
Priority-Based Data Preservation in Base
Station-less Sensor Networks: a Maximum

Weighted Flow Approach
Giovanni Rivera and Bin Tang

Department of Computer Science, California State University Dominguez Hills, Carson, CA, USA
Email: grivera64@toromail.csudh.edu, btang@csudh.edu

Abstract—Data sensed from the environment may have differ-
ent importance and priority, and different data contributes dis-
tinctly to scientists’ ability to analyze the physical environment.
Meanwhile, many emerging sensing applications are deployed
in challenging environments (e.g., underwater exploration and
climate monitoring), wherein data-generating sensor nodes do
not always have connected paths with the data-collecting base
stations. When not all the data can be preserved inside such
base station-less sensor networks (BSNs) due to severe energy
and storage constraints at sensor nodes, how to preserve data to
yield maximum total priorities energy-efficiently is a challenging
new problem. We refer to this problem as the priority-based
data preservation (PDP) and formulate it as a new graph-
theoretical problem. Under a uniform-energy model, we uncover
a new network flow problem called maximum weighted flow
(MWF), which maximizes the total weight of flows in a flow
network, considering different flows have different weights. MWF
generalizes the classic maximum flow problem, wherein each flow
unit has the same weight. Under a general energy model, we
formulate the PDP as an integer linear program (ILP) and solve
it optimally. We propose a greedy heuristic and a distributed PDP
algorithm based on a push-relabel technique. The distributed
algorithm yields maximum total priorities with provable time
and message complexities. Extensive simulations show that our
algorithms outperform the classic maximum flow algorithm (e.g.,
Edmonds-Karp) that does not consider data priority with up to
33.29% more total preserved priority. To our knowledge, this
work is the first to study and solve the MWF.

Keywords – Maximum Weighted Flow, Data Preservation,
Data Priority, Base Station-less Sensor Networks, Energy-
Efficiency

I. Introduction

Background and Motivation. Many of the emerging sensor
network applications, such as underwater or ocean sensor
networks [14, 23, 35, 42], volcano eruption monitoring, and
glacial melting monitoring [31, 45], are deployed in remote
or unattended areas. In those challenging environments, it is
not feasible to have a long-term deployment of high-power
data-collecting base stations (with power outlets) in the field.
Consequently, sensory data generated in such environments
is stored inside the network and uploaded when opportunities
arise. These uploading opportunities could be periodic visits by
data mules or robots [21, 46, 49], or autonomous underwater
vehicles (AUVs) [4, 15], or transmission to the base station
through wireless communication such as a low-rate satellite

link [32]. Because the base station does not coexist with other
sensor nodes in the field, we refer to such sensor networks as
base station-less sensor networks (BSNs). The primary func-
tion of the BSN is to collect and store the generated sensory
data inside the network between two uploading opportunities.

Meanwhile, with the strides made in sensor technologies
over the past decade, sensor networks are evolving from
dedicated application-specific platforms measuring single data
types to integrated infrastructure measuring multiple data types
simultaneously [24, 37]. Different data types could be collected
within the same application, each contributing differently to
the sensor network application. For example, in a sensor
network that was deployed at Reventador (an active volcano in
Ecuador) to monitor the volcano activities, the data collected
includes seismic, infrasonic (low-frequency acoustic), and
temperature [11, 45]. While all the collected data are helpful
for scientists to understand and analyze the volcano activities,
seismic and infrasonic data are more crucial than temperature
data to interpret the key features of a volcano, such as its
scale and magnitude. In modern sensor network applications,
different data types have different importance. We refer to the
importance of data as data priorities; the higher the priority,
the more critical the data.

Challenges. In this paper, we focus on a challenging scenario
in the BSN wherein its sensor nodes have reached a critical
battery power and storage space level. This could happen
after a BSN has been operated for a long time, and the
uploading opportunities could not upload the data from the
BSN promptly due to unpredictable factors such as inclement
weather.1 Meanwhile, when events of interest occur, sensors
close to them may collect data more frequently than nodes
far away, therefore running out of their storage space more
quickly than others and cannot store newly generated data.
Such data-generating nodes with storage depletion are called
data generators (DGs). To avoid data loss, the overflow data
(the newly generated data that can no longer be stored at DGs)
must be offloaded to other sensor nodes with available storage
spaces (referred to as storage nodes) to be preserved, so that

1We assume the battery power of sensor nodes is not replenishable, and
we are aware of extensive research that studies how to recharge sensor nodes
either wirelessly [17] or using solar power [43].

they can be uploaded when uploading opportunities become
available. We call this process of offloading overflow data from
DGs to storage nodes to be stored data preservation in BSNs.
After this, robots and data mules can collect such preserved
data when dispatched to the BSN (see a recent survey [22] for
different techniques of how robots collect data from the sensor
field). There could be data-generating nodes whose storage is
not yet depleted - they are not considered DGs.

However, preserving all the overflow data in BSNs is
not always possible due to the severe energy and storage
constraints of sensor nodes. When there is insufficient storage,
some overflow data must be discarded in the data preservation
process, causing data loss. When there is not enough battery
power for some sensor nodes, they could soon deplete their
energy, causing network partition in the BSN and blocking
the data preservation from the DGs to the storage nodes.
Consequently, only part of the overflow data could be success-
fully preserved due to severe energy and storage constraints
of sensor nodes. Considering that different data have different
priorities, from the perspective of the BSN network operator
and domain scientists, finding a data preservation process
that maximizes its total preserved priority is critical. As
data preservation is energy-expensive wireless communication,
finding an energy-efficient preservation process that maximizes
its total preserved priority becomes a new challenge.

Our Contributions. We tackle this challenge by establish-
ing a new algorithmic framework called priority-based data
preservation (PDP). Underlying the framework is a suite of
new graph-theoretical problems called PDP problems. We
study the PDP from the network flow perspective and de-
sign a suite of network flow-based algorithms. Network flow
problems [3], such as maximum flow, minimum cost flow,
and multi-commodity flow, study how to move objects (e.g.,
goods, vehicles, and network packets) around in a network
efficiently following some resource constraints of the network.
Coupling deep theoretical rigor and remarkable applicability,
network flow has found great success in various applications in
computer science, operations research, and engineering [28].

