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Abstract—Service function chaining (SFC), consisting of a
sequence of virtual network functions (VNFs), is the de-facto
service provisioning mechanism in VNF-enabled data centers
(VDCs). However, for the SFC, the dynamic and diverse virtual
machine (VM) traffic must traverse a sequence of VNFs possibly
installed at different locations at VDCs, resulting in prolonged
network delay, redundant network traffic, and large consumption
of cloud resources (e.g., bandwidth and energy). Such adverse
effects of the SFC, which we refer to as SFC traffic storm,
significantly impede its efficiency and practical implementation.

In this paper, we solve the SFC traffic storm problem by
proposing AggVNF, a framework wherein the VNFs of an
SFC are implemented into one aggregate VNF while multiple
instances of aggregate VNFs are available in the VDC. AggVNF
adaptively allocates and migrates aggregate VNFs to optimize
cloud resources in dynamic VDCs while achieving the load
balance of VNFs. At the core of the AggVNF are two graph-
theoretical problems that have not been adequately studied. We
solve both problems by proposing optimal, approximate, and
heuristic algorithms. Using real traffic patterns in Facebook data
centers, we show that a) our VNF allocation algorithms yield
traffic costs 56.3% smaller than the latest research using the
SFC design, b) our VNF migration algorithms yield 84.2% less
traffic than the latest research using the SFC design, and c) VNF
migration is an effective technique in mitigating dynamic traffic
in VDCs, reducing the total traffic cost by up to 24.8%.

Index Terms—Virtual Network Functions (VNFs), Service
Function Chains, Aggregate VNFs, Dynamic Cloud Data Centers

I. Introduction

Background. Virtual network functions (VNFs), running as
virtual machines (VMs) or lightweight containers on commod-
ity hardware, are software implementations of middleboxes
(MBs) such as firewalls and TCP optimizers that provide
performance and security services in a cloud environment [37].
Consisting of a sequence of VNFs, service function chaining
(SFC) has been the primary vehicle to provision multiple VNF
services for cloud virtual machine (VM) traffic [7]. Fig. 1(a)
shows an SFC with three VNFs. The VM traffic first goes
through a firewall VNF, so malicious traffic is filtered, then
visits a network load balancer VNF so the traffic congestions
can be avoided, and finally passes through a cache proxy VNF
so that the network packets can be cached and accessed later.
We refer to cloud data centers implementing VNFs as VNF-
enabled data centers (VDCs).

As different VNFs in an SFC are usually installed on
physical machines (PMs) at various locations in a VDC,
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Fig. 1. (a) SFC traffic storm in the VDC. (b) Aggregate VNF in the VDC.

steering the massive amount of VM traffic along the SFCs in
a large-scale VDC often results in prolonged network delay,
incurs an extra amount of network traffic, and consumes
considerable cloud resources such as bandwidth and energy
[20]. We refer to such intrinsic weakness and adverse effects
of SFCs as SFC traffic storms. In Fig. 1(a), a single traffic flow
has to traverse all six switches to fulfill the SFC requirement,
appropriating the resources of the entire network. SFC traffic
storms become more severe when deploying SFCs in emerging
edge-and-cloud networks [32]. As such networks span much
larger geographical areas and edge AI techniques call for more
agile network services for processing enormous amounts of
data and traffic at the edge [41], how to design and deploy
future network function services becomes a pressing challenge.

Why SFC? In retrospect, two reasons contributed to the initial
adoption of SFCs for cloud service provisions. The first and
the historical reason is that early MBs were mainly standalone
and proprietary hardware devices providing dedicated services
[9]. For cloud operators to offer multiple services to cloud
traffic, a natural solution is placing MBs at different strategic
points of a network so the traffic can traverse them in some
order as a logical chain [23]. The second and technical
reason is service function disaggregation (SFD) [18], [13].
As supporting multiple functionalities in a single container
or VM requires more compute resources (e.g., CPU cores,
memory, and software libraries) and creates resource-heavy
VNFs, SFD is proposed to separate the VNF implementation
from its underlying hardware to bring down the computational
cost and maintain the throughput of the processed traffic flows.

While it is evident that the above historical reason is no
longer valid, the arguments for the SFD need some debate.
One key observation is that data center servers are generally



underutilized due to over-provisioning for the peak resource
demand [43]. For example, a measurement of several thou-
sands of servers randomly selected from different data centers
shows the mean utilization of CPUs could be as low as 17.76%
[38]. Therefore, although implementing multiple VNFs on the
same VM or container is at the expense of computational
efficiency, it does not necessarily affect the throughput of the
processed cloud traffic.

VNF aggregation is further facilitated by the technical stride
of cloud-native network functions (CNFs) [1]. With a small
performance footprint and independence of guest OSs, CNFs
can containerize micro-services by packing many network
functions into a single VM appliance at runtime [17]. As inter-
VNF communication latency depends only on inter-process
communication when hosted in the same VM, the delay of
traversing the SFC is greatly reduced [37].

