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Abstract—Prize-Collecting Traveling Salesman Problem (PC-
TSP) is a new variation of TSP and is defined as follows. Given
a weighted complete graph G(V,E) where node i ∈ V has an
available prize of pi, and two nodes s, t ∈ V , the goal of the
traveling salesman is to find a route from s to t such that the sum
of the prizes of all the nodes visited along the route reaches a pre-
set quota while the distance along the route is minimized. In this
paper, we propose a multi-agent reinforcement learning (MARL)
framework for the PC-TSP. Our novel observation is that prize-
collecting in PC-TSP is intrinsically related to cumulative reward
maximization in reinforcement learning (RL). By integrating the
prizes in PC-TSP into the reward model in RL, we design
an efficient and effective MARL algorithm to solve the PC-
TSP. Via extensive simulations under different network and
RL parameters, we show that our learning algorithm delivers
an average of 65.6% of less traveling distance compared to
one existing handcrafted greedy algorithm. When changing the
number of agents m from 1 to 5, our algorithm reduces the
prize-collecting learning time by up to 66.9%, demonstrating the
effectiveness of multi-agent collaboration in reducing the prize-
collecting learning time in PC-TSP.

Keywords – Prize-collecting Traveling Salesman Problem,
Multi-Agent Reinforcement Learning

I. INTRODUCTION

Background and Motivation. Traveling salesman problem
(TSP) is one of the most famous combinatorial optimization
problems in Computer Science. Given a weighted graph, TSP
finds the shortest route for the salesman who starts in a city
and visits all other cities, and finally comes back. Since it
was first formulated mathematically in the 1930s, TSP has
found numerous applications including planning and logistics,
microchip manufacture, robotics, and DNA sequencing [15].

In this paper, we focus on a special category of TSP called
prize-collecting TSP (PC-TSP). In contrast to the traditional
TSP wherein all the nodes must be visited, in PC-TSP, each
node has some amount of prize to be collected; the goal of
the traveling salesman is to find a subset of the nodes to visit
to collect some targeted amount of prizes. The targeted prize
is called the quota for the salesman. PC-TSP is motivated
by some of the latest business innovations and technological
development in recent years. Below we give some motivating
examples for PC-TSP.
Motivating Examples. Consider a Uber driver in autonomous
driving, who starts from his home and drives to different
locations to pick up and drop off customers and returns to his
home. Given a sequence of customer ride requests (at different

locations) offering different amounts of payments, one possible
goal of the driver could be how to achieve a targeted amount
of ride payment (i.e., quota) while minimizing his traveling
distance to save time and gas. For example, a typical Uber
driver could set a daily goal, say $1000, and stop working once
that goal is achieved. Similarly, in an automated warehouse
scenario, the time window delivery option of the merchandise
(e.g., same-day priority delivery with high fees vs. 7-day free
delivery) plays a central role in multi-robots scheduling of
how to ship out merchandise within their time windows cost-
effectively [22], [13].

Our Contribution. In this paper, we design a multi-agent
cooperative reinforcement learning (MARL)-based algorithm
to solve the PC-TSP. Unlike traditional computer algorithms,
which are handcrafted by humans, in RL, an intelligent
agent learns by iteratively interacting with the environment
and adjusting their actions accordingly [26]. Therefore RL
algorithm is more adaptive and robust in a dynamic network
environment. In addition, as many network-related combi-
natorial problems, including PC-TSP, are NP-hard and thus
take a prohibitively amount of time to solve optimally, RL
becomes an ideal alternative to solve these problems time-
efficiently. As such, RL is well utilized to solve network-
related combinatorial optimization problems [4], [24].

