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Abstract—Data generated in sensor networks may have differ-
ent importance and priority. Different types of data contribute
differently for scientists to analyze the physical environment. In
a challenging environment, wherein sensor nodes do not always
have connected paths to the base station, and not all the data can
be preserved inside the network due to severe energy constraints
and storage constraints at sensor nodes, how to preserve data
with maximum priority is a new and challenging problem. In this
paper, we study how to preserve data that yield maximum total
priorities, under the constraints that each sensor node has limited
energy level and storage capacity. We design an efficient optimal
algorithm and prove its optimality. The core of the problem is a
maximum weighted flow problem, which is to maximize the total
weight of flow in the network considering different flows have
different weights. Maximum weighted flow is a generalization of
the classic maximum flow problem, wherein each unit of flow has
the same weight. To the best of our knowledge, our work is the
first to study and solve the maximum weighted flow problem. We
propose a more time efficient heuristic algorithm. Via simulation,
we show that it performs comparably to the optimal algorithm and
performs better than the classic maximum flow algorithm, which
does not consider data priority. Finally we design a distributed
data preservation algorithm based on push-relabel algorithm,
analyze its time and message complexities, and empirically show
that it outperforms the push-relabel distributed maximum flow
algorithm in terms of the total preserved priorities.

Keywords – Data Preservation, Data Priority, Intermittently

Connected Sensor Networks, Energy-Efficiency

I. Background and Motivation

Many of the emerging sensor network applications, such

as underwater or ocean sensor networks [24], volcano erup-

tion monitoring and glacial melting monitoring [21, 25], are

deployed in challenging environments. In those remote or

unattended regions, it is not feasible to have long-term deploy-

ment of high power data collection base stations (with power

outlets) in the field. Consequently, sensory data generated

is first stored inside the network and then uploaded to the

faraway base station via different means. These uploading

opportunities could be periodic visits by human operators or

data mules [14], or transmission to the base station through

wireless communication such as a low rate satellite link [22].

Due to the fact that the base station does not coexist with other

sensor nodes in the field, and that the communication between

sensor nodes and base station becomes possible only when such

uploading opportunities arise, we refer to such sensor networks

as intermittently connected sensor networks. The main function

of the intermittently connected sensor networks is to collect and

store the generated sensory data inside the network before the

next uploading opportunity arises.

Meanwhile, sensor networks are evolving from dedicated

application-specific platforms measuring single type of data

to integrated infrastructure measuring multiple types of data

simultaneously. Even within the same application, different

types of data could be collected, each of which contributes

differently to the sensor network application. For example, in

a sensor network that was deployed at Reventador, an active

volcano in Ecuador, to monitor the volcano activities, the data

collected includes seismic, infrasonic (low-frequency acoustic),

and temperature [25]. While all the collected data are helpful

for scientists to understand and analyze the volcano activities,

seismic and infrasonic data are more crucial than temperature

data to interpret the key features of a volcano such as its

scale and magnitude. In general, in modern sensor network

applications, different types of data has different importance.

We refer to the importance of data as data priorities. In this

paper, we use the terms weights and priorities interchangeably.

In intermittently connected sensor networks, when events

of interest take place, sensors close to them may collect data

more frequently than nodes far away, therefore run out of their

storage space more quickly than others and cannot store newly

generated data. To avoid data loss, the overflow data (that

is, the newly generated data that can no longer be stored at

data generating nodes due to their storage depletion) must be

distributed from such storage-depleted data generating nodes

(referred to as data generators) to other sensor nodes with

available storage spaces (referred to as destination nodes),

so that they can be uploaded when uploading opportunities

become available. We call this process data preservation in

intermittently connected sensor networks. In this paper, we

do not consider the cost for data retrieval, which is done by

data mules, human operators, or low-rate satellite link, using

techniques such as those proposed in [20] and [18]. There could

be data generating nodes whose storage is not yet depleted and

can store more data - they are not considered as data generators.

However, preserving all the overflow data in intermittently

connected sensor network is not always possible, for the

following two reasons. First, data preservation itself incurs

energy-expensive wireless communication; if not managed

well, it could expedite the energy depletion of sensor nodes

and thus exacerbate the data preservation problem. Second,

in a more challenging environment wherein sensor nodes



have severe energy constraints, energy depletion of sensor

nodes and network partition between data generators and

destination nodes will inevitably occur, blocking any further

data preservation. Under such severe energy constraints and

considering different data have different priorities, how to

preserve data with maximum total priorities so that it can be

most useful for the scientists is a new and challenging problem.

In this paper, we ask the following question: in a challenging

intermittently connected sensor network environment wherein

not all the overflow data can be preserved, how to ensure data

preservation of maximum total priorities?

More specifically, we aim to preserve the overflow data so

that the total priorities of the preserved data is maximized,

under the constraint that each sensor node has limited battery

power and storage capacity. We refer to this problem as

data preservation with data priority (DPP). We formulate

this problem as a graph theoretic problem and study from a

network-flow perspective. The main contributions of this paper

include the following:

1). We identify, formulate, and solve the data preservation

problem in sensor networks by considering data priorities.

(Section II and Section IV)

2). We formulate and solve optimally maximum weighted

flow problem (MWF), which is a generalization of the classic

maximum flow problem [7]. To the best of our knowledge,

maximum weighted flow problem has not been studied.