The PDP gives rise to a new network flow problem, which
we refer to as maximum weighted flow (MWF). MWF aims to
maximize the total weight of flows in a network, considering
different flows could have different weights. MWF generalizes
the classic maximum flow problem, wherein each flow unit
has the same weight, and the goal is to maximize the total
number of flows in the network. We find that under a uniform
energy model wherein the sensor nodes cost the same energy
when preserving a data item, MWF achieves maximum flow
and yields the maximum total weight of all the flows; in
contrast, a classic maximum flow is not necessarily an MWF.
Under a more general energy model (i.e., wireless first-order
radio model [18]) wherein the energy consumption of sensor
nodes is different, we show that MWF does not need to be
a maximum flow to maximize the total weight of all the
flows. Our PDP model, with its theoretical roots in network
flows and the new theory uncovered, may apply to other

network applications wherein flow priorities are concerned,
such as flow control in modern data centers where data flows
have different priorities [33]. It is a very simple but general
information producer and consumer model that has yet to be
adequately explored in any other context. This paper’s main
contributions and organization are as follows.
1). We formally formulate the PDP in BSNs and review all
the related work. (Section II)

2). We formulate the MWF and design an optimal algorithm
to solve it efficiently. To our knowledge, the MWF has not
been studied in any of the existing literature. (Section III)

2). We show that the PDP under a uniform energy model
is equivalent to the MWF in a flow network properly
transformed from the BSN graph. Thus, PDP can be solved
optimally and efficiently. (Section IV)

3). Under a more general energy model, we formulate it as
an Integer Linear Program (ILP) and solve PDP optimally.
We also design an efficient greedy algorithm to solve the
PDP. (Section V)

4). We design a distributed data preservation algorithm based
on classic push-relabel maximum flow algorithm [16] and
show it achieves optimal data priorities. Its time and message
complexities are O(kn2) and O(n2m), respectively, where
n, m, and k are the number of nodes, edges, and data
generators. (Section VI)

5). Via extensive simulations, we show that our priority-based
data preservation algorithms outperform the classic maxi-
mum flow algorithms that do not consider data priority (e.g.,
Edmonds-Karp [9]) by yielding up to 33.29% more total
preserved priority. We also show that the distributed data
preservation algorithm performs better than the classic push-
relabel algorithm that does not consider the flow priorities
under different network parameters. (Section VII)

II. Priority-Based Data Preservation Problem (PDP)

This section formally defines the PDP and then discusses
related work to contextualize our paper’s contributions.

A. Problem Formulation of PDP

Network Model. The BSN is represented as an undirected
connected graph G(V,E), where V = {1, 2, ..., n} is n
uniformly deployed sensor nodes, and E is the set of m
edges. An edge connects two sensor nodes if they are within
transmission range of each other and thus can communi-
cate directly. There are k data generators (DGs), denoted as
Vd = {DG1, DG2, ..., DGk} ⊂ V . The rest of the nodes are
storage nodes, denoted as Vs. According to our definition, DGs
are storage-depleted; therefore, sensor nodes without depleted
storage are not considered DGs. The sensory data are modeled
as a sequence of raw data items, each of which is of unit
size (our work can be easily extended to the case where data
items have different sizes). Data items generated at DGi all
have priority value vi, indicating their importance in a specific
sensor network application. Let di denote the number of data
items DGi needs to be preserved (the amount of overflow data

2

at DGi). Let mi be the available free storage space (in terms
of number of data items) at sensor node i ∈ V . If i ∈ Vd, then
mi = 0, implying that a DG node is storage-depleted and
thus has zero available storage space. If i ∈ Vs, then mi > 0,
implying that storage node i can store another mi data items.
Let q =

∑k
i=1 di be the total number of data items to be

preserved in the BSN. Note it could be that
∑
i∈Vs

mi ≥ q or∑
i∈Vs

mi < q and our proposed techniques apply to both.

Energy Model. Sensor node i (including DGs and storage
nodes) has finite and unreplenishable initial energy Ei. We
consider two energy models.
• Uniform Energy Model. In this model, any node involved

in preserving a data item, including sending, receiving, or
relaying the data item, costs the same amount and one unit
of energy. That is, the energy consumption of distributing a
data item from its DG to a storage node equals the number of
nodes involved in the data distribution. We believe this is a
good approximation of the energy consumption for uniformly
deployed sensor nodes.
• General Energy Model. The first-order radio model [18] is a
more general energy model for wireless communication. For
k-bit data over distance l, the transmission energy incurred
on the sender is ETx(k, l) = Eelec × k + εamp × k ×
l2, and the receiving energy incurred on the receiver is
ERx(k) = Eelec×k. Here, Eelec = 100nJ/bit is the energy
consumption per bit on the transmitter circuit and receiver
circuit, and εamp = 100pJ/bit/m2 calculates the energy
consumption per bit on the transmit amplifier.

Problem Formulation. Let D = {D1, D2, ..., Dq} denote the
set of q overflow data items in the entire network. Let s(j) ∈
Vd, where 1 ≤ j ≤ q, denote Dj’s DG. The PDP decides:
• the set of data items D ⊆ D to preserve, and
• preservation function r : D → Vs, indicating that data item
Dj ∈ D is offloaded from s(j) to its destination node r(j) ∈
Vs, and
• preservation path of Dj ∈ D, referred to as Pj :
s(j), ..., r(j), a simple path (i.e., a set of distinct sensor
nodes) along which Dj is offloaded from s(j) to r(j).
Let xij be the energy cost incurred by sensor node i in

distributing Dj from s(j) to r(j), and let E′i denote i’s energy
level after all the |D| data items are preserved. Then, E′i =
Ei −

∑
Dj∈D xij ,∀ i ∈ V . We assume that a node can still

relay data items even though it has full storage. The objective
of PDP is to select data items D ⊆ D to preserve and find
corresponding preservation path Pj of Dj ∈ D to offload
them to their destination nodes, such that the total priorities
of the preserved data is maximized, i.e., maxD

∑
Dj∈D vs(j),

under the energy constraint that each node can not spend more
energy than its initial energy level, E′i ≥ 0,∀ i ∈ V , and
the storage capacity constraint that the number of data items
offloaded to destination node i is less than or equal to i’s
storage capacity, |{j | r(j) = i,Dj ∈ D}| ≤ mi,∀ i ∈ Vs.
Table I lists all the notations.