Although PC-TSP has been studied extensively [6], [17],
[9], none of the existing research utilizes RL techniques to
solve the PC-TSP to the extent of our knowledge. We observe
that two characteristics of the PC-TSP make RL a particularly
good candidate to solve the problem. First, in the PC-TSP,
to find the shortest route while collecting enough prizes, the
traveling salesman must constantly make decisions along the
way. Such sequential decision-making resembles the Markov
decision process adopted in RL, wherein the outcomes are
partly random and partly under the control of a decision-maker.
Second, the goal of the traveling salesman in PC-TSP is to
collect enough prizes while visiting different cities using the
least cost route. This resembles the goal of RL, which is for the
agent to learn an optimal policy that maximizes accumulative
discounted rewards received at different states.

Despite the above similarities, it remains unclear as to what
extent the prize-collecting in PC-TSP corresponds to cumula-
tive reward maximization in RL and how the synergy between
them can be further exploited to uncover more powerful and



effective RL algorithms. In particular, how to integrate the
prizes in PC-TSP into the RL reward model remains largely
unexplored. In this paper, we address this question and design
a multi-agent cooperative RL framework that integrates the
prizes available at nodes into the reward model of the RL. Via
extensive simulations under different network and RL parame-
ters, we show that our learning algorithm is solution-effective
and time-efficient. In particular, it delivers an average of 65.6%
of less traveling distance compared to one handcrafted greedy
algorithm. Furthermore, when changing the number of agents
m from 1 to 5, our algorithm reduces the prize-collecting
learning time by up to 66.9%, demonstrating the effectiveness
of multi-agent collaboration in reducing the prize-collecting
learning time in PC-TSP.

Paper Organization. The rest of the paper is organized as fol-
lows. Section II reviews the related work that solves PC-TSP.
Section III formulates the PC-TSP and proposes an optimal
algorithm and a greedy heuristic algorithm. In Section IV we
propose our MARL algorithm. Section V compares all the
algorithms and discusses the results. Section VI concludes the
paper with a discussion of future works.

II. RELATED WORK

In this section, we review the related work to illustrate the
contributions of our work. We first review the existing PC-
TSP research from the theory community and then review the
existing works that use RL to solve TSP.

Existing PC-TSP Research. Existing PC-TSP works [9], [17],
[6] considered that each vertex has a prize to collect and
a penalty if not visited; the goal is to minimize the travel
costs and penalties while visiting enough cities to collect a
prescribed amount of prize money. Bienstock [12] was one of
the first to propose a constant ratio (i.e., 2.5) approximation
algorithm. It is based on linear programming relaxation using
the ellipsoid method. Archer et al. [5] further improved the
approximation ratio to 2 − ε using Lagrangian relaxation. If
no penalty is considered, prize-collecting TSP becomes quota-
TSP problem [7], [8]. Awerbush [8] proposed an O(log2R)
approximation algorithm where R is the quota to collect. It
is based on an approximation for the k-minimum-spanning-
tree problem, which is finding a tree of the least weight that
spans exactly k vertices on a graph. Ausiello et al. [7] studied
the online version of the problem. To achieve a rigorous
analysis of their performance bounds, all the above works
involved complicated procedures (e.g., ellipsoid methods [12],
[17] and Lagrangian relaxation [5], [21]), which cannot be
easily implemented for emerging large-scale applications such
as autonomous driving and automated warehouse.

Existing RL Research for TSP. Our work was inspired
by ant-Q [18], an algorithmic framework combining the Q-
learning algorithm [26] and ant colony intelligent behavior
representing the collective collaboration of a large number of
autonomous agents. They showed that ant-Q is an effective RL
technique for solving combinatorial optimization problems,
including TSP. Recently, Ottoni et al. [25] applied two RL

techniques (i.e., Q-learning and SARSA) to solve TSP with
refueling where uniform and non-uniform fuel prices are
available at different locations. However, they did not consider
the prize-collecting TSP, which is the topic of this paper. By
integrating prize-collecting in TSP with the reward model in
ant-Q, we are able to create a more powerful and efficient
MARL algorithm that solves PC-TSP.