(Section III)

3). We design a distributed data preservation algorithm based

on classic push-relabel maximum flow algorithm [11]. The

time and message complexities of our distributed algorithm

are O(kn2) and O(n2m) respectively, where n, m, and k
are number of nodes, number of edges, and number of data

generators respectively. (Section V)

4). We design an efficient heuristic that performs compet-

itively to the optimal algorithm. We also show that the

distributed data preservation algorithm performs better than

push-relabel algorithm in terms of solution quality. (Sec-

tion VI)

II. Data Preservation Problem With Data Priority (DPP)

In this section, we formally define the DPP, and discuss

related work.

Network Model. The sensor network is represented as an

undirected connected graph G(V,E), where V = {1, 2, ..., n}
is n uniformly deployed sensor nodes, and E is the set of

m edges. Two sensor nodes are connected by an edge if

they are within transmission range of each other and thus can

communicate directly. There are k data generators, denoted

as Vs = {1, 2, ..., k} without loss of generality. According to

our definition, data generators are storage-depleted. Therefore

sensor nodes whose storage is not depleted are not considered

as data generators. Data generator i is referred to as DGi. The

sensory data are modeled as a sequence of raw data items, each

of which is of unit size (our work can be easily extended to

the case where data items have different sizes as well). Data

items of DGi all have priority vi, indicating their importance

level in a specific sensor network application. Let di denote

the number of data items DGi needs to distribute (that is, the

amount of overflow data at DGi). We do not consider data

preservation with temporal and spatial data correlation in this

paper, which is left as future work. Let q =
∑k

i=1 di be the

total number of data items to be distributed in the network.

Let mi be the available free storage space (in terms of number

of data items) at sensor node i ∈ V . If i ∈ Vs, then mi = 0,

implying that a DG node is storage-depleted and thus has zero

available storage space. If i ∈ V − Vs, then mi ≥ 0, implying

that non-DG node i can store another mi data items. We do

not assume either
∑n

i=k+1 mi ≥ q or
∑n

i=k+1 mi < q, since

the techniques proposed in Section III and IV are applicable

to both cases.

Energy Model. Sensor node i (including DGs) has a finite and

unreplenishable initial energy Ei, which is an integer number.

We adopt a unicast communication model, and data items from

a DG are distributed one by one. We do not consider energy

spent on idle listening for each node. In our energy model, if

a node is on the data distribution path of a data item, it costs

1 unit of energy. That is, for each node, sending, receiving,

or relaying (receiving and immediately sending) a data item

each costs 1 unit of energy. Therefore, the energy consumption

of distributing a data item from its DG to a destination node

equals to the number of nodes involved in the data distribution.

For uniformly deployed sensor nodes, we believe this is a

good approximation of the energy consumption. We assume

that there exists a contention-free MAC protocol (e.g. [6]) that

provides channel access to the nodes. Note that in this paper

we do not consider how to retrieve data from destination nodes,

which can be solved using techniques in [20] and [18].

General Energy Model. The first order radio model [12] is a

more general energy model for wireless communication. In this

model, for k-bit data over distance l, the transmission energy

ETx(k, l) = Eelec×k+ǫamp×k×l2, and the receiving energy

ERx(k) = Eelec × k, where Eelec = 100nJ/bit is the energy

consumption per bit on the transmitter circuit and receiver

circuit, and ǫamp = 100pJ/bit/m2 calculates the energy

consumption per bit on the transmit amplifier. Even though

we cannot prove the optimality of our algorithm under this

general model, we do implement it using this general model

in Section VI and show that it outperforms other algorithms.

Problem Formulation. Let D = {D1, D2, ..., Dq} denote the

set of q overflow data items in the entire network. Let s(j) ∈
Vs, where 1 ≤ j ≤ q, denote Dj’s DG. The DPP decides:

• the set of data items D ⊆ D to distribute, and

• distribution function r : D → V − Vs, indicating that data

item Dj ∈ D is distributed from s(j) to its destination node

r(j) ∈ V − Vs, and

• distribution path of Dj ∈ D, referred to as Pj :
s(j), ..., r(j), a simple path (i.e., a set of distinct sensor

nodes) along which Dj is distributed from s(j) to r(j). Note

that an intermediate node on the path could be any node,

including a DG.

Let Vd denote the set of destination nodes, i.e., Vd =



{r(j)|1 ≤ j ≤ q} ⊆ V − Vs. Let xij be the energy cost

incurred by sensor node i in distributing Dj from s(j) to r(j),
and let E′

i denote i’s energy level after all the q data items

are distributed. Then, E′

i = Ei −
∑

Dj∈D xij , ∀ i ∈ V , where

xij = 1 if i ∈ Pj , and xij = 0 otherwise. Here, i could be the

DG, the destination node of Dj , or an intermediate relaying

node of Dj (each with energy cost one), or not involved with

the distribution of Dj at all (with energy cost zero). We assume

that a node can still relay data items even though it has a full

storage. Table I lists all the notations.