Our Proposal and Contributions. With all the above investiga-
tions, we envision that to solve the SFC traffic storm problem,
VNFs of different functions can be implemented in a single
CNF located in a single PM. We refer to such a CNF as
an aggregate VNF. One shortcoming of such a design is the
single point of failure and overloading of the same aggregate
VNF. This, however, can be overcome by the software nature
of VNFs, wherein multiple instances of the same aggregate
VNF can be made and installed [11]. With this, each VM
traffic flow in the VDC only visits one VNF instance to fulfill
the security requirement and performance guarantee. Besides,
distributing large amounts of VM network traffic among
multiple VNFs achieves load balance and reduces congestion
to cloud network traffic. With installing such an aggregate
VNF instance in Fig. 1(b), the SFC traffic traverses only a
small part of the network, significantly reducing the network
traffic and resource consumption. As software-implemented
VNFs usually have less processing power than hardware-based
MBs, we assume each VNF has a limited processing capacity
and can only process a limited amount of VM flows. This is
based on the consideration that as aggregating VNFs on a PM
(with limited resources) makes the resources distributed for
each VNF less, the throughput of the passing data flow will
be limited.

We propose a new algorithmic framework called AggVNF
to allocate and migrate aggregate VNFs in dynamic VDCs
adaptively. We first study ANA: aggregate VNF allocation in
VDCs. Given a set of VM flows with different traffic rates
and multiple instances of the aggregate VNFs with various
and limited processing capacities, ANA studies how to place
the VNFs inside the VDC and then how to assign VM flows
to VNFs to minimize the total communication traffic of all
VM flows while satisfying the processing capacities of VNFs.1

Next, due to dynamic cloud traffic in VDCs, such initial
VNF allocation may become sub-optimal. We thus propose
and study ANN: aggregate VNF migration. ANN adaptively
responds to the dynamic traffic in the VDC by migrating VNFs
around to minimize the total cloud traffic in the VDC.

1For ease of presentation, we still refer to aggregate VNFs as VNFs.

We design optimal, approximate, and heuristic VNF allo-
cation and migration algorithms. In particular, for ANA, we
propose an integer linear programming (ILP)-based optimal
solution, a bi-criteria approximation algorithm based on ILP
relaxation, and an efficient greedy algorithm that empirically
performs close to the ILP. For ANN, we design an ILP-
based optimal solution, a Pareto-optimal solution, and a heuris-
tic algorithm. In particular, our approximation algorithm for
ANA achieves a (4, 2) bi-criteria ratio, improving the (6,
4) bi-criteria approximation algorithm by Cohen et al. [14].
Using flow characteristics and real traffic patterns found in
Facebook data centers, we show that a) our VNF allocation
algorithms yield traffic costs 56.3% smaller than the latest
SFC-based VNF placement algorithms [44], b) our VNF
migration algorithms yield 84.2% less traffic compared to
the latest SFC-based VNF migration algorithms [44], and
c) VNF migration is an effective technique in mitigating
dynamic traffic in VDCs, reducing the total network traffic
by up to 24.8%. Underlying ANA and ANN are two graph-
theoretical problems that have not been adequately studied.
In particular, ANA generalizes the well-known capacitated k-
median (CKM) problem [26], [27].

Most of the existing works on SFC placement and mi-
gration [22], [46], [31], [16] either proposed ILP solutions
(which lack scalability) or heuristic algorithms (which do not
have performance guarantees). In contrast, with our aggregate
design of VNFs, not only do we solve the traffic storm problem
caused by traditional SFC design, but our techniques are
time-efficient and have achieved approximation performance
for SFC placement and Pareto-optimal for SFC migration,
respectively. Therefore, AggVNF and its related techniques
are not the same as traditional SFC with a length of one.
Furthermore, unlike most existing work, AggVNF can opti-
mize cloud resources for a VDC’s lifetime. After the initial
aggregate VNF allocation by ANA, the ANN can execute
periodically to migrate VNFs to optimize cloud resources in
the face of the dynamic VDC traffic.

Paper Organization. Section II provides a background of our
work to motivate our contributions. In Section III and IV, we
formulate ANA and ANN, respectively, and solve them via
various ILP, Pareto-optimal, greedy, and approximation algo-
rithms. In Section V, we conduct extensive experiments for
both approaches and discuss their pros and cons. Section VI
concludes the paper with some future research.

II. Background
In this section, we first provide an illustrative example,

review the related work, and finally present the notations and
the network and cost models.

A. An Illustrative Example

Fig. 2 shows a linear VDC with two PMs: p1 and p2 and
three switches: s1, s2, and s3. There are two communicating
VM flows (v1, v

′
1) and (v2, v

′
2) in the VDC, with v1 and

v′1 located at p1 and v2 and v′2 at p2, and one VNF f1 to
be allocated in the VDC. The two VMs in the same flow



communicate with each other with some traffic rate, which is
the frequency or bandwidth demand of this communication.
Initially, the traffic rate of (v1, v′1) is much larger than that of
(v2, v

′
2); that is, (v1, v′1) has heavy traffic while (v2, v

′
2) has

light traffic. Thus, the best strategy to allocate a VNF into the
VDC to achieve minimum network traffic is to place it at s1,
as shown in Fig. 2(a). This way, the heavy traffic of (v1, v

′
1)

only traverses to s1 (the dark solid line) while the light traffic
of (v2, v′2) takes a much longer route (the light solid line).

Later on, however, due to the dynamic traffic in the cloud
data center, the traffic rate of (v2, v

′
2) becomes much larger

than that of (v1, v
′
1). As the heavy traffic between v2 and v′2

(dark solid line in Fig. 2(b)) goes through the entire network
and takes a route that is much longer than that of (v1, v′1), the
network generates more traffic and consumes more bandwidth
compared to Fig. 2(a).