EXAMPLE 1: Fig. 1 gives a small linear BSN with four
nodes. Nodes 1 and 2 are DGs, each with two overflow data

TABLE I: Notation Summary

Notation Explanation
V The set of sensor nodes in the BSN
Ei The initial energy of node i
mi The storage capacity of node i
E′

i The remaining energy of node i after data preservation
Vd The set of data generators (DGs)
Vs The set of storage nodes
D The entire set of data items in the BSN
D The set of data items selected to be preserved
DGi The ith DG, 1 ≤ i ≤ k
Dj The jth data item
di The number of overflow data items at DGi

q The total number of overflow data items, q =
∑k

i=1 di
vi The priority of each data item at DGi

xij The energy cost of node i in preserving Dj

s(j) The DG node of data item Dj

r(j) The destination node of Dj ; it is a storage node
Pj The preservation path of Dj

items to preserve and an initial energy level of 1. Nodes 3 and
4 are storage nodes, with 2 and 2 available storage spaces,
respectively, and each has an initial energy level of 2. The
priority of each data in node 1 is 3, and 1 in node 2. The
optimal PDP solution is that one data item of node one is
offloaded to node 3, resulting in a preserved priority of 3. The
other solution is that one data item of node 2 is offloaded to
node 3, resulting in a preserved priority of 1. �

Data Item

1 2 3 4

Storage Space

Sensor Node
1 1 2 2Energy Level
3 1Data Priority

Fig. 1: Illustration of the PDP problem.

B. Related Work

We first review all the data preservation research in BSNs.
As data preservation is about data gathering in sensor net-
works, we also review some of the traditional data-gathering
techniques and paradigms in sensor networks to give a context
to the contributions made by our research. We finally review
the priority-based techniques in both theory and sensor net-
work communities.

Data Preservation in the BSN. Data collection and storage in
BSNs started as a series of system research [29, 30, 44]. Luo
et al. [30] proposed a new cooperative storage system for
sensor networks geared for disconnected operation (where
sensor nodes do not have a connected path to a base station).
The goal of this system, called EnviroStore, is to maximize
its data storage capacity by opportunistically offloading data
to external devices when possible. In their following works,
they designed a distributed acoustic monitoring, storage, and
trace retrieval system to study animal populations in the wild
[29] and extended their system for reliable data collection

3

using solar-powered sensor networks [44]. As they are system
research that focuses on system prototyping, all the data
collection mechanisms proposed are heuristic-based and need
more rigorous performance analysis and guarantees.

Inspired by the above system research, another line of re-
search took a more formal algorithmic approach. It formulated
data preservation problems in BSNs as a suite of graph-
theoretical problems [20, 38–41, 47]. Tang et al. [40] showed
that energy consumption minimization in data preservation is
a minimum-cost flow problem. Hou et al. [19] and Hsu et
al. [20] studied how to maximize the minimum remaining
energy and the sum of the remaining energy of the nodes that
finally store the data, such that the data can be preserved for
the maximum amount of time. Tang et al. [39, 41] considered
a particular case in data preservation called overall storage
overflow, wherein there is insufficient available storage in
the BSN to store all the overflow data. They proposed data
aggregation to solve the overall storage overflow and identified
a new graph-theoretical problem called the traveling salesman
placement problem. Rivera et al. [38] studied the performance
of Nash Equilibria for data preservation in BSN, and Yu et al.
[50] motivated the selfish sensor nodes to achieve truthful and
optimal data preservation using an integrated game theory and
network flow approach.

However, all the above works assume that the sensory data
in the BSN can all be successfully preserved (offloaded from
DGs to storage nodes), and none consider data priorities. In
more challenging scenarios, when nodes reach severely low
energy levels, and not all the data packets (with different
priorities) can be preserved, how to preserve the data with the
total maximum priorities becomes a challenging new problem,
which is the topic of this paper. The conference version of
this paper [48] identified data preservation under the uniform
energy model as the maximum weighted flow problem and
solved it optimally. This paper extended it by considering a
more general energy model.

Delay Tolerant Networks and Compressive Sensing. BSNs
resemble delay tolerant networks (DTN) [7] and compressive
sensing [8, 13, 36] in that they are all related to how sensor
measurements are transmitted and stored. However, BSNs and
DTNs fundamentally differ in mobility models and objectives.
First, in DTNs, mobile nodes are intermittently connected
due to their mobility and low density, and relay nodes
opportunistically forward data to destination nodes; in a BSN,
all the static sensors are connected while being disconnected
from the base station, and data is uploaded to the base station
only when uploading opportunities are available. Second, the
research objectives in DTNs are mainly to increase the data
delivery rate or reduce data delivery delay, whereas, in BSNs,
the goal is to preserve the most valuable data for a maximum
amount of time. Compressive sensing [8, 13, 36], on the
other hand, offers a new perspective for distributed sensor
networks for energy-efficient and low-cost data acquisition
and transmission. Instead of transmitting the original sensory
data, it computes a weighted average of sensor measurements

in a low-dimensional and incoherent space. However, all
the compressive sensing research in sensor networks still
assumes the base station is always available to collect the
compressed data and does not address the specific problem
of priority-based data preservation in BSN.

Our Main Findings. The maximum weighted flow (MWF)
problem uncovered in this paper generalizes the classic max-
imum flow problem [9]. To the extent of our knowledge, this
work is the first one to formulate and study the maximum
weighted flow problem and design a polynomial algorithm to
solve it optimally. Besides, our simulation results show that
with 20% of energy cost, our algorithms can preserve 80% of
the data items. This result conforms to the well-known Pareto
Principle [34], which says that in many societal and economic
scenarios, roughly 80% of the outcomes and consequences
come from 20% of causes (a.k.a. the ”vital few”). Our work
complements this classic principle from the networking point
of view. In classic network flows [3], the edge capacity
constraint states that in a flow network, the number of flows
on each edge is less than or equal to the edge capacity, and the
same flow from source s to t consumes one unit of capacity on
all the edges traversed by this flow. Under the general energy
model of PDP, however, the relationship between the flow
and the edge capacity becomes more complicated. Our model
shows that the same flow on different edges could consume
different amounts of edge capacities. How this generalized
edge capacity constraint affects the existing network flow
theories and algorithms is left to future work.

Priority-Based Techniques. In the theory community, re-
searchers have considered edge priorities in maximum flow
problems. Kozen [26] studies a lexicographic flow problem
wherein edges are assigned priorities, and the goal is to find
a lexicographically maximum flow concerning such priority
assignment. As stated in [26], a lexicographically max flow
is not necessarily a max flow. Another problem, maximum
priority flow, is studied in [2, 6]. In this problem, each node
specifies a priority ordering for all the edges leaving it, and
the flows leaving this node always go through the edges with
higher priority before going through the edges with lower
priority. Both works do not consider assigning priority to
each flow. The most related work to ours is by Fatourou et
al. [12]. They study priority-based max-min fairness, wherein
each session bears a priority, and the goal is to assign the
maximum possible rate corresponding to its priority to each
session. However, their focus is the classic theory of max-min
fairness, which differs from our goal of maximizing the total
weight of all the flows.