TABLE I
NOTATION SUMMARY

Notation Explanation

V The set of sensor nodes
Ei The initial energy of node i
mi The storage capacity of node i
E′

i The remaining energy of node i after data preservation
Vs The set of data generators (DGs)
Vd The set of destination nodes
D The entire set of data items in the network
D The set of data items selected to be distributed

DGi The ith DG

Dj The jth data item
di The number of overflow data items at DGi

vi The priority of each data item at DGi

xij The energy cost of node i in distributing Dj

s(j) The DG node of data item Dj

r(j) The destination node of Dj

Pj The distribution path of Dj

The objective of DPP is to select data items D ⊆ D
to distribute, and find corresponding distribution path Pj of

Dj ∈ D, to distribute them to their destination nodes, such

that the total priorities of the distributed data is maximized, i.e.

maxD
∑

Di∈D vi, under the energy constraint that each node

can not spend more energy than its initial energy level, E′

i ≥
0, ∀ i ∈ V , and the storage capacity constraint that the number

of data items distributed to node i is less than or equal to node

i’s storage capacity, |{j | r(j) = i,Dj ∈ D}| ≤ mi, ∀ i ∈ V.

Fig. 1. Illustration of the DPP problem.

EXAMPLE 1: Fig. 1 gives an example of the DPP in a

small linear sensor network with four nodes. The initial energy

levels of all nodes are 1. Nodes 1 and 3 are DGs, with 2 and 2

overflow data items to distribute respectively. Nodes 2 and 4 are

non-DGs, with 2 and 2 available storage spaces respectively.

The priority of each data in node 1 is 2, and 1 in node 3.

Here, the higher the priority, the more important the data. The

optimal solution is that one data item of node 1 is distributed

to node 2, while one data item of node 3 is distributed to node

4, resulting in total preserved priority of 3. The other solution

that one data item of node 3 is distributed to node 2, which

results in preserved priority of 1, is not optimal. �

A. Related Work

Intermittently connected sensor networks bear some resem-

blance with delay tolerant networks (DTN) [5, 9]. However,

these two networks are fundamentally different in both mobility

models and objectives. First, in DTNs, mobile nodes are

intermittently connected with each other due to their mobility

and low density, and data is opportunistically forwarded by

relay nodes to destination nodes; in an intermittently connected

sensor network, all the static sensors are connected with each

other while being disconnected from the base station, and

data is uploaded to the base station only when uploading

opportunities are available. Second, the research objectives

in DTNs are mainly to increase data delivery rate or reduce

data delivery delay, whereas in intermittently connected sensor

networks, the goal is to preserve the most valuable data for

maximum amount of time.

Data preservation in intermittently connected sensor net-

works is a relatively new research topic. Tang et al. [23]

study how to minimize the total energy consumption in data

preservation process, and formulate it as a minimum cost flow

problem. Hou et al. [13] study how to maximize the minimum

remaining energy of the nodes that finally store the data,

such that the data can be preserved for maximum amount

of time. Both works, however, assume that the data can all

be successfully distributed from DGs to non-DGs thus being

preserved. In more challenging scenarios when nodes reach

severely low energy levels and not all the data items (with

different priorities) can be preserved, preserving the data with

the total maximum priorities is a new problem.

At the core of the data preservation with priority is the max-

imum weighted flow problem: given a source and a destination

of a flow network, and that each unit of flow has different

weight, the objective is to find a flow of maximum total weight

from source to destination. The classic maximum flow problem

[7] is a special case of the maximum weighted flow problem,

in which each unit of flow has the same weight and the goal

is to find maximum amount of flow from source to destination.

To the best of our knowledge, this work is the first one to

formulate and study maximum weighted flow problem, and

design a polynomial algorithm to solve it optimally.

In theory community, researchers have considered edge

priorities in maximum flow problem. Kozen [16] studies a

lexicographic flow problem, wherein edges are assigned pri-

orities and the goal is to find a lexicographically maximum

flow with respect to such priority assignment. As stated in

[16], a lexicographically max flow is not necessarily a max

flow. Another related problem, called maximum priority flow,

is studied in [2, 4]. In this problem, each node specifies a

priority ordering for all the edges leaving it, and the flows

leaving this node always go through the edges with higher

priority before going through the edges with lower priority.

Both work do not consider assigning priority to each individual

flow. The most related work to ours is by Fatourou et al.

[10]. They study priority-based max-min fairness, wherein each

individual session bears a priority and the goal is to assign

to each session the maximum possible rate corresponding to



its priority. However, their focus is classic theory of max-min

fairness. In the maximum weighted flow problem we study,

flows are assigned priorities and the goal is to maximize the

total priorities of flows. We show maximum weight flow is

indeed a maximum flow but not vice versa.

In sensor network community, priority-based data dissem-

ination has not been studied extensively. We are only aware

the following two works. Kumar et al. [17] address how to

deliver data with different importance (priority) in the presence

of congestion in sensor networks. Kim [15] proposes a quality-

of-service MAC protocol based on data priority levels among

data transmissions. In contrast, the energy constraints of sensor

nodes and their intermittent connectivity with the base stations

(which are not considered in above two works), coupled with

data priorities, result in the study of our work.

There are extensive works, called data persistence in sensor

networks, wherein various network coding techniques are in-

troduced to provide reliable data access in the event of node

failure [3, 19]. Data persistence is mainly due to node failure

and therefore redundant fragments are spread into the network

so that the data can be recovered with maximum reliability. In

data preservation, a single copy of overflow data is moved from

DG nodes to non-DG nodes, thus no redundancy is introduced.

III. Maximum Weighted Flow Problem (MWF)

In this section we formulate the maximum weighted flow

problem and design an efficient and optimal algorithm for it.