One critical observation is that migrating the VNF from one
switch to another could mitigate such dynamic network traffic
and reduce resource consumption. As shown in the red dash
line in Fig. 2(c), we can migrate f1 from s1 to s3. With this
VNF migration, the heavy traffic of (v2, v

′
2) of traversing f1

is now restricted to a much smaller part of the network, as
shown in Fig. 2(d). Although the light traffic of (v1, v′1) must
traverse much farther to reach f1, the total network traffic is
vastly reduced. Note the processing capacity of f1 must be at
least 2, as two VM flows need to traverse it.
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Fig. 2. Illustrating VNF allocation and migration in a linear VDC.

B. Related Work

In recent years, constant research efforts and strides have
been made to accelerate and consolidate multiple VNFs into
the same VM or container efficiently [17]. Below, we review
both the system and algorithmic research in this field.

System Research. CoMb [40] was one of the first to con-
solidate MBs so that a traffic flow receives all necessary
service functions at a single physical machine. Enabled by
a shared virtualization platform with a logically centralized
network controller, CoMB simplified traffic routing along SFC
by reducing the number of routing rules in the switches.
Based upon container technologies like Docker [36] and

DPDK in Linux containers, openNetVM [45] densely packed
NFV appliances with a large number of network functions
at runtime and interconnect them to build service chains
and NFP [42] proposed a parallelism framework to improve
VNF performance and reduce significant latency for SFCs.
NFVnice [24], [25] proposed task- and packet-level scheduling
that substantially improved the throughput and data packet
drop rates. Focusing on the scheduling and control problems
of NFs running on shared CPU cores, NFVnice employed
backpressure to shed load early in the service chain to prevent
wasted work, which complements the capabilities of the OS
scheduler. See [17] for a recent review of various techniques
for speeding up network function processing.

Algorithm Research. Following the above system progress, a
few algorithmic frameworks were proposed to place and route
consolidated MBs. Gushchin et al. [19] presented a multipoint-
to-point tree for routing traffic in SDN-based networks based
on ILP optimization. Huang [21] studied the network through-
put maximization problem in an SDN in both snapshot and
online scenarios. Recently, Liu et al. [29], [30] considered
that MBs could change the volume of processed traffic and
focused on the load balance of consolidated MBs. However,
none considered the dynamic network environment wherein
VNF migration could play a significant role on top of the initial
VNF allocation and routing. We propose a comprehensive
framework that studies both VNF allocation and migration for
aggregate VNFs in a dynamic cloud environment.

Cohen et al. [14] studied the static VNF placement problem,
and proposed a (6, 4) bi-criteria approximation algorithm
(i.e., it achieves at most six times the optimal cost while
using at most four times the allowed node resource). It
considered VNF setup costs, connectivity costs of the clients,
and capacity constraints of the network nodes and modeled it
as a combination of facility location problem and generalized
assignment problem. In contrast, our approximation algorithm
for ANA, while without setup cost, achieves a better (4, 2) bi-
criteria ratio by utilizing Markov’s inequality [5]. Besides, they
only studied the static VNF allocation problem and did not
consider VNF migration with dynamic cloud network traffic.
Recently, Tran et al. [44] proposed a primal-dual-based 2 + ε
approximation algorithm for traffic-optimal SFC placement,
and their network setup is close to ours. We thus compare our
algorithms with theirs.

C. Notations and Preliminaries

Network Model. We model a VDC as an undirected graph
G(V,E); V = Vp ∪ Vs includes a set Vp of PMs and a set Vs
of switches and E is the set of edges. We use fat-trees [8] to
illustrate the problems and for simulations, which, however,
are applicable to any data center topology. As more than half
of a data center traffic is pairwise east-west cloud traffic [2],
[35], we focus on pairwise VM communication and assume
there are |L| communicating VM flows L = {l1, l2, ..., l|L|}.
For the flow li = (vi, v

′
i), vi and v′i communicate with

each other following their traffic rate, which indicates their



communication frequency or bandwidth demand. Each VM
v ∈ V = {v1, v′1, ..., v|L|, v|L|′} is located at a PM s(v) ∈ Vp.

Let λi denote the initial traffic rate of flow li and λ =
〈λ1, λ2, ..., λ|L|〉 the initial traffic rate vector of the |L| flows.
In a dynamic VDC, the traffic rates of VM flows change over
time; thus, λ is not a constant.

VNF Model. There are |F | aggregate VNF instances F =
{f1, f2, ..., f|F |} to be allocated into the VDC. We assume
each switch is attached to a server that can install VNFs.
As aggregate VNFs usually consume more computational
resources than individual VNFs, we assume the aggregation
VNFs are installed on servers on different switches [46]. That
is, if fj is installed on switch p(j) and fj′ on switch p(j′)
and j 6= j′, then p(j) 6= p(j′). The processing capacity of fj ,
1 ≤ j ≤ |F |, is κj , meaning at most κj VM flows can traverse
fj at the same time (we leave the case that processing capacity
depends on the traffic rates of individual flows as future work).
For security and performance purposes, each communicating
VM flow li must traverse one of the VNF instances; therefore∑|F |

j=1 κj ≥ |L|.

Cost Model. Each edge (u, v) ∈ E has a cost wu,v , indicating
the delay or energy cost on this edge for one unit of VM
communication or VNF migration. Given any PM or switch u
and v, let c(u, v) denote the shortest path cost between u to v.
We define the VM communication cost of any flow li as λi ·
c
(
s(vi), s(v

′
i)
)

and the VNF migration cost of migrating any
VNF from one switch u to another switch v as µ·c

(
u, v
)
. Here

µ is VNF migration coefficient, which is the ratio between the
costs of VNF migration and VM communication. µ represents
the relative size of memory or data packet transferred (thus
delay) in VNF migration and VM communication.