A few works study priority-based data dissemination in
the sensor network community. Basagni et al. [5] proposed a
mathematical model and a distributed heuristic for path finding
for an AUV collecting data with decaying value in underwater
sensor networks. However, as they did not consider the energy
and storage constraints of the sensor nodes, their problem
model is very different from ours. Kumar et al. [27] address
how to deliver data with different importance (priority) in the

4

presence of congestion in sensor networks. Kim [25] proposes
a quality-of-service MAC protocol based on data priority levels
among data transmissions. However, they assume the data is
transmitted directly to the base station. In contrast, our unique
BSN model and data priorities require new algorithms and
solutions for priority-based data preservation.

III. Maximum Weighted Flow Problem (MWF)
In this section, we formulate the maximum weighted flow

problem and design an efficient and optimal algorithm.

A. Problem Formulation of MWF

Let G = (V,E) be a flow network. The capacity of an edge
(u, v) ∈ E, denoted by c(u, v), is a mapping c : E → R+. It
represents the maximum amount of flow that can pass through
an edge. There are k source nodes S = {s1, s2, ..., sk} ⊂ V
and one sink node t ∈ V . A flow on an edge (u, v) ∈ E,
denoted by f(u, v), is a mapping f : E → R+, subject to the
following two constraints:
1). Edge Capacity constraint: f(u, v) ≤ c(u, v),∀(u, v) ∈ E.
That is, the flow of an edge cannot exceed its capacity.

2). Flow conservation constraint:
∑
u∈V f(u, v) =∑

u∈V f(v, u), for each v ∈ V \ S ∪ {t}. The sum
of the flows entering a node must equal the sum of
the flows exiting a node, except for the source and the
sink nodes. For source node si ∈ S, the net flow is∑
u∈V (f(si, u) − f(u, si)) > 0; for sink node t, the net

flow is
∑
u∈V (f(t, u)− f(u, t)) < 0.

Unlike in classic network flow problems (e.g., maximum
flow and minimum cost flow), wherein each flow has one unit
of weight, in MWF, each net flow out of si ∈ S weights vi.
Therefore, MWF is significantly different from all the existing
network flow problems.

Definition 1: (Total Weight of A Flow.) Given a flow f in
the flow network G = (V,E), its total weight, denoted as Vf ,
is the sum of weights of all the net flow out of source nodes.
That is, Vf =

∑
si∈S

∑
u∈V vi × (f(si, u)− f(u, si)). �

Vf represents the total weight of flow passing from source
nodes to the sink node instead of the total amount of flow
desired in the classic maximum flow problem. MWF aims to
find a flow f from S to t such that Vf is maximized. Next, we
present an optimal algorithm for MWF called Greedy Optimal
Algorithm (GOA).

Greedy Optimal Algorithm (GOA) for MWF. We first transform
G into G′ by adding a super source node s and a directed edge
(s, si) with capacity c(s, si) =∞ for each i = 1, 2, ..., k and
then we apply GOA on G′. GOA (Algorithm 1) is essentially
a classic maximum flow augmenting path algorithm, such as
Edmonds-Karp algorithm [9], executed in non-ascending order
of source nodes’ priorities. It first maximizes the amount of
flow from s to the source node with the highest priority (from
where the flow goes to t) and then updates the residual graph
[9] accordingly. If there are still augmenting paths in the
residual graph from s to t, it maximizes the flow from s to
the source node with the second highest priority. And so on

until no more augmenting path can be found from s to t in
the residual graph. Since the time complexity of the Edmonds-
Karp algorithm is O(nm2), the running time of the GOA is
therefore O(knm2). There are more efficient maximum flow
algorithms, such as Dinitz’s blocking flow algorithm [10] with
a dynamic tree with O(mnlgn) running time. However, such
algorithms usually rely upon complicated data structures to
speed up efficiency and can not be easily implemented.

Algorithm 1: Greedy Optimal Algorithm (GOA) on G′.
Input: G′, S, t and vi, where si ∈ S;
Output: flow f and its total weight Vf ;
0. Notations:

f : current flow from s to t
G

′

f : residual graph of G′ with flow f

1. f = 0, G
′

f = G′;
2. Sort source nodes in non-ascending order of their

weights: v1 ≥ v2 ≥ ... ≥ vk;
3. for (1 ≤ i ≤ k)
4. while (G

′

f contains an augmenting path s-si-t)
5. Augment flow f along such path;
6. end while;
7. end for;
8. RETURN f and Vf .

Lemma 1: Both GOA and an optimal MWF algorithm yield
maximum flow.
Proof: GOA is a maximum flow algorithm with a fixed
order of choosing augmenting paths according to source node
weights. As each flow reduces one unit of edge capacity in
the residual graph, when no more augmenting paths can be
found between the source and sink in the residual graph, it
yields the maximum amount of flow following the maximum
flow-minimum cut theorem [9]. By way of contradiction, if
an optimal algorithm is not maximum flow, we can further
augment the flow and thus yield a solution with a more
significant flow weight.

B. Optimality of GOA

Below, we use a constructive approach to prove that GOA
is optimal. We first give some notations.

Notations. Let P = {P1, P2, ..., Pk} be the flow solution
yielded by GOA (Algorithm 1), indicating that si has Pi
amount of net flow in GOA. Let O = {O1, O2, ..., Ok} be
the optimal solution, indicating that si has Oi amount of
net flow in the optimal solution. WLOG, we assume that
v1 ≥ v2 ≥ ... ≥ vk.

Let Λ = {sλ(1), sλ(2), ..., sλ(a)}, with 1 ≤ λ(1) < λ(2) <
... < λ(a) ≤ k, be the set of a source nodes with Pλ(i) >
Oλ(i). We refer to Pλ(i) − Oλ(i) as the surplus of sλ(i). The
total surplus of Λ is

∑a
i=1(Pλ(i) −Oλ(i)).

Let Ξ = {sξ(1), sξ(2), ..., sξ(b)}, with 1 ≤ ξ(1) < ξ(2) <
... < ξ(b) ≤ k, be the set of b source nodes with Pξ(j) < Oξ(j).
We refer to Oξ(j)−Pξ(j) as the deficit of sξ(j). The total deficit
of Ξ is

∑b
j=1(Oξ(j) − Pξ(j)).

5

Obviously Λ and Ξ are mutually disjoint, and a + b ≤ k.
According to Lemma 1, the total surplus of Λ equals the total
deficit of Ξ, that is,

∑a
i=1(Pλ(i) − Oλ(i)) =

∑b
j=1(Oξ(j) −

Pξ(j)).