Problem Formulation of MWF. Let G = (V,E) be a directed

graph. The capacity of an edge (u, v) ∈ E, denoted by c(u, v),
is a mapping c : E → R

+. It represents the maximum amount

of flow that can pass through an edge. There are k source

nodes S = {s1, s2, ..., sk} ⊂ V and one sink node t ∈ V . A

flow on an edge (u, v) ∈ E, denoted by f(u, v), is a mapping

f : E → R
+, subject to the following two constraints:

1). Capacity constraint: f(u, v) ≤ c(u, v), ∀(u, v) ∈ E. That

is, the flow of an edge cannot exceed its capacity.

2). Flow conservation constraint:
∑

u∈V f(u, v) =
∑

u∈V f(v, u), for each v ∈ V \ S ∪ {t}. That is, the

sum of the flows entering a node must equal the sum of the

flows exiting a node, except for the source and the sink nodes.

For node si ∈ S, the net flow
∑

u∈V (f(si, u)−f(u, si)) > 0;

for node t, the net flow
∑

u∈V (f(t, u)− f(u, t)) < 0.

Each of the net flow out of si ∈ S has a weight of vi. We

define the total weight of a flow as follows.

Definition 1: (Total Weight of A Flow.) Given a flow f
in the network, its total weight, denoted as Vf , is the sum

of weights of all the net flow out of source nodes. That is,

Vf =
∑

si∈S

∑

u∈V vi × (f(si, u) − f(u, si)). It represents

the total weight of flow passing from source nodes to the sink

node, instead of the total amount of flow desired in the classic

maximum flow problem. �

The objective of MWF is to find a flow f from S to t such

that Vf is maximized. Next we present an optimal algorithm

for MWF, which is also a greedy algorithm.

Greedy Optimal Algorithm (GOA) for MWF. First, we

transform G into G′ by adding a super source node s and

a directed edge (s, si) with capacity c(s, si) = ∞ for each

i = 1, 2, ..., k. Then we apply GOA on G′. GOA (Algorithm

1) is essentially a classic maximum flow augmenting path

algorithm, such as Edmonds-Karp algorithm [7], executed

in non-ascending order of source nodes’ priorities. It first

maximizes the amount of flow from s to the source node

with the highest priority, from where flow goes to t, then the

source node with the second highest priority. And so on and

so forth until no more augmenting path can be found from s
to t. Since the time complexity of Edmonds-Karp algorithm is

O(nm2), the running time of the GOA is therefore O(knm2).
There are more efficient maximum flow algorithms, such as

Dinitz’s blocking flow algorithm [8] with dynamic tree with

O(mnlgn) running time. However, such algorithms usually

rely upon complicated data structures to speed up the efficiency,

and can not be easily implemented.

Algorithm 1: Greedy Optimal Algorithm (GOA) on G′.

Input: G′, S, t and vi, where si ∈ S;

Output: flow f and its total weight Vf ;

0. Notations:

f : current flow from s to t

G
′

f : residual graph of G′ with flow f

1. f = 0, G
′

f = G′;

2. Sort source nodes in non-ascending order of their weights:

v1 ≥ v2 ≥ ... ≥ vk;

3. for (1 ≤ i ≤ k)

4. while (G
′

f contains an augmenting path s-si-t)

5. Augment flow f along such path;

6. end while;

7. end for;

8. RETURN f and Vf .

Lemma 1: Both GOA and an optimal algorithm of MWF

yield maximum flow.

Proof: GOA is essentially a maximum flow algorithm with

fixed order of choosing augmenting paths according to source

nodes’ weights. When no more augmenting paths can be found

between source and sink in the residual graph [7], it yields

maximum amount of flow following maximum flow-minimum

cut theorem [7]. By way of contradiction, if an optimal

algorithm is not maximum flow, we can further augment the

flow and thus yield a solution with larger weight of flow.

Optimality of GOA. Before proving that GOA is optimal, we

first give some notations.

Notations. Let P = {P1, P2, ..., Pk} be the solution yielded

by GOA (Algorithm 1), indicating that si has Pi amount of

net flow in GOA. Let O = {O1, O2, ..., Ok} be the optimal

solution, indicating that si has Oi amount of net flow in the

optimal solution. We assume that v1 ≥ v2 ≥ ... ≥ vk.

Let Λ = {sλ(1), sλ(2), ..., sλ(a)}, with 1 ≤ λ(1) < λ(2) <
... < λ(a) ≤ k, be the set of a source nodes with Pλ(i) >
Oλ(i). We refer to Pλ(i) − Oλ(i) as the surplus of sλ(i). The

total surplus of Λ is
∑a

i=1(Pλ(i) −Oλ(i)).

Let Ξ = {sξ(1), sξ(2), ..., sξ(b)}, with 1 ≤ ξ(1) < ξ(2) <
... < ξ(b) ≤ k, be the set of b source nodes with Pξ(j) < Oξ(j).

We refer to Oξ(j)−Pξ(j) as the deficit of sξ(j). The total deficit



of Ξ is
∑b

j=1(Oξ(j) − Pξ(j)).
Obviously Λ and Ξ are mutually disjoint, and a + b ≤ k.

According to Lemma 1, the total surplus of Λ equals the total

deficit of Ξ, that is,
∑a

i=1(Pλ(i) − Oλ(i)) =
∑b

j=1(Oξ(j) −
Pξ(j)).

