tree. First, let us look at a simple situation when the root has
only one child. The basic idea here is to view it as conjunction of multiple lines,
which can be processed one by one.

Algorithm for Single Child Tree. For the topology in Fig. 3, it can be viewed as
conjunction of two lines, viz. the top line (Fig. 3(a)) and the bottom line (Fig.
3(b)), which are jointed at node J . Suppose there are n nodes in the top line,
and there are m nodes in the bottom line except the joint part. In this case,
N = n + m. The first step is to process the top line, where the data gathering
algorithm for linear topology can be applied. Supposing that node J is k hops
away from the sink S, it is easy to know that the last packet of the top line will
leave node J at time slot 2n − 1 − (k − 1). Otherwise, all the packets of the top
line cannot be collected by the sink in 2n − 1 time slots. Until this time, all the

J S
n nodes

(a) Processing of the top line.

SJ

m nodes

(b) Processing of the bottom line.

Fig. 3. Data gathering for the single child tree topology

Delay Efficient Data Gathering in Sensor Networks 387

nodes in the top line after node J have been processed, and we can continue to
the bottom line. For the bottom line without the joint part, it can be handled
as if node J is the sink. Beginning from slot 2n− k +1, the nodes in the bottom
line can begin to send one packet to node J every two time slots. As soon as
node J receives the first packet from the bottom line, it immediately forwards
the packet to the sink S. As a result, the first packet from the bottom line arrives
at S at slot 2n − k + 1 + k = 2n + 1. Thereafter, S can continue to receive one
packet from J every two time slots until all the remaining m − 1 packets have
been collected. Then, the total gathering delay is 2n + 1 + 2(m − 1) = 2N − 1.

Generalizing the above algorithm, for any given single child tree, it can be
eventually decomposed as a bunch of lines, which can be processed one-by-one
in a similar way according to certain order.

Lemma 2. For a single child tree whose root has only one child, the minimum
gathering delay is 2N − 1. N is the total number of nodes except the root.

Proof. Similar as analysis in linear topology, for the single direct child of the
sink, it takes two time slots to transmit a packet from any of the rest N − 1
nodes and one slot to send its own packet to the sink. Thus, the total gathering
delay is at least 2(N − 1) + 1 = 2N − 1.

Theorem 3. The proposed data gathering algorithm for the single child tree
topology achieves the optimal delay.

After finding the optimal solution for the single child tree, we continue to the
general tree topology, as illustrated in Fig. 4. Based on the above discussion,
it can be seen that, from the point view of the sink, a single child subtree is
identical to a line. Hence, a general tree can be processed as a star with multiple
branches. We define a direct subtree as a subtree whose root is the direct child
of the sink. Then, if all direct subtrees can be divided into two equal size groups,
the two groups can be fully pipelined so that the sink can receive one packet
each time slot alternately from the two groups, and an optimal delay of N can
be achieved. As discussed earlier, the group division problem is NP-complete,
and no efficient polynomial solution exists. However, in the worst case, the direct
subtrees can be processed one by one, and the upper bound of the delay is 2N−1.

S

S

Fig. 4. A tree whose root has multiple children can be viewed as a star

388 X. Zhu, B. Tang, and H. Gupta

4 Heuristics for General Topology

In this section, we propose two heuristics for general topology based on the tech-
niques designed in the previous section. The first heuristic is simple. We first gen-
erate a BFS tree for the original graph [16]. Then, the data gathering algorithm for
tree topology can be applied. We have known that the upper bound of the gather-
ing delay for any tree is 2N − 1, and the lower bound of the gathering delay is N .
Thus, the tree based solution for general topology guarantees 2-approximation.

In the following, we further propose a more efficient heuristic to divide the
set of direct subtrees into two equal size groups and then pipeline transmissions
of these two groups to fill as many idle slots as possible at the sink.

Group-based Heuristic Algorithm. For Integer Partition problem, there exists a
(1+1/k) approximation algorithm [17], for a constant integer k. Such algorithm
can be used to get an approximate group division. The basic idea is as follows. We
consider each of the subsets with at most k direct subtrees for a given constant k.
If the number of nodes contained in the subset has not exceeded half of the total
number, we add the remaining direct subtrees as many as possible. A subset
with maximal number of nodes is selected at last. Obviously, the algorithm will
run more times and get more accurate answer with a larger k. After dividing
all direct subtrees into two groups, we pipeline the transmissions of these two
groups so that the sink can receive packets from each group alternatively.

