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Abstract

We study the Nash Equilibrium (NE) for data preserva-
tion in base station-less sensor networks (BSNs), wherein
sensor nodes could behave selfishly. We design a suite of
data preservation games that achieve NEs while minimiz-
ing energy consumption in the data preservation process.
We analyze and quantify the efficiency loss of data preser-
vation NEs by studying price of anarchy and price of sta-
bility, the ratios between the quality of the worst and best
NEs to the quality of a minimum cost flow-based social op-
timal solution. Finally, we conduct extensive simulations
to validate our theoretical results.

Keywords – Nash Equilibria, Price of Anarchy/Stability,
Data Preservation, Base Station-less Sensor Networks.

1. Introduction

Background and State-of-the-Arts. Recently, Base
station-less sensor networks (BSNs) have drawn much at-
tention from the research community [1, 2]. BSNs refer to
an array of emerging data-intensive sensing applications
developed and deployed in recent years, including under-
water or ocean exploration [3, 4], volcano eruption mon-
itoring [5], and seismic sensor networks [6]. The above
applications are all deployed in some challenging envi-
ronments and remote areas; thus, it is not feasible to de-
ploy high-power and high-storage data-collecting base sta-
tions in or near the sensing area. One important function
of BSNs is storing large volumes of sensory data inside
the network between uploading opportunities including au-
tonomous underwater vehicles (AUVs) and robots.

In the BSN, some sensor nodes are close to the events
of interest and are constantly generating sensory data, thus
have depleted their storage spaces; they are referred to as
source nodes. To avoid data loss, such overflow data must
be offloaded to other sensor nodes in the BSN with avail-
able storage (referred to as storage nodes). The process of
offloading overflow data from source to storage nodes is
called data preservation in BSNs.

Motivation. With the strides made in sensor network

development and IoT applications over the past decade,
the technologically advanced sensor nodes could become
more intelligent [10]. Unlike the traditional sensors that
can only sense, compute, and communicate signals to an
outer system, the intelligent sensor can also perceive, rea-
son, and learn. As such, the resource-constrained sensor
nodes in the BSN can behave selfishly, only to conserve
their own resources and have little incentive to participate
in the data preservation [11].

We apply game-theoretical techniques to analyze the
selfish behavior of sensor nodes in the data preservation of
BSNs. Game theory [12] is increasingly attracting more
attention as a mechanism to solve various problems re-
lated to intelligent multi-agent systems. In particular, we
attempt to achieve Nash Equilibrium (NE) of data preser-
vation in the BSN. NE is a solution in a non-cooperative
game wherein each player’s strategy is optimal when con-
sidering the decisions of other nodes [13,14]. In particular,
we intend to answer the following two questions. Do there
exist data preservation games that achieve NEs? If so, what
is the efficiency loss of data preservation due to the selfish-
ness of sensor nodes? We design three data preservation
games and prove that they all achieve NEs. In particular,
the minimum cost flow-based game achieves NEs and min-
imum preservation cost.

2. Related Work

Game theory techniques have been applied to solve
research problems in wireless sensor networks [12].
Voulkidis et al. [15] proposed a coalitional game-theoretic
scheme that maximizes the lifetime of sensor networks.
Niyato et al. [16] studied the solar-powered sensor net-
work that uses a sleep and wakeup strategy for energy con-
servation. They modeled nodes’ sleep and wake-up strate-
gies as a bargaining game and derived the Nash Equilib-
rium as the solution of the game.

However, none of the above works addressed data
preservation in BSNs. As it is always assumed in tra-
ditional sensor networks that the generated data packets
would go to the well-known destination (i.e., the base sta-
tion), the existing works mainly focused on incentivizing
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Figure 1. Illustrating the DPP.

the nodes on the shortest path or minimum spanning tree
among the data source and the base station. In contrast,
in our BSN model, we need to find the destination nodes
for the data packets and then the routing paths for the data
packets to go to the destination nodes.

The only works that applied game theory to tackle data
preservation in the BSN are [17, 18]. They used algo-
rithmic mechanism design techniques to incentivize selfish
sensor nodes to participate in the data preservation. How-
ever, none studied NEs in data preservation. NE is the
most fundamental game theory concept that determines the
optimal strategies for selfish players in a non-cooperative
game without being incentivized. We design a suite of data
preservation games that not only reach NEs, but some of
them give minimum total preservation cost in the BSN.