III. ANA: AGGREGATE VNF ALLOCATION

ANA consists of two sequential stages: VNF placement
(i.e., which VNF is placed on which switch) and VM flow
assignment (i.e., which VM flow traverses which VNF).

A. Problem Formulation

The VNF placement function p : F → Vs places VNF fj ∈
F at switch p(j) ∈ Vs and then VM flow assignment function
a : L → F assigns VM flow li ∈ L to traverse fa(i) ∈ F .
Given the initial traffic rate vector λ, a VNF placement p, and
a VM flow assignment a, the total communication cost of all
the l VM flows Cc(λ, p, a) ==

∑|L|
i=1 ci,p(a(i)) =

∑|L|
i=1 λi ·(

c
(
s(vi), p(a(i))

)
+c
(
p(a(i)), s(v′i)

))
. Here, ci,k indicates the

communication cost of li when traversing the VNF placed at
switch k. The objective of ANA is to find a p and an a to
minimize Cc(λ, p, a) while satisfying capacity constraint of
VNFs: |{a(i) = j, 1 ≤ i ≤ |L|}| ≤ κj , 1 ≤ j ≤ |F |.

Theorem 1: The ANA is NP-hard.
Proof: Here, we only give a proof sketch due to space con-
straints. We show that uniform capacitated k-median place-
ment problem (uCKM) [27], which is NP-hard, is equivalent
to a special case of ANA with κj = κ; that is, when all the
VNFs have the same processing capacity. uCKM is defined

as follows. Given a set F of facilities, each facility f ∈ F
has the same uniform capacity u ≥ 0, a set C of clients, a
metric d over F ∪ C, and an integer k. The goal of uCKM
is to find a set S ⊂ F of at most k open facilities and a
connection assignment φ : C → S of clients to the open
facilities to minimize the connection cost

∑
c∈C d(c, φ(c))

while satisfying that |φ−1(f)| ≤ u.
Note that ANA generalizes the well-known capacitated k-

median (CKM) problem [26], [27]. CKM opens k facilities
(each with a fixed capacity) to minimize the total access cost
of demand nodes. In contrast, by placing VNFs of different
capacities on switches (thus “opening facilities” for VM flow
access), ANA can assign different capacities to the facilities.

B. Integer Linear Programming Solution for ANA

We solve ANA optimally by formulating it as an integer
program ILP(A) below. There are two decision variables: xj,k
indicates if VNF fj is placed on switch k and yi,k indicates
if VM flow (vi, v

′
i) traverses VNF placed at switch k.

(A) min
|L|∑
i=1

λi

|Vs|∑
k=1

(ci,k · yi,k) (1)

s.t.
xj,k ∈ {0, 1} ∀1 ≤ j ≤ |F |, 1 ≤ k ≤ |Vs| (2)
yi,k ∈ {0, 1} ∀1 ≤ i ≤ |L|, 1 ≤ k ≤ |Vs| (3)
|Vs|∑
k=1

xj,k = 1, ∀1 ≤ j ≤ |F | (4)

|F |∑
j=1

xj,k ≤ 1, ∀1 ≤ k ≤ |Vs| (5)

yi,k ≤
|F |∑
j=1

xj,k, ∀1 ≤ i ≤ |L|, 1 ≤ k ≤ |Vs| (6)

|Vs|∑
k=1

yi,k = 1, ∀1 ≤ i ≤ |L| (7)

|L|∑
i=1

yi,k ≤
|F |∑
j=1

(xj,k · κj), ∀1 ≤ k ≤ |Vs| (8)

Objective function 1 is to minimize the VM flows’ total
communication cost. Equations 2 and 3 are the integer con-
straints of xj,k and yi,k, respectively. Equation 4 guarantees
that each of the |F | VNFs must be placed on some switch.
Inequality 5 indicates that each switch is placed with at most
one VNF. Inequality 6 guarantees that if a VM flow traverses
a switch, there must be a VNF installed on that switch.
Equation 7 ensures each VM flow must traverse one switch,
and Inequality 8 enforces VNF processing capacity constraint.

C. Heuristic Algorithm for ANA

As computing ILP(A) is time-consuming for large-scale
VDCs, we present a time-efficient greedy heuristic algorithm
viz. Algo. 1 below. Its main idea is to allocate VNFs with high



processing capacity earlier to accommodate VM flows with
large traffic rates; this way, heavy-traffic VM communication
can choose closer VNFs at the price of light traffic going
to farther VNFs, thus reducing network traffic. First, it sorts
the VNFs and VM flows in the non-ascending order of their
capacities and traffic rates, respectively (lines 1-2). Then, it
finds a switch to place VNF fj such that this placement
minimizes the total communication cost of the next κj VM
flows assigned to fj (lines 3-20). This continues until all
the VNFs are placed, each VM flow is assigned to one
VNF, and it returns the total communication cost of all the
VM flows (lines 21-22). The time complexity of Algo. 1 is
O(|F | · log|F |+ |L| · log|L|+ |F | · |Vs| · |L|).