Theoretical Analysis. With the group-based heuristic, all direct subtrees can be
divided into two groups B′ and B −B′. The size of B′ and B −B′ must satisfies
that kN/2(k + 1) ≤ |B′| ≤ N/2 and N/2 ≤ |B − B′| ≤ N − kN/2(k + 1). Thus,
in the worst case, the difference of the number of nodes in these two sets is equal
to N −kN/2(k+1)−kN/2(k+1) = N/(k+1). From the observations we get in
the previous section, the total delay is at most 2kN/2(k +1)+2N/(k+1)− 1 ≤
N + N/(k + 1). Therefore, with any 1 + 1/k approximation algorithm for group
division, we can get a 1+1/(k+1) approximation algorithm for data gathering.

Theorem 4. For any 1+1/k approximation algorithm for group division, there
exists a corresponding 1+1/(k+1) approximation algorithm for data gathering.

5 Conclusions

In this paper, we have studied the collision-free delay efficient data gathering
problem in sensor networks by tackling with different topologies. In linear topol-
ogy, we prove that an optimal delay of 2N −1 can be achieved with two channels
for each node, where N is the number of nodes except the sink in the graph. In
star topology, we conclude that if all branches can be divided into two equal size
groups, an optimal delay of N can be achieved. This group division problem is
proved to be NP-complete. In tree topology, we show that a general tree can be
processed as a star topology and a 2-approximation algorithm also applies. Fi-
nally, for the general topology, we propose the group based heuristic algorithm,
which is able to achieve 1 + 1/(k + 1) approximation.

Delay Efficient Data Gathering in Sensor Networks 389

References

1. Estrin, D., Govindan, R., Heidemann, J., eds.: Special Issue on Embedding the
Internet, Communications of the ACM. Volume 43. (2000)

2. Badrinath, B., Srivastava, M., Mills, K., Scholtz, J., Sollins, K., eds.: Special Issue
on Smart Spaces and Environments, IEEE Personal Communications. (2000)

3. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and
robust communication paradigm for sensor networks. In: Proceedings of the Inter-
national Conference on Mobile Computing and Networking (MobiCom). (2000)

4. Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive protocols for information
dissemination in wireless sensor networks. In: Proceedings of the International
Conference on Mobile Computing and Networking (MobiCom). (1999)

5. Chang, J., Tassiulas, L.: Energy conserving routing in wireless ad hoc networks.
In: Proceedings of the IEEE INFOCOM. (2000)

6. Lindsey, S., Raghavendra, C., Sivalingam, K.M.: Data gathering algorithms in sen-
sor networks using energy metrics. IEEE Transactions on parallel and distributed
systems (2002)

7. Solis, I., Obraczka, K.: The impact of timing in data aggregation for sensor net-
works. In: Proceedings of the International Conference on Communications (ICC).
(2004)

8. von Rickenbach, P., Wattenhofer, R.: Gathering correlated data in sensor networks.
In: Proceedings of the 2004 joint workshop on foundations of mobile computing.
(2004)

9. Cristescu, R., Beferull-Lozano, B., Vetterli, M.: On network correlated data gath-
ering. In: Proceedings of the IEEE INFOCOM. (2004)

10. Florens, C., McEliece, R.: Packets distribution algorithms for sensor networks. In:
Proceedings of the IEEE INFOCOM. (2003)

11. Nasipuri, A., Zhuang, J., Das, S.: A multichannel csma mac protocol for mobile
multihop neworks. In: Proceedings IEEE Wireless Communications and Network-
ing Conference. (1999)

12. So, J., Vaidya, N.: Multi-channel mac for ad hoc networks: Handling multi-channel
hidden terminals using a single transciver. In: Proceedings of the International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). (2004)

13. Gandhi, R., Parthasarathy, S., Mishra, A.: Minimizing broadcast latency and
redundancy in ad hoc networks. In: Proceedings of the International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc). (2003)

14. Yu, Y., Krishnamachari, B., Prasanna, V.: Energy-latency tradeoffs for data gath-
ering in wireless sensor networks. In: Proceedings of the IEEE INFOCOM. (2004)

15. Raghavendra, C., Sivalingam, K., Lindsey, S.: Data gathering in sensor networks
using the energy*delay metric. In: Proceedings of IPDPS Workshop on Issues in
Wireless Networks and Mobile Computing. (2001)

16. Skiena, S.S., Revilla, M.: Programming Challenges. (2003)
17. Baase, S., Gelder, A.V.: Computer Algorithms: Introduction to Design and Anal-

ysis. (2001)

	Introduction
	Motivation
	Related Work

	Network Model and Problem Statement
	Algorithms for Special Topologies
	Linear Topology
	Star Topology
	Tree Topology

	Heuristics for General Topology
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