Fig. 2. An example with five source nodes: s1, ..., s5, illustrating constructive
algorithm mapping Ξ = {s2, s4, s5} to Λ = {s1, s3}. The matching set of
s1 is {s2, s4}, with P1−O1 = Q1

1
+Q2

1
. The matching set of s3 is {s4, s5},

with P3 −O3 = Q2

2
+Q3

2
.

Rewriting
∑b

j=1(Oξ(j) − Pξ(j)). Next, we are going to rewrite
∑b

j=1(Oξ(j)−Pξ(j)), a sum of b terms, into a sum of a terms,

with ith term having value of (Pλ(i) −Oλ(i)).
Definition 2: (Matching Set & Matching Amount.)

The matching set of sλ(i) ∈ Λ, denoted as

{sξ(li), sξ(li+1), ..., sξ(hi)} ⊆ Ξ, where 1 ≤ li ≤ hi ≤ b, is a

subset of Ξ whose total matching amount is (Pλ(i) − Oλ(i)).
Here, the matching amount of sξ(j) to sλ(i), denoted by

Qj
i , is the amount of sξ(j)’s deficit that is allocated for

sλ(i); the total matching amount of sλ(i)’s matching set is
∑hi

j=li
Qj

i = (Pλ(i) −Oλ(i)). �

In other words, we will rearrange the total deficit of Ξ and

map Ξ to Λ, by finding sλ(i)’s matching set and calculating the

corresponding set of matching amount, such that this matching

set’s total matching amount equals sλ(i)’s surplus. Algorithm 2

below decides sλ(i)’s matching set and calculates the matching

amount of each element in this matching set.

Algorithm 2: A Constructive Algorithm Mapping Ξ to Λ.

Input: Oi and Pi, 1 ≤ i ≤ k;

Output: li, hi, {Q
li
i , Q

li+1
i , ..., Qhi

i }, 1 ≤ i ≤ a.

0 Notations:

alloc: total matching amount that is allocated to sλ(i);
flag = true if li = hi; false if li < hi;

1 l1 = 1;

2 Q1
1 = alloc = Oξ(1) − Pξ(1);

3 for (1 ≤ i ≤ a)

4 j = li; flag = true;

6 while
(

alloc < (Pλ(i) −Oλ(i))
)

7 j ++;

8 Qj
i = Oξ(j) − Pξ(j); alloc = alloc+Qj

i ;

10 flag = false;

11 end while;

12 hi = j;

13 if (flag == true) Qj
i = Pλ(i) −Oλ(i);

15 else

16 Qj
i = (Oξ(j) − Pξ(j))−

(

alloc− (Pλ(i) −Oλ(i))
)

;

17 if
(

alloc == (Pλ(i) −Oλ(i))
)

18 li+1 = j + 1;

19 alloc = Oξ(li+1) − Pξ(lj+1);

20 else

21 li+1 = j;

22 alloc = alloc− (Pλ(i) −Oλ(i));
23end for;

24RETURN [l1, l2, ..., la], [h1, h2, ..., ha], and Qj
i .

It is not difficult to check that (Pλ(i) −Oλ(i)) =
∑hi

j=li
Qj

i .

Note that sξ(j) could be in multiple matching sets. That is, the

deficit of sξ(j), Oξ(j) − Pξ(j), may be divided into multiple

parts, each is allocated to the matching set of a different sλ(i).
Fig. 2 is an example to illustrate this algorithm. Algorithm 2

immediately gives us the following result.

Lemma 2: λ(i) < ξ(li), 1 ≤ i ≤ a.

Proof: By way of contradiction, assume that there exists j such

that λ(j) > ξ(lj), and λ(i) < ξ(li) for all 1 ≤ i ≤ j−1. Since

(Pλ(i)−Oλ(i)) =
∑hi

j=li
Qj

i , for all 1 ≤ i ≤ j−1, Algorithm 1

found a way to equalize number of flows obtained in O to

number of flows obtained in P , for all si with i ≤ ξ(lj), by

moving flows from source nodes in Ξ to source nodes in Λ.

Next when both GOA and optimal algorithm try to find the

number of flows for sξ(lj), it obtains that Pξ(lj) < Oξ(lj),

because sξ(lj) ∈ Ξ. This contradicts the fact that GOA is a

greedy algorithm that finds the maximum number of data to

distribute from sξ(lj) at this stage.

Theorem 1: GOA is an optimal algorithm. That is, it finds

flow with total maximum weight.

Proof: By way of contradiction, assume that GOA is not

optimal, therefore
∑k

i=1 Oi × vi >
∑k

i=1 Pi × vi. It can be

shown that

k
∑

i=1

Pi × vi −
k

∑

i=1

Oi × vi

=
a

∑

i=1

(Pλ(i) −Oλ(i))× vλ(i) −
b

∑

j=1

(Oξ(j) − Pξ(j))× vξ(j)

=
a

∑

i=1

(Pλ(i) −Oλ(i))× vλ(i) −
a

∑

i=1

hi
∑

j=li

Qj
i × vξ(j)

=
a

∑

i=1

(

(Pλ(i) −Oλ(i))× vλ(i) −

hi
∑

j=li

Qj
i × vξ(j)

)

.

According to Lemma 2, for any 1 ≤ i ≤ a, vλ(i) ≥ vξ(j),
the priority of sξ(j) in Dλ(i)’s matching set. And we have

(Pλ(i) − Oλ(i)) =
∑hi

j=li
Qj

i . Each of the above a difference

terms is therefore non-negative. Thus we have
∑k

i=1 Pi×vi ≥
∑k

i=1 Oi × vi, a contradiction. Note that ha equals ξb due to

the fact that
∑k

i=1 Oi =
∑k

i=1 Pi (Lemma 1).