Algorithm 1: Greedy Algorithm for ANA.
Input: A VDC, VM placement s(v), and traffic rate vector λ;
Output: VNF placement function p, VM flow assignment

function a, and total communication cost Cc(λ, p, a).
Notations: index: index of VM flow assigned to next VNF;
occupiedk: if switch k is installed a VNF, initially false;

1. Sort fj , 1 ≤ j ≤ |F |, in the non-ascending order of
their capacities κj . Let κ1 ≥ κ2 ≥ ... ≥ κ|F |;

2. Sort li, 1 ≤ i ≤ |L|, in the non-ascending order of
their traffic rates λi. Let λ1 ≥ λ2 ≥ ... ≥ λ|L|;

3. index = 1; // VM flow with largest traffic rate
4. for (j = 1 to |F |)
5. τ = +∞, sum = 0;
6. for (k = 1 to |Vs|)
7. if (occupiedk == false)
8. for (i = index to (index+ κj − 1))
9. sum = λi ·

(
c(s(i), k) + c(k, s(i′))

)
;

10. if (sum < τ )
11. τ = sum, p(j) = k;
12. end for;
13. end if;
14. end for;
15. occupiedp(j) = true;
16. for

(
i = index to (index+ κj − 1)

)
17. a(i) = p(j);
18. end for;
19. index = index+ κj ;
20. end for;
21. Compute Cc(λ, p, a);
22. RETURN p, a, and Cc(λ, p, a).

D. Approximation Algorithm for ANA

Next, we propose a bi-criteria approximation algorithm
Algo. 2 for ANA when κj = ∞, 1 ≤ j ≤ |F |. It is
inspired by Lin and Vitter [28] and following work [3] and is
based on the relaxation of ILP(A), wherein Equations 2 and 3
become 0 ≤ xj,k ≤ 1 and 0 ≤ yi,k ≤ 1, respectively. Let
Ci =

∑|Vs|
k=1(ci,k · yi,k), where yi,k is computed from the ILP

relaxation. That is, Ci is the expected distance from VM flow
li to all the VNFs it accesses. Denote the total cost of the VM
flows with the above ILP relaxation as tLP ; tLP =

∑|L|
i=1 Ci.

Definition 1: (Covered-Neighbors of Node i.) We define
2-neighbors of node i in a VDC graph as the set of nodes
whose distances to i is at most 2 · Ci and denote it as N(i);
that is, N(i) = {j ∈ V |c(i, j) ≤ 2 · Ci}. Define the covered-
neighbors of i as the set of nodes whose 2-neighbors and i’s
2-neighbors have at least one common node, and denote it as
C(i); that is, C(i) = {j ∈ V |N(i) ∪ N(j) 6= ∅}. We have
{i} ⊆ N(i) ⊆ C(i). �

Algo. 2 works as follows. First, it computes the relaxation
of the ILP(A) to find Ci and initializes S to be V (lines 1-2).
Then it takes place in rounds; in each round, it selects a node
i ∈ S with the minimum Ci to place a VNF and removes all
nodes in C(i) from S (lines 3-7). This continues until all the
nodes are removed from S. After that, it assigns each VM flow
to the closest VNF and computes the cost accordingly (lines
8-12). Its running time is dominated by the ILP relaxation,
which is O

(
(|L|+ |F |) · |Vs|

)
[34].

Algorithm 2: Approximation Algorithm for ANA.
Input: A VDC G(V,E) with VM flow placement s(v),

and initial traffic rate vector λ;
Output: VNF placement function p, VM flow assignment

function a, and total communication cost Cc(λ, p, a).
Notations: S: the set of nodes, initially S = V ;
p: the set of nodes selected to place VNFs, initially p = ∅.

1. Compute ILP(A) relaxation, Ci =
∑|Vs|

k=1(ci,k · yi,k);
2. S = V , p = φ;
3. while (S 6= ∅)
4. Let s = argmini∈SCi;
5. p = p ∪ {s};
6. S = S − C(i);
7. end while;
8. Cc(λ, p, a) = 0;
9. for (i = 1 to |L|) // VM flow assignment and total cost
10. a(i) = argmink∈p(c(s(i), k) + c(k, s(i′)));
11. Cc(λ, p, a)+ = λi · (c(s(i), a(i)) + c(a(i), s(i′)));
12. end for;
13. RETURN p, a, and Cc(λ, p, a).

Below we prove that Algo. 2 is a bi-criteria approximation
algorithm with |p| ≤ 2 · |F | and Cc(λ, p, a) ≤ 4 · tOPT , where
tOPT is the optimal cost computed by ILP(A).

i

q

j

c(i, q) ≤ 2Ci c(q, j) ≤ 2Cj

c(i, j)

c(i, q)c(j, q)

Fig. 3. Illustrating the approximation ratio of Algo. 2.



Lemma 1: At any round in Algo. 2, if node i is selected to
place a VNF, for any j ∈ C(i) ⊆ S, we have c(i, j) ≤ 4 ·Cj .

Proof: As j ∈ C(i), then N(i) ∩ N(j) 6= ∅ according to its
definition; let Q = N(i) ∩N(j). Given any node q ∈ Q, we
have c(i, j) ≤ c(i, q) + c(q, j) ≤ 2Ci + 2Cj , as shown in
Fig. 3. As both i and j are available in S when i is selected,
Ci ≤ Cj . Therefore c(i, j) ≤ 4Cj .

Theorem 2: Cc(λ, p, a) ≤ 4 · tOPT and |p| ≤ 2 · |F |.
Proof: In Algo. 2, let the cost of each VM flow li accessing
its closest VNF as ci; that is, Cc(λ, p, a) =

∑
li∈L ci. For

any node q ∈ S, as q ∈ C(i) for some i ∈ p, we have
cq ≤ 4 ·Ci ≤ 4 ·Cq (Lemma 1). So Cc(λ, p, a) =

∑
li∈L ci =∑

q∈S cq ≤ 4 ·
∑

q∈S Cq = 4 · tLP ≤ 4 · tOPT . Recall tLP is
the total cost of the relaxation of ILP(A).