Fig. 2: An example with five source nodes: s1, ..., s5, il-
lustrating constructive algorithm mapping Ξ = {s2, s4, s5}
to Λ = {s1, s3}. The matching set of s1 is {s2, s4}, with
P1−O1 = Q1

1 +Q2
1. The matching set of s3 is {s4, s5}, with

P3 −O3 = Q2
2 +Q3

2.

Rewriting
∑b
j=1(Oξ(j) − Pξ(j)). Next, we are going to rewrite∑b

j=1(Oξ(j)−Pξ(j)), a sum of b terms, into a sum of a terms,
with ith term having value of (Pλ(i) −Oλ(i)).

Definition 2: (Matching Set & Matching Amount.)
The matching set of sλ(i) ∈ Λ, denoted as
{sξ(li), sξ(li+1), ..., sξ(hi)} ⊆ Ξ, where 1 ≤ li ≤ hi ≤ b, is a
subset of Ξ whose total matching amount is (Pλ(i) − Oλ(i)).
Here, the matching amount of sξ(j) to sλ(i), denoted by
Qji , is the amount of sξ(j)’s deficit that is allocated for
sλ(i); the total matching amount of sλ(i)’s matching set is∑hi

j=li
Qji = (Pλ(i) −Oλ(i)). �

In other words, we will rearrange the total deficit of Ξ and
map Ξ to Λ, by finding sλ(i)’s matching set and calculating the
corresponding set of matching amount, such that this matching
set’s total matching amount equals sλ(i)’s surplus. Algorithm 2
below decides sλ(i)’s matching set and calculates the matching
amount of each element in this matching set.

Algorithm 2: A Constructive Algorithm Mapping Ξ to Λ.
Input: Oi and Pi, 1 ≤ i ≤ k.
Output: li, hi, {Qlii , Q

li+1
i , ..., Qhi

i }, 1 ≤ i ≤ a.
0 Notations:
alloc: total matching amount that is allocated to sλ(i);
flag = true if li = hi; false if li < hi;

1 l1 = 1;
2 Q1

1 = alloc = Oξ(1) − Pξ(1);
3 for (1 ≤ i ≤ a)
4 j = li; flag = true;
6 while

(
alloc < (Pλ(i) −Oλ(i))

)
7 j + +;
8 Qji = Oξ(j) − Pξ(j); alloc = alloc+Qji ;
10 flag = false;
11 end while;
12 hi = j;
13 if (flag == true) Qji = Pλ(i) −Oλ(i);
15 else

16 Qji = (Oξ(j) − Pξ(j))−
(
alloc− (Pλ(i) −Oλ(i))

)
;

17 if
(
alloc == (Pλ(i) −Oλ(i))

)
18 li+1 = j + 1;
19 alloc = Oξ(li+1) − Pξ(lj+1);
20 else
21 li+1 = j;
22 alloc = alloc− (Pλ(i) −Oλ(i));
23end for;
24RETURN [l1, l2, ..., la], [h1, h2, ..., ha], and Qji .

It is not difficult to check that (Pλ(i)−Oλ(i)) =
∑hi

j=li
Qji .

Note that sξ(j) could be in multiple matching sets. That is the
deficit of sξ(j), Oξ(j) − Pξ(j), may be divided into multiple
parts, each is allocated to the matching set of a different sλ(i).
Fig. 2 is an example to illustrate this algorithm. Algorithm 2
immediately gives us the following result.

Lemma 2: λ(i) < ξ(li), 1 ≤ i ≤ a.
Proof: By way of contradiction, assume that there exists j such
that λ(j) > ξ(lj), and λ(i) < ξ(li) for all 1 ≤ i ≤ j−1. Since
(Pλ(i)−Oλ(i)) =

∑hi

j=li
Qji , for all 1 ≤ i ≤ j−1, Algorithm 1

found a way to equalize number of flows obtained in O to
number of flows obtained in P , for all si with i ≤ ξ(lj), by
moving flows from source nodes in Ξ to source nodes in Λ.
Next, when both GOA and optimal algorithm try to find the
number of flows for sξ(lj), it obtains that Pξ(lj) < Oξ(lj),
because sξ(lj) ∈ Ξ. This contradicts that GOA is a greedy
algorithm that finds the maximum number of data to distribute
from sξ(lj) at this stage.

Theorem 1: GOA is an optimal algorithm. That is, it finds
flow with total maximum weight.
Proof: By way of contradiction, assume that GOA is not
optimal, therefore

∑k
i=1Oi × vi >

∑k
i=1 Pi × vi. It can be

shown that
k∑
i=1

Pi × vi −
k∑
i=1

Oi × vi

=

a∑
i=1

(Pλ(i) −Oλ(i))× vλ(i) −
b∑
j=1

(Oξ(j) − Pξ(j))× vξ(j)

=

a∑
i=1

(Pλ(i) −Oλ(i))× vλ(i) −
a∑
i=1

hi∑
j=li

Qji × vξ(j)

=

a∑
i=1

(
(Pλ(i) −Oλ(i))× vλ(i) −

hi∑
j=li

Qji × vξ(j)
)
.

According to Lemma 2, for any 1 ≤ i ≤ a, vλ(i) ≥ vξ(j),
the priority of sξ(j) in Dλ(i)’s matching set. And we have
(Pλ(i) − Oλ(i)) =

∑hi

j=li
Qji . Each of the above a difference

terms is therefore non-negative. Thus we have
∑k
i=1 Pi×vi ≥∑k

i=1Oi × vi, a contradiction. Note that ha equals ξb due to
the fact that

∑k
i=1Oi =

∑k
i=1 Pi (Lemma 1).

IV. Algorithms for PDP under Uniform Energy Model
In this section, we show that the GOA algorithm can solve

PDP optimally when applied on a flow network that is appro-

6

priately transformed from the BSN graph. We first transform
the BSN graph G(V,E) to a flow network G′(V ′, E′), as
shown in Fig. 3(a). The rationale of this transformation is to
convert the storage and energy constraints of sensor nodes
in G(V,E) into the edge capacities in the flow network
G′(V ′, E′) so that they can play a role in finding the flows of
maximum priorities in the data preservation process.

1). Replace each undirected edge (i, j) ∈ E with two directed
edges (i, j) and (j, i). Set the capacities of all the directed
edges as infinity.

2). Split node i ∈ V into two nodes: in-node i′ and out-node
i′′. Add a directed edge (i′, i′′) with a capacity of Ei, the
initial energy level of node i. All the incoming directed edges
of node i are incident on i′, and all the outgoing directed
edges of node i emanate from i′′. Therefore the two directed
edges (i, j) and (j, i) in Step 1) become (i′′, j′) and (j′′, i′).