3. Data Preservation in the BSN

Network Model. We model a BSN as an undirected con-
nected graph G(V,E), where V = Vs ∪ Vr includes a set
of source nodes Vs and a set of storage nodes Vr. Assume
|V | = n, |Vs| = k, |Vr| = q, where k+ q = n, and denote
Vs = {S1, S2, ..., Sk}, and Vr = {R1, R2, ..., Rq}. Let
di > 0 denote the number of overflow data packets gener-
ated at source node Si ∈ Vs, and each packet is a bits. Let
d =

∑k
i=1 di be the total number of overflow data pack-

ets and let D = {D1, D2, ..., Dd} denote the set of d data
packets. Let s(j) ∈ Vs, 1 ≤ j ≤ d denote the source node
where Dj is generated. Let mj > 0 be the available free
storage space (in terms of the number of data packets) at
storage node Rj ∈ Vr. We assume that

∑q
j=1mj ≥ d;

otherwise, there is not enough space to store all the over-
flow data packets.

Cost Model. Following the first-order radio model [19],
when node u sends a data packet to its neighbor v over
their distance lu,v , the amount of transmitting energy spent
by u is Et

u(v) = a · εa · lu,v +a · εe. Here, εa and εe are the
energy consumption of transmitting one bit on the transmit
amplifier and circuit of node u, respectively. Their values
are 100 pJ/bit/m2 and 100 nJ/bit respectively, following
[19]. When node v receives a data packet, the amount of
receiving energy it spends is Er

v = a · εe. Here, εe is the
energy consumption of receiving one bit on the circuit of
node v. Given an edge (u, v) ∈ E, we define its weight
w(u, v) as the total energy consumption sending the packet
from v to v; that is, w(u, v) = Et

u(v) + Er
v .

Let Pj = {Ss(j), ..., Rf(j)} be the preservation path
along which Dj is offloaded from its source node Ss(j) ∈

Vs to a storage node Rf(j) ∈ Vr, which is also the short-
est path between Ss(j) and Rf(j). The total energy cost
of preserving Dj , denoted as cj =

∑
(u,v)∈Pj

w(u, v), is
referred to as Dj’s preservation cost. Let c(i) denote the
preservation cost of all the di data packets at source node
Si; c(i) =

∑di

j=1 cj .

Problem Formulation of DPP. We define a preservation
function as f : D → Vr, signifying that data packet Dj ∈
D is offloaded from its source node Ss(j) ∈ Vs to a storage
node Rf(j) ∈ Vr. The goal of the DPP is to find an f and
a preservation path Pj to offload each Dj to Rf(j), such
that the total preservation cost

∑d
j=1 cj =

∑k
i=1 c(i) is

minimized under the storage constraint of storage nodes:
|{j|1 ≤ j ≤ d, f(j) = i}| ≤ mi, ∀Ri ∈ Vr.

EXAMPLE 1: Fig. 1 shows a linear BSN with 6 sen-
sor nodes viz. A to F and the energy cost on each edge is
1. Nodes B, D, and F are source nodes; each has one over-
flow data packet; nodes A, C, and E are storage nodes, each
having a storage capacity of 1. The optimal data preserva-
tion solution is to offload B’s packet to A, D’s packet to C,
and F’s packet to E, resulting in a minimum preservation
cost of 3. There are many other solutions; however, none
of them is optimal.

4. Data Preservation Games of DPP

In this section, we first define the Nash Equilibrium
(NE) in the context of data preservation and introduce the
concepts that quantify the efficiency loss in the NE. We
then present a suite of data preservation games that achieve
the NE and analyze their efficiency loss.

4.1. Nash Equilibrium (NE) in Data Preser-
vation Games.

In data preservation games, the players are the k source
nodes {S1, S2, . . . , Sk}. Player Si has a set of strategies
Ai, each indicating for its di data packets, how many are
offloaded to which storage nodes following the shortest
path between them. Given a strategy si ∈ Ai and its in-
curred preservation cost c(i), player Si receives a corre-
sponding utility or payoff of ui = −c(i).

In the data preservation game, all the players act self-
ishly to maximize their payoff, thus minimizing the data
preservation cost incurred in offloading its data packets.
Given that si is a particular strategy chosen by player Si,
let s−i denote the particular strategies chosen by all other
players in the game. A set of strategies s = {si, s−i}
is called a strategy profile of the game, and different
choices of strategies from the players produce a differ-
ent strategy profile. We are interested in a strategy pro-
file s = {s1, s2, . . . , sk} that results in a steady state
condition of our data preservation game. We refer to it
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Figure 2. DPP in BSN graph G(V,E) is equivalent to
MCF problem in transformed flow network G′(V ′, E′).
The first number in each parenthesis is the edge’s capac-
ity, and the second is its cost.

as a data preservation NE. In data preservation NE, each
player knows the equilibrium strategies of the other play-
ers, and no player has any incentive to deviate from its
chosen strategy (otherwise, its utility will be decreased);
i.e., ui(si, s−i) ≥ ui(s∗i , s−i) for all s∗i ∈ Si.