To prove |p| ≤ 2 · |F |, as
∑

k

∑|F |
j=1 xj,k ≤ |F |

and yi,k ≤
∑|F |

j=1 xj,k (i.e., Inequality 6), we show that∑
j∈N(i) xj,k ≥

1
2 . We define a random variable Z that

takes ci,k with probability yi,k. The expected value of Z is
E =

∑|Vs|
k=1(ci,k · yi,k) = Ci. Using Markov’s inequality [5],∑

j∈C(i) yi,k = P[Z ≤ 2 · Ci] = 1− P[Z > 2 · EZ] ≥ 1
2 .

IV. ANN: AGGREGATE VNF MIGRATION

Due to the dynamic traffic in a VDC, the VM flows’ new
traffic rate vector now becomes λ′ = 〈λ′1, ..., λ′|L|〉. As such,
the VNF placement p and VM flow assignment a computed in
Section III may not be optimal; i.e., Cc(λ, p, a) ≤ Cc(λ

′, p, a).
This necessitates aggregate VNF migration, viz. ANN.

A. Problem Formulation of ANN.

We define VNF migration function p′ : F → Vs, which
migrates VNF fj ∈ F from its current switch p(j) ∈ Vs to
another switch p′(j) ∈ Vs (p(j) = p′(j) means fj does not
migrate) and VM flow assignment function a′ : L→ F , which
assigns VM flow li ∈ L to traverse fa′(i) ∈ F .

The total migration cost of all the VNFs is Cm(p′) =

µ ·
∑|F |

j=1 c
(
p(j), p′(j)

)
. Let Cc(λ

′, p′, a′) be the total com-
munication cost of all VM flows after VNF migration scheme
p′ is done. Let Ct(λ

′, p′, a′) = Cm(p′) +Cc(λ
′, p′, a′) be the

total cost of VNF migration and VM communication.

Ct(λ
′, p′, a′)

= µ ·
|F |∑
j=1

c
(
p(j), p′(j)

)
+

λ′i ·
|L|∑
i=1

(
c
(
s(vi), p

′(a′(i))
)
+ c
(
p′(a′(i)), s(v′i)

))
.

(9)

The objective of ANN is to find a VNF migration p′ and a new
VM flow assignment a′ such that Ct(λ

′, p′, a′) is minimized
under the capacity constraint of VNFs: |{a′(i) = j, 1 ≤ i ≤
|L|}| ≤ κj , 1 ≤ j ≤ |F |. When µ = 0, ANN degenerates to
ANA; thus, ANN is also NP-hard.

B. Algorithms for ANN.

1) ILP Solution: ANN can be solved using the integer
program ILP(B) below. Decision variable xj,k indicates if
VNF fj is migrated to switch k and yi,k indicates if VM flow
li traverses VNF placed at switch k. Recall c(p(j), k) is the
migration cost of fj migrating from switch p(j) to switch k
while ci,k is the communication cost of VM pair li traversing
to the VNF located at switch k.

The objective function 10 in ILP(B) is to minimize the sum
of the total migration cost of all the VNFs (first term) and
the total communication cost of all the |L| VM flows after the
migration (second term). The constraints for ILP(B) are the
same as those in ILP(A), except that the switches here refer
to where VNFs migrate. We thus omit the constraints.

(B) min
(
µ ·
|F |∑
j=1

|Vs|∑
k=1

(
c(p(j), k) · xj,k

)
+

|L|∑
i=1

λ′i

|Vs|∑
k=1

(ci,k · yi,k)
) (10)

2) VNF Migration Heuristic Algorithm: Next, we present
Algo. 3, a more time-efficient VNF migration heuristic algo-
rithm. Given a new traffic rate vector λ′, we first recompute
a new VNF placement g and a new VM flow assignment a′

using Algo. 1 or 2. We have Cc(λ
′, g, a′) ≤ Cc(λ

′, p, a). To
reduce VM communication cost, a good strategy is to migrate
VNF fj from their current location p(j) towards its new
location g(j) along its shortest path while having li traversing
its newly assigned VNF fa′(i) accordingly. However, as such
VNF migration incurs traffic costs, the challenge is to decide
how far each VNF migrates. We first give the below definition.

Definition 2: (VNF Migration Lines.) Denote the shortest
path between p(j) and g(j) as Sj . The VNF migration lines,
denoted as F , are sets of |F | switches, each from a different
Sj . I.e., F = {{sk1

, sk2
, ..., sk|F |}|skj

∈ Sj , 1 ≤ j ≤ |F |}. �
Let |Sj | be the number of switches on Sj (|Sj | = 1 if

p(j) = g(j)). There are at most
∏|F |

j=1 |Sj | VNF migration
lines in F , each representing one intermediate VNF migration
stage when migrating VNFs from the old VNF placement p
to the new placement g. Algo. 3 below is thus to find a VNF
migration line p′ that gives the minimum total cost of VNF
migration and VM communication. Algo. 3 takes O(|Vs||F |).

Algorithm 3: VNF Migration Algorithm for ANN.
Input: A VDC G(V,E) with VNF placement p(j) and VM

flow assignment a(i), µ, new traffic rate vector λ′;
Output: A VNF migration p′, new VM flow assignment a′,

and the total cost Ct(λ
′, p′, a′).