3). Add a source node s, and connect s to the in-node i′ of
the DG node i ∈ Vd with an edge of capacity di.

4). Add a sink node t, and connect out-node j′′ of the storage
node j ∈ Vs to t with an edge of capacity mj .

In Step 2) above, the edge (i′, i′′) is referred to as sensor
node i’s internal edge, and the number of flows on (i′, i′′)
represents the amount of “traffic” that goes through i. V ′ =
{s} ∪ {t} ∪ {i′ : i ∈ V } ∪ {i′′ : i ∈ V } and E′ = {(i′′, j′) :
(i, j) ∈ E} ∪ {(j′′, i′) : (i, j) ∈ E} ∪ {(i′, i′′) : i ∈ V } ∪
{(s, i′) : i ∈ Vd}∪{(j′′, t) : j ∈ Vs}. We have |V ′| = 2·|V |+2
and |E′| = 2 · |E| + 2|V |. Fig. 3(a) shows the flow network
transformed from the linear BSN in Fig. 1.

Discussions. The above graph transformation technique is for
the following purposes. First, splitting a node into two and
adding an edge in between while assigning the initial energy
level of the node as the capacity of the newly created edge
guarantees that each node cannot exceed its energy capacity.
Second, by adding super source node s and super sink node
t, and by assigning di and mi to be the capacities of edges
connecting s and i′ (for source nodes) and i′′ to t (for storage
nodes), it makes sure that a source node cannot offload more
overflow data items than it has and a storage node cannot store
more overflow data packets than its storage allows. Note that
both source and storage nodes can relay data items of other
source nodes.

Theorem 2: GOA algorithm on G′(V ′, E′) is an optimal
algorithm for PDP on G(V,E) under the uniform energy
model.
Proof: Note that with the above transformation from G(V,E)
to G′(V ′, E′), the energy constraints of all sensor nodes and
storage capacities of storage nodes are converted to edge
capacities in G′(V ′, E′) that need to conform with. Next,
we show that the maximum weighted flow from GOA on
G′(V ′, E′) corresponds to the data preservation on G(V,E)
that preserves the maximum data priorities.

Suppose that GOA gives a net flow of Pi amount from si
to t. Because GOA is optimal (Theorem 1),

∑k
i=1 Pi × vi

is maximum among all the possible flow solutions. With the
above transformation from G(V,E) to G′(V ′, E′), Pi is the

amount of data items offloaded from source node si to sink
node t, vi is the priority of data items generated by si.
Therefore, the corresponding data offloaded from all si to t
have the maximum amount of priorities. Solving the maximum
weighted flow problem on G′(V ′, E′) provides the optimal
solution for the data preservation problem with priority in
G(V,E).

EXAMPLE 2: By applying GOA to Fig. 3(a), the final
residual graph is shown in Fig. 3(b). It shows that one flow
unit comes in and out of the split nodes of source node 1,
which means it successfully offloads one of its data items.
Fig. 3(c) shows one of the final residual graphs by applying
classic maximum flow algorithms (e.g., Edmonds-Karp [9]),
which does not consider the priorities of the flows. �

However, Fig. 3(b) and Fig. 3(c) show that both GOA and
class maximum flow yield the same amount of flow (i.e., one).
This is confirmed by Lemma 1 in Section III. We have the
following observation of the optimal solution for PDP and
classic maximum flow.

Observation 1: In any PDP optimal solution under the
uniform energy model, a storage node does not relay data until
its storage capacity is full. However, a DG node could relay
data items for other DGs even if it has not finished offloading
all its own data items. Nonetheless, a maximum flow solution
always exists when a DG node relays data items only after it
has finished distributing all its own data items. �

A consequence of Observation 1 is that data is always
offloaded to the nearest storage node with available storage
before being offloaded further in the optimal algorithm. We
call this the cascading effect of data preservation, which
resembles a waterfall that descends by flowing on a higher
level of rocks before flowing on a lower level. This effect
makes our data preservation algorithms amenable to localized
distributed implementation, which will be presented in Sec-
tion VI. However, a DG node could relay data items for other
DGs even if it has not finished distributing all its own data
items, as node 2 in Fig. 1.

A Heuristic Algorithm for PDP. Next, we present an efficient
heuristic algorithm (Algorithm 3) for PDP. Unlike the GOA,
it does not use the flow network G′(V ′, E′) and its residual
graphs to compute the data preservation solution. Instead,
it is directly applied on the BSN graph G(V,E). Like the
GOA, this algorithm offloads data in the descending order of
their priorities. In each iteration, a DG with the highest data
priorities offloads its data items to the closest storage node
with available storage as long as all the involved nodes have
enough energy (i.e., all the nodes along the path from this
DG to this storage node have at least one unit of energy).
Algorithm 3 stops when no more data can be offloaded due
to network partitions caused by the energy depletion of some
sensor nodes.

Algorithm 3: Heuristic Algorithm on G(V,E).
Input: A BSN graph G(V,E).
Output: flow f and its total weight Vf .

7

s

t

E1=1 E2=1 E3=2 E4=2

∞ ∞

∞∞ ∞

∞

d1 = 2 d2 = 2

m4=2m3=2

1’

1’’

2’ 3’ 4’

2’’ 3’’ 4’’

s

t

1 1 1 2
∞ ∞

∞∞ ∞

∞

1 2

21

1’

1’’

2’ 3’ 4’

2’’ 3’’ 4’’

(a) (b)

s

t

E1 1 1 E4

∞ ∞

∞∞ ∞

∞

2 1

21

1’

1’’

2’ 3’ 4’

2’’ 3’’ 4’’

(c)

1

1 1

1

1

1

1

1 1

Fig. 3: (a) Flow network G′(V ′, E′) (i.e., the initial residual graph) transformed from linear BSN graph in Fig. 1. (b) The
final residual graph obtained by applying GOA, showing node 1 offloads one of its data items with a priority of 3. (c) One
of the final residual graphs obtained by applying classic maximum flow algorithms (e.g., Edmonds-Karp [9]), showing node 2
offloads one of its data items with a priority of 1.

1. Sort all the DGs in descending order of their priorities:
v1 ≥ v2 ≥ ... ≥ vk

2. for (1 ≤ i ≤ k)
3. while (It can still distribute a data item from DG i
4. to a storage node)
5. Distribute it to the closest storage node;
6. Update the energy levels of all involved nodes;
7. Update f and Vf ;
8. end while;
9. end for;
10. RETURN f and Vf .