IV. Optimal Algorithm for DPP

In this section we first show that the GOA algorithm in

Section III is an optimal algorithm for DPP. We then present

another heuristic algorithm, which is both efficient (in terms

of running time) and effective (in terms of data preservation as



shown in Section VI). We first transform the sensor network

G(V,E) to a flow network G′(V ′, E′) as follows:

1). Replace each undirected edge (i, j) ∈ E with two directed

edges (i, j) and (j, i). Set the capacities of all the directed

edges as infinity.

2). Split node i ∈ V into two nodes: in-node i′ and out-node

i′′. Add a directed edge (i′, i′′) with capacity of Ei, the initial

energy level of node i. All the incoming directed edges of

node i are incident on i′ and all the outgoing directed edges

of node i emanate from i′′. Therefore the two directed edges

(i, j) and (j, i) in above are now (i′′, j′) and (j′′, i′).
3). Add a source node s, and connect s to the in-node i′ of

the DG node i ∈ Vs with an edge of capacity di.
4). Add a sink node t, and connect out-node j′′ of the non-DG

node j ∈ V − Vs to t with an edge of capacity mj .

Therefore, V ′ = {s}∪ {t}∪ {i′ : i ∈ V }∪ {i′′ : i ∈ V } and

E′ = {(i′′, j′) : (i, j) ∈ E}∪{(j′′, i′) : (i, j) ∈ E}∪{(i′, i′′) :
i ∈ V } ∪ {(s, i′) : i ∈ Vs} ∪ {(j′′, t) : j ∈ V − Vs}. We

have |V ′| = 2n + 2 and |E′| = 2m + 2n. Fig. 3 shows the

transformed network for the linear network in Fig. 1.

Fig. 3. Transformed network G′(V ′, E′) for linear network in Fig. 1.

Theorem 2: GOA algorithm on G′(V ′, E′) is an optimal

algorithm for DPP on G(V,E).

Proof: Note that with the above transformation from G(V,E)
to G′(V ′, E′), the energy constraints of sensor nodes and

storage capacities of non-DG nodes are specified as edge

capacities in G′(V ′, E′) that need to conform with. Next, we

need to show that the maximum weighted flow resulted from

GOA on G′(V ′, E′) correspond to the data preservation on

G(V,E) that preserves maximum amount of data priorities.

Suppose that GOA gives net flow of Pi amount from si
to t. Because GOA is optimal (Theorem 1),

∑k

i=1 Pi × vi
is maximum. With the above transformation from G(V,E) to

G′(V ′, E′), Pi is actually the amount of data items distributed

from source node si to sink node t, vi is actually the priority

of data items generated by si. Therefore, the corresponding

data distributed from all si to t have the maximum amount

of priorities. Solving the maximum weighted flow problem

on G′(V ′, E′) provides the optimal solution for the data

preservation problem with priority in G(V,E).

We have the following observation regarding the optimal

solution for DPP:

Observation 1 (Cascading Effect): A non-DG stores data

until its storage capacity is full before relaying data. �

A consequence of Observation 1 is that in the optimal

algorithm, data is always distributed to the nearest non-DG

with available storage before being distributed further. We call

this the cascading effect of data preservation.

A Heuristic Algorithm on G(V,E). We present an efficient

heuristic algorithm (Algorithm 3) for DPP. Like the optimal

algorithm, this algorithm distributes data in the descending

order of their priorities. However, it is not a flow algorithm

and thus residual graph and flow undo are not used, which

makes its implementation much simpler. In each iteration, a

DG distribute a data to its closest non-DG node with available

storage, if all the nodes along the path from this DG to this

non-DG have at least one unit of energy. The algorithm stops

when no more data can be distributed.

Algorithm 3: Heuristic Algorithm on G(V,E).
Input: G(V,E)
Output: flow f and its total weight Vf

1. Sort all the DGs in descending order of their priorities:

v1 ≥ v2 ≥ ... ≥ vk
2. for (1 ≤ i ≤ k)

3. while (It can still distribute a data item from DG i
4. to a non-DG node)

5. Distribute it to the closest non-DG node;

6. end while;

7. end for;

8. RETURN f and Vf .

Time Complexity. Due to space constraint, we omit detailed

analysis here. Its time complexity is O(km + kd̄n), where d̄
is the average number of data items of each DG. This is more

efficient than that of GOA, which is O(knm2).

V. Distributed Data Preservation With Data Priority

We design a distributed algorithm by combining the idea

behind push-relabel maximum flow algorithm [11] and data

priority-based data preservation. In push-relabel algorithm,

each node only needs to know its neighbors and the capacities

of its incident edges in the residual graph [7]. Therefore it is

desirable for a distributed sensor network environment.

Overview of Push-Relabel Algorithm [11]. Given a flow

network G(V,E) with |V | = n and |E| = m, a source node s
and a sink node t, the algorithm works as follows. It begins by

sending as much flow out of s as allowed by the capacities of

the edges coming out of s. Then, at each iteration, it considers

a node that has more incoming flow than outgoing flow (the

difference between them is called excess flow of the node). The

node then routes the excess flow to their neighbors, and so on.