In recent years, deep reinforcement learning (DRL) has
been increasingly utilized to solve TSP problems [11], [29],
[16]. Utilizing neural network-based function approximation
algorithms and RL, Bello et al. [11] presented a framework
to tackle combinatorial optimization problems. They solved
TSP by training a recurrent neural network and optimizing its
parameters using a policy gradient method. Zhang et al. [29]
used DRL to tackle a variant of TSP with a time window
and rejections. In particular, a manager agent learns to assign
customers to vehicles via a policy network based on Graph
Isomorphism Network [28].

DRL is a powerful technique that can handle complex
states and decision-making for agents. However, in this paper,
we adopted RL instead of DRL to solve PC-TSP for the
following reasons. First, by learning from a training set using
neural networks to find patterns and make predictions, DRL
is both time- and resource-consuming [11]. In contrast, RL
does not rely upon such data sets and can dynamically adjust
actions based on continuous feedback. Second, as the PC-
TSP setup proposed in this paper has a low-dimensional and
discrete setting in terms of the agent’s states and actions, RL is
sufficient to solve the PC-TSP without resorting to the complex
neural network construction and computation required in DRL.

The closest work to ours is Gao et al. [19], which applied the
ant-Q technique to solve a different and fundamental graph-
theoretical problem called the k-stroll problem [10], [14], [27].
Given a weighted graph G(V,E) and two nodes s, t ∈ V , and
an integer k, k-stroll problem is to find the shortest path from
s to t that visits at least k other nodes in the graph. In k-stroll,
different nodes have the same prizes. PC-TSP generalizes it by
considering that different nodes have different prizes available;
thus, it is more challenging to solve.

III. PRIZE-COLLECTING TRAVELING SALESMAN
PROBLEM (PC-TSP)

A. Problem Formulation.
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Fig. 1: Illustrating the
PC-TSP.

Given a complete and weighted
graph G(V,E), where V is a set
of nodes and E is a set of edges.
Each edge (u, v) ∈ E has a weight
w(u, v), indicating the travel dis-
tance or cost on this edge. Each
node i ∈ V has a weight pi ≥
0 ∈ R+, indicating the prize avail-
able at this node. Given any route
R = {v1, v2, ...vn} in the graph, where (vi, vi+1) ∈ E,
denote its cost as CR =

∑n−1
i=1 w(vi, vi+1) and its total prizes

as PR =
∑
i∈R pi. Note that if all the nodes on the path

are distinct, this route is a path; otherwise, it is a walk. Let



TABLE I: Notation Summary

Notation Description
G(V,E) A complete graph with |V | nodes and |E| edges
w(u, v) Weight of an edge (u, v) ∈ E
pi Prize available at node i ∈ V
s The starting node of the traveling salesman
t The ending node of the traveling salesman
Q The targeted quota by the traveling salesman
m The number of agents
Pj The total prizes collected by agent i, 0 ≤ j ≤ m
α The learning rate of each agent, 0 ≤ α ≤ 1
γ The discount rate of each agent, 0 ≤ γ ≤ 1
δ, β Parameters weighing the relative importance of the Q-value

and the edge length in the agent’s action selection rule

s, t ∈ V be the two nodes where a traveling salesman starts
and finishes his travel, and let Q denote his targeted quota
to collect during his trip. The goal of the PC-TSP is to find
a route Rs = {s = v1, v2, v3, ..., vn = t} such that its total
prize PRs ≥ Q while its cost CRs is minimized. Note that
the traditional prize-collecting TSP problem with s = t is a
special case of the PC-TSP studied in this paper.

EXAMPLE 1: Fig. 1 is an illustrative example for PC-TSP
for quota Q = 4. The numbers on the edges are their weights,
and the numbers in the parentheses are the prizes available at
different nodes. The optimal walk from s to t is: s, D, t, C,
and t, with a total cost of 6 and a total collected prize of 4.
Other routes from s to t are not optimal; e.g., the path s, A,
B, C, and t has a cost of 7 and a collected total prize of 5. �

B. Combinatorial Algorithms for PC-TSP

Below we solve PC-TSP by presenting two greedy heuristic
algorithms viz. Algo. 1 and 2.