Time Complexity. Due to space constraints, we omit detailed
analysis here. Its time complexity is O(km + kd̄n), where d̄
is the average number of data items of each DG. This is more
efficient than GOA, which is O(knm2).

V. Algorithms for PDP under General Energy Model
In this section, we first present an ILP formulation for PDP,

and then study the feasible conditions for PDP.

A. ILP for PDP

We present an ILP formulation viz. ILP(A) for the PDP
under the general energy model is as follows. Here, the
decision variable xij indicates the number of flows on edge
(i, j) ∈ E′ in G′(V ′, E′).

(A) max
∑
i∈Vd

(xs,i′ · vi) (1)

s.t.
xs,i′ ≤ di, ∀i ∈ Vd (2)
xi′′,t ≤ mi, ∀i ∈ Vs (3)

xs,i′ +
∑

j:(i,j)∈E

xj′′,i′ = xi′,i′′ =
∑

j:(i,j)∈E

xi′′,j′ ,

∀i ∈ Vd (4)

∑
j:(i,j)∈E

xj′′,i′ = xi′,i′′ =
∑

j:(i,j)∈E

xi′′,j′ + xi′′,t,

∀i ∈ Vs (5)

Eri ×
∑

j:(i,j)∈E

xj′′,i′ +
∑

j:(i,j)∈E

(
Eti (j)× xi′′,j′

)
≤ Ei ∀i ∈ V (6)

Like the GOA for the uniform energy model, the ILP is
applied on the flow network G′(V ′, E′) shown in Fig. 3(a). In
ILP (A), Objective (1) is to find the maximum data priorities
that can be offloaded from DGs to storage nodes in the entire
BSN. Inequality (2) indicates the maximum number of data
items DGi can offload is di, the initial number of data items
DGi has. Inequality (3) indicates the maximum number of
items storage node i can store is mi, the storage capacity of
storage node i. Equation (4) shows the flow conservation for
DGs, where the number of its own data items offloaded plus
the number of data items it relays for other DGs equals the
number of data items it transmits. Equation (5) is the flow
conservation for storage nodes, which says that data items
received by storage node i are either relayed to other nodes or
stored at i. In both (4) and (5), xi′,i′′ represents the amount
of “traffic” that goes through i. Recall (i′, i′′) is sensor node
i’s internal edge and the number of flows on (i′, i′′), xi′,i′′ ,
represents the number of flows that goes through i. For source
node i, such flows include its own data items and items
received from other nodes. For storage node i, such flows
include data items received from others, some transmitted to
others while others are stored in its local storage. Inequality
(6) specifies the energy constraints of sensor nodes (including
DGs and storage nodes), wherein the energy consumption on
a sensor node i cannot exceed its initial energy level Ei.

Discussions. In classic network flows, each flow unit consumes
one unit of flow capacity; with one more flow going through an
edge, the available capacity on this edge will decrease by one.

8

As such, existing network flow literature [3] generally refers
to the edge capacity constraint as the amount of flow on an
edge must be less than or equal to the edge’s capacity. This
is also the case for maximum weighted flow formulation in
Section III, which corresponds to PDP under a uniform energy
model. In ILP(A), however, for the internal edge (i′, i′′), the
relationship between its flows xi′,i′′ and its capacity Ei is
much more complicated, as demonstrated in Equations (4) and
(5) and Inequality (6). In particular, one flow unit on different
edges could consume different amounts of edge capacities.
We refer to it as generalized edge capacity constraint and
will study its effects on the existing network flow theories
and algorithms in the future.

EXAMPLE 3: We introduce a simplified version of the
general energy model wherein for each sensor node, sending or
receiving a data item each costs 0.5 units of its energy. That is,
when a DG sends a data item, it costs 0.5 unit of its energy;
when a node (a DG node or storage node) relays (receives
and then sends) a data item, it costs 1 unit of energy; when
a storage node finally receives and stores a data item, it costs
0.5 unit of energy. Under this model, the energy consumption
of sending a data item from a DG to a storage node equals
the number of edges it traverses. The optimal solution for
Fig. 1 would be offloading one data item of node 1 to node
3, resulting in a total preserved priority of 3. �

However, the maximum flow in Fig. 1 under this model
would be two, offloading two data items of node 2 to node
3, giving total preserved priority of 2. Therefore, we give the
below theorem without proof.

Theorem 3: Under general energy model, the maximum
weighted flow is not necessarily a maximum flow, and a
maximum flow is not necessarily a maximum weighted flow.

Note that this result is very different from Lemma 1 in
Section III, which says that under the uniform energy model,
the maximum weighted flow is still a maximum flow. Next,
we answer an important and related question: Under which
conditions is PDP feasible; that is, only some of the overflow
data items can be offloaded? Note that PDP assumes that only
some overflow data items can be preserved due to energy
and storage insufficiency of the sensor nodes (otherwise, PDP
is a trivial problem as offloading all the data items achieves
maximum preserved priority).

B. Feasible Conditions for PDP Instances

Given any BSN instance, which includes the network topol-
ogy, source nodes with their overflow data items and data
priorities, and storage nodes with storage capacities, we are
interested in finding if it leads to the PDP wherein not all
the overflow data items can be preserved. If so, this instance
is called an PDP instance. Note that PDP instances could
be caused by either insufficient storage spaces or insufficient
energy power of sensor nodes.2 We can find if a BSN instance
is a PDP instance as follows.

2In contrast, existing work [39, 41] only assumes insufficient storage spaces
in the BSN (i.e.,

∑n
i=k+1 mi < q) and applies data aggregation techniques

to reduce the sizes of the overflow data packet before offloading them.

First, we formulate another ILP viz. ILP(B) as below. We
omit its constraints as they are the same as those of ILP(A).

(B) max
∑
i∈Vd

xs,i′ . (7)

Eq. 7 is to maximize the total amount of flow out of the
source nodes Vd; i.e., the total number of preserved data items.
Next, we show the feasible conditions for a PDP instance.

Theorem 4: Given any BSN instance G(V,E) under the
general energy model, if

∑
i∈Vd

xs,i′ computed in ILP(B) is less

than q =
∑k
i=1 di, the total number of overflow data items in

the BSN, then this BSN instance is a PDP instance.
Proof: First, when

∑
i∈Vs

xsi′ < q, there are less than q amount

of flows going from s to t in G′(V ′, E′). As the edge capacity
between s and i′ is di, it must be that at least exists one i,
1 ≤ i ≤ k, that that there are less than di amount of flows
going from s into i′. Due to flow conservation in all nodes
V ′−{s, t}, there must be less than di amount of flows going
out of i′′. Meanwhile, the initial energy level of node i (i.e.,
Ei) is now the capacity of edge (i′, i′′) ∈ E′′. As the energy
consumption of any node i, which is represented by the l.h.s of
Inequality (8) and (9) in ILP (A), is less than Ei, it guarantees
that node i does not exceed its energy capacity during data
preservation in G(V,E).