This is called push. To make progress, the algorithm defines a

height function h : V → N and initially, h(s) = n; h(t) = 0;

and h(u) = 0 for all u /∈ V \ {s, t}. This is based on the

intuition that the flow always goes “downhill”, node u sends

extra flow to a node v only if h(u) > h(v). When a node can

no longer sends out its excess flow, it increases its height and

pushes the flow to the node with lower height than it. This is
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Fig. 4. Data Preservation Blocked by Storage Constraint.

called relabel. A maximum flow is obtained when no more

overflowing nodes left except the sink and possibly the source

node. The running time of push-relabel algorithm is O(n2m).
The detailed operations of push-relabel algorithm on a node u
is presented in Algorithm 4.

Algorithm 4: Push-Relabel (u)
0. Notations:

e(u): node u’s excess flow

h(u): node u’s height

cap(u,w): residual capacity of (u,w)
1. if e(u) > 0
2: while

(

e(u) > 0, there exists (u,w) s.t.

3. h(u) = h(w) + 1, and cap(u,w) > 0
)

4: Push y = min {e(u), cap(u,w)} through

5. (u,w) by sending a message to w;

6: e(u) = e(u)− y; e(w) = e(w) + y;

7. update cap(u,w);
8: end while;

9: if e(u) > 0
10: h(u) = 1 + min{h(w) : cap(u,w) > 0};

11: Broadcast h(u) to neighboring nodes;

12: end if;

13: end if;

15. RETURN

Distributed Data Preservation with Data Priority. The flow

in push-relabel algorithm bears intrinsic resemblance with

the cascading effects exhibited by the data flow in our data

preservation problem (see Observation 1). In push-relabel,

the flow goes through the network as water flows through

downhills and in data preservation, data is always distributed

to the nearest non-DG with storage before being distributed

farther away. Therefore, push-relabel algorithm is particularly

suitable for our data preservation scheme.

However, there are a few modifications needed on push-

relabel algorithm to make the distributed data preservation

work. First, since push-relabel algorithm is to find maximum

flow while data preservation is to find maximum preserved

priorities, the DGs need to coordinate with each other so that

DGs with higher priorities push data into the network before

DGs with lower priority do. Second, energy constraint of each

node should be represented in the flow network, and energy

consumption of sending and receiving packets by each node

should be taken into account. To handle energy constraints and

energy consumptions of nodes, nodes are splitted according

to Section IV. Third, push-relabel algorithm determines the

maximum flow from a single source to a single sink, whereas

in a sensor network, there are multiple data generating sensor

nodes and multiple sensor nodes collecting and storing sensed

data. Therefore, as specified in Section IV, a virtual source

node s is connected with the in-node of each DG, with the

edge capacity as the number of data items of each DG, and

a virtual sink node t is connected with the out-node of each

non-DG, with the non-DG’s storage as edge capacity.

The distributed data preservation begins by this virtual

source pushing maximum allowable number of flow to the

in-node of the DG with highest priority, which continues the

push-relabel process, until no nodes with excess flow (except

virtual source and sink) exists. Then the virtual source pushes

to the in-node of the DG with the second highest priority.

The algorithm works in rounds, in each round a node with

positive excess performs push-relabel. Such synchronization

prevents multiple nodes from sending their packets to their

neighbors simultaneously. When there are multiple neighbors

with the same number of heights, one of them is randomly

picked. The distributed algorithm stops when the DG with the

lowest priority finishes the push-relabel process. The detailed

operations of the distributed data preservation is presented in

Algorithm 5.

Algorithm 5: Distributed Data Preservation on G′(V ′, E′)
1 Each DG broadcasts its priority to the network;

2. for
(

Each DG in the descending order of its priority
)

3. s pushes maximum allowable data to this DG;

4. while
(

there exists a node u with positive excess
)

5. Push-Relabel(u);

6. end while;

7. end for;

8. RETURN

Theorem 3: The distributed data preservation algorithm

preserves maximum total priority. It runs in O(kn2) time and

uses O(n2m) messages.

Proof: The optimality of the distributed data preservation

algorithm is due to the optimality of the distributed push-relabel

algorithm [11]. It is shown in [11] that the distributed push-

relabel algorithm in a graph G′(V ′, E′) runs O(|V ′|2) in time

and uses O(|V ′|2|E′|) messages. Since |V ′| = 2n + 2 and

|E′| = 2m+2n (Section IV), its time and message complexi-

ties are O(n2) and O(n2m) respectively. The distributed data

preservation differs from distributed push-relabel algorithm in

lines 1 and 2 in Algorithm 5. Line 1 incurs O(kn) = O(n2)
broadcast messages and Line 2 increases the running time by

at most k times. Therefore the distributed algorithm runs in

O(kn2) and uses O(n2m+ n2) = O(n2m) messages.

VI. Performance Evaluation

We compare the performance of the optimal GOA algorithm

(referred to as Optimal), the heuristic (referred to as Heuris-

tic), and the distributed algorithm (referred to as Distributed).

We also implement Edmonds-Karp maximum flow algorithm



[7] (referred to as Edmonds-Karp), which does not consider

flow priorities when preserving data.

Visual Performance Comparison in Grid Network. There

are four DGs in the grid network, located at (4, 6) (solid circle),

(7,6) (solid square), (4, 5) (solid diamond), and (7, 5) (solid

triangle), with data priority 8, 6, 4, and 2, respectively. Each

non-DG node has one storage and can store one data item.