Greedy Algorithm 1. Algo. 1 is a greedy algorithm that takes
place in rounds. In each round, it visits an unvisited node with
the maximum prize among all the unvisited nodes. It continues
until the total amount of collected prizes reaches Q. Its time
complexity is O(|V |2). Note that Algo. 1 also works for PC-
TSP problem where s = t.

Algorithm 1: Greedy Algorithm 1 for PC-TSP.
Input: A complete weighted graph G(V,E), s, t, and Q.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, initially empty;
CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially U = V − {s, t};
r: the node where the salesman is located currently;
u: the node where salesman moves to next;
1. r = s, R = φ, CR = PR = 0, U = V − {s, t};
2. while (PR < Q)
3. Let u = argmaxz∈Upz;
4. R = R ∪ {u}, U = U − {u};
5. CR = CR + w(r, u), PR = PR + pu;
6. r = u;
7. end while;
8. RETURN R, CR, and PR.

Greedy Algorithm 2. Algo. 2 is similar as Algo. 1, except that
in each round, it visits an unvisited node with the maximum
prize cost ratio defined next. Given an edge (u, v) ∈ E, and
the traveling salesman is at node u, we define the prize cost
ratio of going to v as the ratio between the prize available at v
and the edge weight w(u, v), and denote it as pcr(u, v). That
is pcr(u, v) = pv

w(u,v) .

Algorithm 2: Greedy Algorithm 2 for PC-TSP.
Input: A complete weighted graph G(V,E), s, t, and Q.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, initially empty;
CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially U = V − {s, t};
r: the node where the salesman is located currently;
u: the node where salesman moves to next;
1. r = s, R = φ, CR = PR = 0, U = V − {s, t};
2. while (PR < Q)
3. Let u = argmaxz∈Upcr(r, z) = argmaxz∈U

pz
w(r,z) ;

4. R = R ∪ {u}, U = U − {u};
5. CR = CR + w(r, u), PR = PR + pu;
6. r = u;
7. end while;
8. RETURN R, CR, and PR.

EXAMPLE 2: In Fig. 1, both Algo. 1 and 2 give the
solution of s, E, and t, with a total cost of 7 and a total prize
of 4. �

IV. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
FOR PC-TSP

In this section, we first present the basics of RL and then
our cooperative MARL framework for PC-TSP.

Reinforcement Learning (RL) [26]. We describe an agent’s
decision-making in an RL system as a Markov decision
process (MDP), which is represented by a 4-tuple (S,A, t, r):
• S is a finite set of states,
• A is a finite set of actions,
• t : S ×A→ S is a state transition function, and
• r : S × A → R is a reward function, where R is a real

value reward.
In MDP, an agent learns an optimal policy that maximizes

its accumulated reward. At a specific state s ∈ S, the agent
takes action a ∈ A to transition to state t(s, a) ∈ S while
receiving a reward r(s, a) ∈ R. The agent maintains a policy
π(s) : S → A that maps its current state s ∈ S into the
desirable action a ∈ A. In the context of the PC-TSP, the
states are all the nodes V , and the actions available for an
agent at a node are all the edges emanating from this node.
We consider a deterministic policy wherein, given the state, the
policy outputs a specific action for the agent. A deterministic
policy suits the PC-TSP well, as in PC-TSP, when an agent
at a node takes action (i.e., follows one of its edges), it will
surely end up with the node on the other end of the edge.



A widely used class of RL algorithms is value-based [26],
[23], which finds the optimal policy based on the value func-
tion at each state s, V πs = E{

∑∞
t=0 γ

tr(st, π(st))|s0 = s}.
The value at each state is the expected value of a discounted
future reward sum with the policy π at state s. Here, γ
(1 ≤ γ ≤ 1) is the discounted rate that determines the
importance of future rewards; the larger of the γ, the more
important the future rewards. Recall that r(s, π(s)) is the
reward received by the agent at state s by taking action
following policy π.
Q-Learning. Q-learning is a family of value-based algorithms
[26]. It learns how to optimize the quality of the actions
in terms of the Q-value Q(s, a). Q(s, a) is defined as the
expected discounted sum of future rewards obtained by taking
action a from state s following an optimal policy. The optimal
action at any state is the action that gives the maximum Q-
value. For an agent at state s, when it takes action a and
transitions to the next state t, Q(s, a) is updated as