1. Compute new VNF placement g and new VM flow
assignment a′ using Algo. 1 or Algo. 2;

2. Among at most |F| VNF migration schemes, find one
giving minimum Ct(λ

′, p′, a′) and denote it as p′;
3. Migrates each fj from switch p(j) to switch p′(j);
4. RETURN p′, a′, and Ct(λ

′, p′, a′).
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Fig. 4. Comparing VNF allocation algorithms.

Pareto Front of VNF Migration. To minimize the total cost,
Algo. 3 strikes a balance between VNF migration cost Cm(p′)
and VM communication cost Cc(λ

′, p′, a′). It endeavors to find
Pareto-optimal point, which is a state where neither Cm(p′)
nor Cc(λ

′, p′, a′) can be improved without deteriorating the
other. Thus ANN is similar to a multi-objective optimization
problem (MOOP) [12] that minimizes multiple objectives
simultaneously. As Pareto front [12] consisting of Pareto-
optimal points is an “optimal” solution of MOOPs, and we
can demonstrate that as Cm(p′) cannot be reduced without
increasing Cc(λ

′, p′, a′), we argue that all the VNF migration
lines yield a Pareto front. Below we give a sufficient condition
for the optimality of Algo. 3 using scalarization [12], a
popular technique that linearly combines multiple objective
functions into a single objective function. It serves as a tool
to examine the existence of efficient solutions for MOOPs.
Eq. 9 in Sec. IV-A is indeed a scalarization of Cm(p′) and
Cc(λ

′, p′, a′). It is well-known that if the solution function of
a MOOP has a convex Pareto front, scalarization can identify
optimal solutions [15]. We give below theorem without proof.

Theorem 3: If the Pareto front of VNF migration generated
by Algo. 3 is convex, Algo. 3 gives the minimum total cost
of VM communication and VNF migration.

The above techniques were inspired by Tran et al. [44] that
solve a related SFC migration problem. The VNF migration
line in [44] is an SFC that VM traffic must traverse in a specific
order, whereas in this work, each VM flow traffic only reaches
one VNF in the migration line. As such, Algo. 3 can be run
periodically in response to dynamic traffic in VDCs.

V. Performance Evaluation

Simulation Setup. We investigate the performance of our algo-
rithms using k=8 fat-tree VDCs with 128 PMs. ILP(A) and (B)
are computed using lp solve [4]. For all other algorithms, we
write our simulator in Java. All experiments are performed
on a Linux workstation (Ubuntu 20.04 LTS) with an Intel
Core processor and 64GB of memory. Each data point in the
plots averages 20 runs with a 95% confidence interval. As
µ represents the relative costs between VNF migration and
VM communication, we quantify it as the ratio between VM
communication packet size and memory transferred in VNF
migration. As a typical network packet is around 1KB and the

size of transferred memory in migrating a containerized VNF
is about 100MB [33], we set µ between 104 and 105.

Real-world Traffic Pattern. Measurements of flow character-
istics in Facebook data centers [39] show that 70% of flows
send less than 10 KB and last less than 10 seconds, the median
flow sends less than 1 KB and lasts less than a second, and
less than 5% of the flows are larger than 1 MB or last longer
than 100 seconds. To emulate such a traffic pattern, we set the
traffic rates of VM flows in the range of [0, 10000], where
25% of VM flows with light traffic rates in [0, 3000), 70%
medium traffic rates in [3000, 7000], and 5% heavy traffic
rates in (7000,10000]. Besides, as a previous study showed
that 80% of cloud east-west cloud traffic stays within the
rack [10], we place 80% of the VM flows into PMs under the
same edge switches. For each comparison, we set the VNF
processing capacity κj as a random number in [1, d 2|L||F | e],
where |L| is the number of VM flows, and |F | is the number
of aggregate VNFs. This is the most stressful scenario, as each
VNF operates at its maximum processing capacity. As a typical
real-world SFC [6] has at most 10 functions, we consider up
to 20 VNFs in our experiments.

State-of-the-Art. Tran et al. [44] studied the traffic-optimal
SFC placement and migration that minimize the total network
traffic in VDCs. For SFC placement, they proposed a primal-
dual-based 2 + ε approximation algorithm and a dynamic
programming (DP)-based algorithm. For SFC migration, they
offered a Pareto-optimal algorithm. As it was shown that
their algorithms outperform other existing SFC placement and
migration techniques, we compare with their algorithms. We
refer to their DP-based SFC placement algorithm and Pareto-
optimal SFC migration algorithm as SFC.

Algorithms for ANA. For the VNF allocation algorithms, we
compare ILP-based optimal solutions viz. ILP(A) (referred
to as ILP), greedy algorithm viz. Algo. 1 (referred to as
Greedy), and approximation algorithm Algo. 2 (referred to
as Approximation). Fig. 4(a) compares ILP, Greedy, and
Approximation by varying |L| while fixing |F |. It shows that
ILP outperforms Greedy, which outperforms Approximation.
Although the Approximation has a provable theoretical guar-
antee, it does not perform as well as the Greedy empirically.
Fig. 4(b) varies |F | while fixing |L|. Unlike in Fig. 4(a), the
network cost of Greedy stays the same with the increase in
|F |. This is because VNF’s processing capacity κj = d 2|L||F | e
decreases with the increase of |F | when it operates at its
full capacity. For ILP and Approximation, its cost slightly
decreases with the increase of |F |. This is because some VNFs
can be placed closer to some VM flows with higher cost (recall
that 80% of VM flows are under the same edge switch), thus
lowering the total cost. The above observations show that our
aggregate VNF design is scalable.