Data Preservation Blocked by Storage Constraint. We first in-

vestigate the data preservation when there is not enough space

in the network to store all the overflow data, as shown in

Fig. 4. We set the grid network size as 10×10. Each node has

initial energy level of 30 units. Each DG has 30 data items to

distribute. The number of data items (from highest priority to

lowest) distributed by Optimal is [30, 30, 30, 6], distributed by

Heuristic is [30, 28, 28, 10], and distributed by Edmonds-Karp

is [24, 24, 24, 24]. It shows that both Optimal and Heuristic

prefer to preserve data with higher priority, while Optimal does

much better to “filter” out the low priority data. Edmonds-

Karp, however, distributes the same amount of data of different

priority as Optimal does. Table II presents the comparison

results summarized from Fig. 4.

TABLE II
RESULTS OF VISUAL COMPARISON IN FIG. 4.

Optimal Heuristic Edmonds-Karp

Number of Preserved Data 96 96 96

Total Preserved Priority 552 540 480

Data Preservation Blocked by Energy Constraint. We also in-

vestigate the data preservation when there is not enough energy

in the network to store all the overflow data. We set the network

size as 20 × 20. Each of the four DGs has 50 data items to

offload. The initial energy level of sensor nodes are increased

from 5 to 10 to 15. Due to space constraint, we only show

the visual comparison for energy level 15 (Fig. 5). Fig. 6

shows the performance comparison of the three algorithms,

in terms of the total number of preserved data, total number

of preserved priorities, and energy consumption per preserved

data priority, in varying energy levels. It shows that Optimal

performs best constantly in terms of total amount of preserved

priorities. However, in terms of energy consumption per pre-

served priority, Heuristics performs better than Optimal, which

performs better than Edmonds-Karp. This can be explained by

that Heuristics offloaded least amount of priorities, as indicated

by Fig. 5 (a).

Performance Comparison Under General Energy Model

and General Topology. We randomly generate 100 sensor

nodes in a field of 2000m× 2000m, and set the transmission

range as 100m. Each time a new node is generated, we check

if its closest distance to the existing nodes is within the

transmission range (otherwise, this node is discarded). This

way, we can guarantee that all the 100 nodes are connected.

The initial energy of nodes are 500mJ . Each DG has 500 data

items, each data item is 400 bytes. The storage capacity of

each non-DG is 51.2 Kbytes. The priority of each DG is a

random number in [1, 100]. Next we compare three algorithm
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Fig. 5. Data Preservation Blocked by Energy Constraint (Initial
Energy Level = 15).
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Fig. 6. Performance Comparison With Varying Initial Energy Level.

by varying number of DGs. In all plots, each data point is

an average over five runs. and the error bars indicate 95%
confidence interval.

Fig. 7 compares the performances of Optimal, Heuristic, and

Edmonds-Karp, by varying number of DGs in [20, 30, 40, 50].

Fig. 7 (a) shows that Edmonds-Karp preserves more amount

of data than Optimal and Heuristic (it leaves as future work

to investigate theoretically if Edmonds-Karp yields maximum

flow under this general energy model). Even so, Fig. 7 (b)

shows that Optimal preserved more priorities than Heuristic,

which preserves more than Edmonds-Karp does. This seems

to be more prominent when number of DGs is large (at 30,

40, and 50). However, Edmonds-Karp does yield less energy

consumption per preserved priority than Optimal and Heuristic,

since it always finds the globally minimum energy path when

offloading a data item.

Comparing Priority-Based Distributed Algorithm and Dis-

tributed Push-Relabel Algorithm. Fig. 8 compares distributed

data preservation with data priorities (referred to as Distributed)

and without considering data priorities (referred to as PushRe-

label). We use and modify the implementation of distributed

push-relabel algorithm that is available at [1]. It shows that

both algorithms achieve the same amount of distributed data.

However, the Distributed yields higher total preserved priority

than that of PushRelabel. Due to the broadcast messages that

coordinate the data distributing of different DGs, distributed

data preservation does incur a bit more energy consumption.
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Fig. 7. Performance Comparison Under General Energy Model.
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VII. Conclusion and Future Work

The maximum weighted flow problem studied in this paper is

uniquely derived from the data preservation problem with data

priority (DPP) we identified in sensor networks. We believe that

it is a theoretically fundamental problem since it generalizes

the classic maximum flow problem. Because of this theoretical

root, the techniques proposed in this paper could be applicable

not only in sensor networks, but also in any applications in

which data priorities and resource constraints coexist, such as

peer-to-peer networks, data centers, and smartphone commu-

nication. Currently the DPP is a static problem, in which the

data to be preserved is generated at the beginning and only

once, and the set of storage-depleted nodes may vary over time

due to the depletion of nodes’ storage and the consumption

of data in nodes’ storage. As future work, we will address

a real-time problem where data is generated and transmitted

dynamically and periodically, and storage-depleted nodes vary

over time. Second, the paper assumes that the overflow data

of DGs can be distributed to only the non-DGs. To maximize

the total priorities preserved, it would be interesting to explore

if certain DGs can discard their locally generated data of low

priority and make room to store the data from other DGs having

high priority. Third, currently, under general energy model, it

is not clear if Edmonds-Karp gives maximum flow, and it is

not clear if GOA algorithm gives total optimal priorities. We

will study these two topics theoretically.
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