Q(s, a)← (1−α)·Q(s, a)+α·[r(s, a)+γ ·maxbQ(t, b)], (1)

where 1 ≤ α ≤ 1 is the learning rate that decides to what
extent newly acquired information overrides old information in
the learning process. In Eqn. 1, maxbQ(t, b) is the maximum
reward that can be obtained from the next state t.

Multi-agent Reinforcement Learning (MARL) Algorithm.
In our MARL framework for PC-TSP, there are multiple agents
that all start from the node s. They work synchronously and
cooperatively to learn the state-action Q-table and the reward
table and take action accordingly in any of the states. The
common goal of all the agents is to learn and find a route
starting from s, each visiting some nodes to collect enough
prizes that equal to or a bit larger than Q, and ending at t.
Node Selection in PC-TSP. For an agent located at any node
s, the node selection rule specifies the next node t it moves
to during its prize-collecting learning process. It combines the
exploration, wherein an agent improves its knowledge about
each action by exploring new actions, and exploitation, where
an agent exploits its current estimated value and chooses the
greedy approach to get the most reward.

In particular, in exploitation, the agent always chooses the
node t = argmaxu∈U{ [Q(s,u)]δ×pu

[w(s,u)]β
} to move to. Here, U is

the set of nodes not visited yet by the agent, and δ and β
are preset parameters. That is, an agent, located at node s,
always moves to a node t that maximizes the learned Q-
value Q(s, t) weighted by the length w(s, t) of the edge (s, t)
and the prize pt available at node t. In exploration, the agent
chooses a node t ∈ U to move to by the following distribution:
p(s, t) = ([Q(s,t)]δ×pu)/[w(s,t)]β∑

u∈U ([Q(s,u)]δ×pu)/[w(s,u)]β
. When q ≤ q0, where

q is a random value in [0, 1] and q0 (0 ≤ q0 ≤ 1) is a
preset value, exploitation is selected; otherwise, exploration is
selected. The distribution p(s, t) characterizes how good the
nodes are at learned Q-values, the edge lengths, and the node
prizes. The higher the Q-value, the shorter the edge length,
and the larger the node prize, the more desirable the node is
to move to.

The above node selection rule is based on ε-greedy explo-
ration [26], wherein an agent selects a random action with
probability ε and selects the best action, which corresponds to
the highest Q-value, with probability 1−ε. It was also applied
to solve a virtual network function placement problem [19].
However, our node selection rule augments it by considering
node weights (i.e., prizes).

MARL Algorithm. Next, we present our MARL algorithm
viz. Algo. 3, which consists of a learning stage (lines 1-29)
and an execution stage (lines 30-36). There are m agents in
the learning stage, which takes place in a preset number of
episodes. Each episode consists of the below two steps.

In the first step (lines 3-23), all the m agents are initially
located at the starting node s with zero collected prizes. Then
each independently follows the node selection rule to move to
the next node to collect prizes and collaboratively updates the
Q-value of the involved edge. This continues in parallel among
all the agents until they each collect enough prizes Q. In this
process, some agents may finish collecting prizes earlier than
others; in this case, they must wait for others to collect their
prizes (lines 5-17). Here we assume the prizes at each node
can be collected multiple times. Once all the agents collect
enough prizes, they arrive at the destination t and update the
Q-table one more time (lines 18-23).

In the second step (lines 24-28), it finds among the m routes
the one with the shortest distance and updates the reward value
and Q-value of the edges that belong to this shortest route.

Finally, in the execution stage (lines 30-36), the traveling
salesman starts from s and ends at t while traveling to the next
node that maximizes the Q-value from that node. It collects
the prizes at each visited node. Note we set the initial Q-
value and reward value for edge (u, v) as pu+pv

w(u,v) and −w(u,v)
pv

,
respectively, to reflect the fact that the more prizes available
and less length on edge, the more valuable of the edge for the
salesman to travel.