Algorithms for ANN. Next, we create a dynamic traffic scenario
and show the traffic-mitigation effect of VNF migration. To
generate the dynamic traffic and mimic the Facebook flow
pattern simultaneously, at the beginning of each epoch, we
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Fig. 5. Comparing VNF migration algorithms. µ = 104.

randomly select three Pods out of the eight Pods in the k = 8
fat-tree, and set the VM flows under each as having light,
medium, and heavy traffic rates, respectively.

We compare ILP-based optimal solutions viz. ILP(B) (re-
ferred to as ILP), greedy algorithm viz. Algo. 3 (referred
to as Greedy), and the case that no VNF migration takes
place (referred to as NoMigration). Fig. 5(a) shows that
both Greedy and ILP yield fewer total communication costs
of VM flows than NoMigration, demonstrating that VNF
migration effectively reduces dynamic cloud network traffic.
In particular, ILP reduces the total communication cost by
24.8% upon NoMigration. Fig. 5(b) shows that Greedy’s
VNF migration cost is about 18.2% of that of ILP while
NoMigration costs zero. As ILP is the optimal VNF migration
scheme, it can cost more on migration to minimize the total
cost of VM communication and VNF migration. Comparing
Fig. 5(a) and (b), the VNF migration cost is around 1% of
the VM communication cost. This shows that the migration
cost overhead is insignificant in the total network traffic cost,
demonstrating the efficacy of our VNF migration algorithms.

Dynamic VDC Traffic. Next, we investigate the performance of
our VNF migration solutions. Fig. 6 shows the performances
of ILP and Greedy for ten epochs while varying the values of µ
as 104 and 105. At the beginning of each epoch, we randomly
select two, five, and one Pod from the fat-tree and set the
VM flows under each as having light, medium, and heavy
traffic rates, respectively. It then executes ILP and Greedy and
calculates the total migration and communication cost. For
NoMigration, it simply recalculates the total communication
cost using the new traffic rates. It shows that ILP migration
can reduce the traffic in all the epochs while Greedy can in
five epochs. As Greedy is a “myopic” algorithm, sometimes it
treats the no migration as local minimal, thus performing the
same as NoMigration. For both Greedy and ILP, the costs of
µ = 105 are higher than that of µ = 104, showing that as the
value of µ increases, the total traffic costs increase.

Comparing with SFC. Next, we compare the network traffic
costs of the aggregate VNF design with the latest work of
SFC design [44], wherein each VM flow must traverse all
the |F | VNFs in a sequence (referred to as SFC). Fig. 7(a)
compares SFC with our Greedy VNF allocation algorithm
viz. Algo. 1 by varying VM flows |L|. It shows Greedy
outperforms SFC by more than 56.3% in terms of the total

Fig. 6. Dynamic VNF Migration in 10 epochs. |L| = 300, |F | = 7.
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Fig. 7. Comparing aggregate VNFs with SFC in (a) VNF allocation
and (b) VNF migration.

communication cost of VM flows in the entire range of |L|,
clear evidence of our aggregate VNF design in reducing the
SFC traffic storm. Fig. 7(b) compares SFC with our Greedy
VNF migration algorithm viz. Algo. 3 in terms of total
VM communication and VNF migration cost by varying the
number of VNFs |F |. When |F | is one, Greedy and SFC yield
the same total cost as all VM flows must go through only
VNF. However, when |F | ≥ 2, Greedy outperforms SFC by
yielding less total network cost. The performance difference
increases dramatically with the increase of |F |. With 20 VNFs
in the SFC, Greedy yields 84.2% of less network traffic. This
demonstrates the efficacy of the aggregate VNF design again
to overcome the traffic storms caused by the SFC design of
VNFs. Note that, unlike SFC, increasing |F | does not increase
the network cost for Greedy, due to that κj = d 2|L||F | e.

VI. Conclusions and Future Work
We proposed aggregate VNFs to alleviate the traffic storms

incurred by traditional SFC design and establish an algo-
rithmic framework for aggregate VNFs. We formulated two
new graph-theoretical aggregate VNF allocation and migration
problems and proposed ILP-optimal, Pareto-optimal, approxi-
mate, and heuristic algorithms to solve them. Using real traffic
patterns in production data centers and real data for VNF
resource consumption, we show our aggregate VNF design
outperforms the latest SFC-based design by a large margin
while achieving high throughput of traffic flow in most cases.

Whereas NFVs and SFCs were developed for the purpose of
service function disaggregation, we propose to return back to
the root of monolithic design to reduce the delay and traffic in



SFCs. This is critical considering that SFCs are increasingly
deployed in edge clouds spanning large geographical areas,
wherein edge AI techniques call for more robust and agile
services for enormous amounts of data and traffic available
at the edge [41]. Consequently, SFC traffic storms could get
worse. Our goal, therefore, is to shed light and stir discussion
to rethink the traditional SFC design to benefit future networks,
or at least strike a balance between these two approaches.

For future work, as AggVNF is a new design concept
not being adequately explored, we will conduct a more in-
depth and extensive study of their computational efficiency and
resource consumption. We will augment our AggVNF model
by considering that each switch can store multiple aggregate
VNFs and different VM traffic could request different types of
aggregate VNFs. Finally, we will consider that the processing
capacity of a VNF is dependent on the traffic rates of flows.
How to allocate and migrate aggregate VNFs in these more
challenging scenarios to adaptively respond to dynamic cloud
and edge traffic becomes a suite of new problems.
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