Price of Anarchy (PoA) and Price of Stability (PoS). Both
PoA and PoS are concepts in economics and game theory
that measure how the efficiency of a system degrades due
to the selfish behavior of its players. Given any BSN in-
stance, its PoA is the ratio between the largest possible to-
tal preservation cost in an NE (i.e., the worst equilibrium)
and the minimum total preservation cost in an optimal DPP
solution, while PoS measures the ratio between the best
equilibrium and the optimal centralized solution.

4.2. Data Preservation Games.

In this subsection, we present three data preservation
games, viz. minimum cost flow (MCF) Game, Greedy
Game, and Random Game. We analyze their NEs together
with their price of anarchy and the price of stability.

MCF Game. The MCF Game has two steps.

Step 1: Transforming a BSN to a Flow Network. We first
convert the BSN graph G(V,E) to a flow network
G′(V ′, E′) in Fig. 2 following below four steps.

First, we construct the nodes in G′ as V ′ = {s} ∪ {t} ∪
Vs ∪ Vr, where s is the super source node and t of the
super sink node in the flow network. Vs is the set of source
nodes, and Vr is the set of storage nodes.

Second, we construct the edges in G′ as E′ =
{(s, Si)} ∪ {(Si, Rj)}} ∪ {(Rj , t)}}, where Si ∈ Vs and
Rj ∈ Vr. There is a complete bipartite graph between Vs
and Vr.

Third, for each edge (s, Si), set its capacity as di, the
number of data packets Si has, and cost as 0. For each
edge (Rj , t), set its capacity as mj , the storage capacity of
storage node Rj , and its cost as 0. For each edge (Si, Rj),

set its capacity as di and cost as c(i, j). Here, c(i, j) is the
energy cost of offloading one data packet from node Si to
Rj along their shortest path.

Finally, we set the supply at s and demand at t as d, the
total number of data packets in the BSN.

Step 2: Applying MCF-Algorithm on the Flow Network. We
then apply MCF algorithms to the above flow network.
MCF can be solved efficiently by many combinatorial al-
gorithms [20]. We adopt the implementation by Goldberg
[21], which is a scaling push-relabel algorithm with the
highest performance among all the algorithms. It has the
time complexity of O(l2 ·m · log(l ·n)), where l, m, and n
are the number of nodes, number of edges, and maximum
edge capacity of G′(V ′, E′).

Theorem 1: The MCF game gives optimal total preser-
vation cost, thus its PoS = 1; it also reaches NE.
Proof: Its optimality has been proved in our previous work
[22], which shows that DPP in BSN graph G(V,E) is
equivalent to MCF in flow network G′(V ′, E′). Given an
MCF-based data preservation solution, if a source node has
the incentive to switch its data preservation path for any of
its data packets, it must be the preservation cost of the new
path will be smaller than that of the previous path, result-
ing in a smaller total preservation cost. This contradicts
the optimality of the MCF.

Greedy Game. The Greedy Game viz. Algo. 1 below
is a more time-efficient greedy algorithm that applies di-
rectly to the BSN graph. Each source node i offloads its
di data packets to its closest storage nodes with available
spaces until all the data packets in the BSN are offloaded.
Finding the shortest storage node for any source node takes
O(|V |2 · log(|V |)). Therefore, the time complexity of
Algo. 1 is O(k · V |2 · log(|V |)).

Algorithm 1: The Greedy Data Preservation Game.
Input: A BSN graph G(V,E);
Output: Data preservation paths f : D → Vr;
1. for (1 ≤ i ≤ k) // current data packets at Si

2. li = di;
3. for (1 ≤ j ≤ q) // current storage space at Rj

4. hj = mj ;
5. for (1 ≤ i ≤ k) // each source node Si

6. while (li > 0)
7. Find the storage node in Vr closest to Si that still

has available spaces, say Rj ;
8. Offload min(li, hj) packets to Rj along the

the shortest path between Si and Rj ;
9. li = li −min(li, hj), hj = hj −min(li, hj);
10. end while;
11. end for;
12. RETURN f : D → Vr.
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Figure 3. PoA of Greedy Game is O(k).

Theorem 2: Greedy Game reaches NE. When di =
mj = 1, its PoA is O(k).
Proof: Given a greedy game solution, if source node Si

has the incentive to switch its data preservation path for
any of its data packets while other source nodes do not
switch their strategies, the preservation cost of the new
path must be smaller than that of the previous path. This
contradicts the execution of the Greedy Game, wherein
when its Si’s turn to offload its data packets, it will offload
to the storage nodes with the smallest cost.