Algorithm 3: MARL Algorithm for PC-TSP.
Input: A graph G(V,E), s, t, and a quota Q.
Output: A route R from s to t, CR, and PR.
Notations: i: index for nodes; j: index for agents;
Uj : set of nodes agent j not yet visits, initially V − {s, t};
Rj : the route taken by agent j, initially empty;
lj : the cost (i.e., the sum of edge weights) of Rj , initially 0;
Pj : the prizes collected on Rj , initially 0;
rj : the node where agent j is located currently;
sj : the node where agent j moves to next;
R: the final route found the MARL, initially empty;
Q(u, v): Q-value of edge (u, v), initially pu+pv

w(u,v) ;

r(u, v): Reward of edge (u, v), initially −w(u,v)
pv

;
α: learning rate, α = 0.1;
γ: discount factor, γ = 0.3;
δ, β: parameters in node selection rule; δ = 1 and β = 2;
W : a constant value of 10;
epi: number of episodes in the MARL;
1. for (1 ≤ k ≤ epi) // Learning stage
2. All the m agents are at node s, i.e., rj = s, 1 ≤ j ≤ m;



3. for (j = 1; j ≤ m; j++) // Agent j
4. Pj = 0; // Initial prize collected by agent j is zero

end for;
// At least one agent has not collected enough prizes

5. while (min{Pj |1 ≤ j ≤ m} < Q)
6. for (j = 1; j ≤ m; j++) // Agent j
7. if (Pj < Q) // Has not collected enough prize
8. Finds the next node sj following action rule;
9. Rj = Rj ∪ {sj};
10. lj = lj + w(rj , sj);
11. Pj = Pj + psj ; // Collect prize
12. Q(rj , sj) = (1− α) ·Q(rj , sj)+

α · γ ·maxz∈UjQ(sj , z); // Update Q-value
13. rj = sj ; // Move to node sj ;
14. Uj = Uj − {sj};
15. end if;
16. end for;
17. end while;
18. for (j = 1; j ≤ m; j++) // Agent j ends at node t
19. Rj = Rj ∪ {t};
20. lj = lj + w(rj , t);
21. Q(rj , sj) = (1− α) ·Q(rj , sj)+

α · γ ·maxz∈UjQ(sj , z); // Update Q-value
22. rj = t;
23. end for;
24. j∗ = argmin1≤j≤mlj ; // Route of smallest cost
25. for (each edge (u, v) ∈ Rj∗)
26. r(u, v) = r(u, v) + W

lj∗
; // Reward value r(u, v)

27. Q(u, v)← (1− α) ·Q(u, v)+
α · [r(u, v) + γ ·maxbQ(v, b)]; // Update Q-value

28. end for;
29. end for; // End of each episode in learning stage
30. r = s, R = φ; // Execution stage
31. while (r! = t)
32. u = argmaxbQ(r, b);
33. R = R ∪ {u}, CR = CR + w(r, u), PR = PR + pu;
34. r = u;
35. end while;
36. RETURN R, CR, and PR.

Discussions. We leave the convergence study of Algo. 3 as a
future work. As the first step, we will study if Algo. 3 can
find the optimal prize-collecting route when we increase the
number of episodes in learning. There are epi episodes of
learning. In each episode, the first step takes at most m · |V |,
where |V | is the total number of nodes, and the second step
takes at most m+ |E|, where |E| is the total number of edges.
Thus the time complexity of Algo. 3 is O(epi ·m · |V |).

V. PERFORMANCE EVALUATION

Experiment Setup. Algo. 1 as Greedy-P, which visits the
node with the largest prize until the quota is collected, and
Algo. 2 as Greedy-R, as it visits the node with the largest
prize-distance ratio in each round. For comparison, and We
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Fig. 2: Comparing MARL, Greedy-P, and Greedy-R.

refer to our multi-agent reinforcement learning algorithm
Algo. 3 as MARL.