We use the example in Fig. 3 to illustrate that the PoA
of the Greedy Game could be as high as O(k). There are k
source nodes S1, S2, ..., Sk and k storage nodesR1,R2, ...,
Rk with di = mj = 1. The preservation cost of one packet
is shown on each edge where ε � 1. Greedy Game will
offload S1’s one packet to R2, S2’s to R3, ...,. and Sk’s to
R1, resulting in total preservation cost of (k−1)·(1+ε)+2.
The optimal MCF algorithm will offload S1’s one packet
to R1, S2’s to R2, ...,. and Sk’s to Rk, resulting in total
cost of 2 + (k − 1) · ε.

Random Game. We also design a Random Game for com-
parison purposes. In the Random Game, each source node
offloads its data packets to randomly chosen storage nodes
with available spaces. The time complexity of the Ran-
dom Game is O(k · |V |). Unlike MCF and Greedy, Ran-
dom does not always achieve NE. Below is the sufficient
condition for Random Game to achieve NE.

Theorem 3: When the total number of data packets
equals the total storage spaces available in the BSN, the
Random Game always reaches NE.
Proof: The BSN will have no free spaces once the source
nodes offload all of their data packets. Given such a data
preservation solution, for any source node, there is no other
storage node available to switch to. Thus it does not have
an incentive to switch, resulting in an NE.

5. Simulations

We write our own simulator in Java on a Windows 10
machine with an Intel Processor (Intel Core i7-10750H)
and 32GB of memory. We randomly place 150 sensor
nodes in a 2000m × 2000m sensor field. The transmis-
sion range of the sensor nodes is set as 200m, which means
there exists an edge between any two sensor nodes if their
distance is within 200m. Unless otherwise mentioned, the
number of data packets at each source node is 100, and the
storage capacity of each storage node is 100. We denote
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Figure 4. Varying Number of Data Packets.

the PoA of Greedy Game and Random Game as PoAG and
PoAR, respectively. Given any instance of BSN, its PoAR

is the ratio of the total preservation costs between Greedy
Game and MCF Game, and PoAG is the ratio of the to-
tal preservation costs between Random Game and MCF
Game. Each data point averages 20 simulation runs, and
the error bars indicate 95% confidence intervals.

Effects of Varying Data Packets di. Fig. 4 shows the
values of PoAG and PoAR by varying the number of data
packets di from 50, 60, ..., to 100 while fixing the storage
capacity mj as 100. First, we observe that PoAR is much
larger than PoAG in all the cases. This show that Random
Game has a much larger efficiency loss than Greedy does,
as it does not attempt to save the preservation cost when of-
floading data packets. On the other hand, the largest PoAG

is 1.24, showing the efficiency loss of the Greedy Game is
at most 24% of the optimal preservation cost. Second, it
shows that when increasing di, the PoAG increases gradu-
ally. Although the total preservation costs of both Greedy
Game and MCF Game increase, Greedy increases more
than MCF does, resulting in increased PoAG. Third, we
observe that PoAR decreases dramatically when increas-
ing di, showing that Random Game performs much better
in more “crowded” scenarios. This is because when there
are more data packets to be offloaded, the randomness’
negative effect of getting large preservation costs will be
gradually eliminated.
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Effects of Varying Storage Capacity mj . We then vary
the storage capacitymj of the storage node from 100, 120,
..., to 200 while fixing di as 100. Fig. 5 again shows the
big difference between PoAG and PoAR. However, unlike
Fig. 4, Fig. 5 shows that with the increase of themj , PoAR

increases evidently. This is because, with the increase of
the mj , the preservation cost of the MCF Game decreases
while the preservation cost of the Random Game increases,
resulting in a larger PoAR. It also shows that with the in-
crease of the mj , PoAG decreases slightly. As the preser-
vation costs of both MCF and Greedy decrease with the
increase of the mj , the only explanation is that Greedy has
more space to reduce its preservation cost than MCF.

6. Conclusion and Future Work

We studied the Nash Equilibrium (NE) for data preser-
vation in emerging base station-less sensor networks
(BSNs), wherein the resource-constrained sensor nodes
could behave selfishly only to conserve their own resources
and maximize their own benefit. We design a suite of data
preservation games to achieve NE while minimizing en-
ergy consumption in the data preservation process. We
used the price of anarchy and stability to analyze the ef-
ficiency loss in the NEs. As future work, we will design a
data preservation game considering different data packets
have different values remains a challenge.
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