We compare our designed algorithms on traveling salesman
tours of US capital cities [3]. The prize at each city is a random
number in [1, 100]. Given the latitude and longitude of each
city, we can find the distance between any pair of capital cities
using Haversine formula [1] and construct a complete graph
of them. We write our own simulator in Java on a Windows
10 with AMD Processor (AMD Ryzen 7 5800X 8-Core) and
16GB of memory. In all the plots, each data point is an average
of 20 runs with a 95% confidence interval. The values of the
MARL-related parameters can be found in Algo. 3.

Comparing MARL, Greedy-P, and Greedy-R. Fig. 2 com-
pares all three algorithms by varying the prize quota Q to be
collected. Fig. 2(a) shows the total prize-collecting distance
yielded by all three algorithms. We observe that MARL
performs much better than Greedy-P, with an average of 65.6%
of less traveling distance. We also observe MARL and Greedy-
R perform very close to each other. This shows that the MARL
is a competitive learning algorithm compared to handcrafted
greedy algorithms. Fig. 2(b) shows the actual prizes collected
by each algorithm, where all the algorithms collect a bit over
the required prize quota Q.

Impacts of Number of Agents m on MARL. Next, we study
the impacts of the number of agents m on the performance
of the MARL, by varying m from 1, 5, 10, 15, to 20.
Fig. 3(a) shows the total distances corresponding to different
prize quotas Q = 500, 1000, 1500, 2000. It shows that the
higher the Q, the longer distance of the prize-collecting route.
However, for each fixed Q, varying m does not have much
effect on the resultant total distance of the MARL. This shows
the distance only depends on Q in our MARL algorithm.
Fig. 3(b) shows the execution time of the MARL w.r.t. m and
Q. We observe that m significantly affects the time needed
for the prize-collecting learning process. For a fixed Q, with
increasing of m from 1 to 5, the execution time of the MARL
algorithm decreases dramatically. In particular, Table II shows
the percentage of learning time reduction for this transition
could be as much as 66.9%. This shows that cooperation
among agents is very effective in reducing the prize-collecting
learning time in PC-TSP. However, we also observe that when
further increasing m to 10, the execution time of the MARL
algorithm gets flattened, and even increases when increasing
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Fig. 3: Performance of the MARL by varying number of agents m.

m to 15 and 20. This can be explained as follows. When
the number of agents gets larger, the agents who finish prize-
collecting early must wait for other agents to complete their
prize-collecting; this likelihood increases when more agents
are learning simultaneously. How to find an optimal number of
agents that minimizes the learning time becomes an interesting
question for us to explore in future work.

TABLE II: The percentage of learning time reduction when
changing the number of agents m from 1 to 5.

Prize Quota Q 500 1000 1500 2000
Learning Time Reduction (%) 37.3 53.3 66.9 46.0

VI. CONCLUSIONS AND FUTURE WORK

Prize-Collecting Traveling Salesman Problem (PC-TSP) has
recently drawn attention from the research community as
it can be used to model emerging business applications,
including autonomous driving and automated warehouse. In
this paper, we propose a multi-agent reinforcement learning
(MARL) framework for the PC-TSP. We observe that prize-
collecting in PC-TSP is intrinsically related to cumulative
reward maximization in reinforcement learning. We design
an efficient and effective MARL algorithm to solve the PC-
TSP. Our solution is not only comparable to or outperforms
existing handcrafted greedy algorithms, but also demonstrates
the effectiveness of multi-agent collaboration in reducing the
Q-learning time in PC-TSP. In future work, we will study
the convergence of our algorithm. We will also investigate
how to find an optimal number of agents that minimize the
prize-collecting learning time in PC-TSP. Although TSP has
been studied extensively using the MARL approach, PC-TSP
has not to the extent of our knowledge. As PC-TSP is a
fundamental problem, the MARL techniques developed in this
paper could possibly apply to any applications where prize-
collecting is relevant.
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