Therefore, all the d packets in BSN G(V,E) can be of-
floaded from their data nodes to storage nodes while satisfying
the energy constraints of sensor nodes, yielding feasible data
preservation.

Discussions. That is, in ILP(B), when the total flow∑
i∈Vd

xs,i′ < q, we will then apply ILP(A) to solve the PDP

problem. ILP(B) is the ILP for the classic maximum flow
problem, with some twist. Recall maximum flow is to find
the maximum number of flows that can be transmitted in a
flow network under the edge constraints. In maximum flow,
each flow costs one unit of the edge capacity. However, in
ILP(B), each flow (i.e., each data item offloading) could cost
different amounts of energy on different nodes (due to the
general energy model), thus costing different units of edge
capacity in the flow network G′′(V ′′, E′′).

VI. Distributed Algorithms for PDP
We design a distributed algorithm by combining the idea

behind the push-relabel maximum flow algorithm [16] and
data priority-based data preservation. In the push-relabel al-
gorithm, nodes only need to know their neighbors and the
capacities of the edges with their neighbors by sending and
receiving messages. Therefore, it is desirable for a distributed
sensor network environment.

Overview of Push-Relabel Algorithm [16]. Given a flow net-
work G(V,E) with |V | = n and |E| = m, a source node s
and a sink node t, the push-relabel algorithm works as follows.
It begins by sending as much flow out of s as allowed by
the capacities of the edges coming out of s. Then, at each

9

iteration, it considers a node with more incoming flow than
outgoing flow (the difference between them is called excess
flow of the node). The node then routes the excess flow to their
neighbors, and so on. This operation is called push. To make
progress, the algorithm defines a height function h : V → N
and initially, h(s) = n; h(t) = 0; and h(u) = 0 for all
u /∈ V \ {s, t}. This is based on the intuition that the flow
always goes “downhill”, and node u sends the extra flow to a
neighbor v only if h(u) > h(v). When a node can no longer
send out its excess flow, it increases its height and pushes the
flow to the node with a lower height than it. This operation is
called relabel. A maximum flow is obtained when no more
overflowing nodes are left except the sink and possibly the
source node. The running time of the push-relabel algorithm is
O(n2m). The detailed operations of the push-relabel algorithm
on a node u are presented in Algorithm 4.

Algorithm 4: Push-Relabel (u)
0. Notations:

e(u): node u’s excess flow
h(u): node u’s height
cap(u,w): residual capacity of (u,w)

1. if e(u) > 0
2: while

(
e(u) > 0, there exists (u,w) s.t.

3. h(u) = h(w) + 1, and cap(u,w) > 0
)

4: Push y = min {e(u), cap(u,w)} through
5. (u,w) by sending a message to w;
6: e(u) = e(u)− y; e(w) = e(w) + y;
7. update cap(u,w);
8: end while;
9: if e(u) > 0
10: h(u) = 1 + min{h(w) : cap(u,w) > 0};
11: Broadcast h(u) to neighboring nodes;
12: end if;
13: end if;
15. RETURN

Distributed Data Preservation with Data Priority. The flow
in the push-relabel algorithm bears intrinsic resemblance with
the cascading effects exhibited by the data flow in our data
preservation problem (see Observation 1). In push-relabel,
the flow goes through the network as water flows through
downhills. In data preservation, data is always offloaded to the
nearest storage before being offloaded farther away. Therefore,
the push-relabel algorithm is particularly suitable for our data
preservation scheme.

However, a few modifications to the push-relabel algorithm
are needed to make the distributed data preservation work.
First, since the push-relabel algorithm finds maximum flow
while data preservation finds maximum preserved priorities,
the DGs need to coordinate with each other so that DGs with
higher priorities push data into the network before DGs with
lower priority do. Second, the energy constraint of each node
should be represented in the flow network, and the energy
consumption of sending and receiving packets by each node

should be taken into account. To handle energy constraints
and energy consumptions of nodes, nodes are split according
to Section IV. Third, the push-relabel algorithm determines
the maximum flow from a single source to a single sink.
In contrast, in a sensor network, there are multiple data-
generating sensor nodes and multiple sensor nodes collecting
and storing sensed data. Therefore, as specified in Section IV,
a virtual source node s is connected with the in-node of each
DG, with the edge capacity as the number of data items of
each DG, and a virtual sink node t is connected with the out-
node of each storage node, with its storage capacity as edge
capacity.

The distributed data preservation begins with this virtual
source pushing the maximum allowable number of flows
to the in-node of the DG with the highest priority, which
continues the push-relabel process until no nodes with the
excess flow (except virtual source and sink) exist. Then, the
virtual source pushes to the in-node of the DG with the
second highest priority. The algorithm works in rounds; in
each round, a node with positive excess performs push-relabel.
Such synchronization prevents multiple nodes from sending
their packets to their neighbors simultaneously. When there
are multiple neighbors with the same number of heights, one
of them is randomly picked. The distributed algorithm stops
when the DG with the lowest priority finishes the push-relabel
process or no more flows can be pushed into the network.
The detailed data preservation operations are presented in
Algorithm 5.

Algorithm 5: Distributed Data Preservation on G′(V ′, E′)
1 Each DG broadcasts its priority to the network;
2. for

(
Each DG in the descending order of its priority

)
3. s pushes maximum allowable data to this DG;
4. while

(
there exists a node u with positive excess

)
5. Push-Relabel(u);
6. end while;
7. end for;
8. RETURN

Theorem 5: The distributed data preservation algorithm
preserves maximum total priorities. It runs in O(kn2) time
and uses O(n2m) messages.
Proof: The distributed algorithm is just a distributed im-
plementation of the optimal GOA algorithm. Therefore, it
preserves maximum total priorities due to the optimality of the
GOA algorithm (Theorem 2). The time and message optimality
of the distributed data preservation algorithm is due to the
time and message optimality of the distributed push-relabel
algorithm [16]. It is shown in [16] that the distributed push-
relabel algorithm in a graph G′(V ′, E′) runs O(|V ′|2) in time
and uses O(|V ′|2|E′|) messages. Since |V ′| = 2n + 2 and
|E′| = 2m+ 2n (Section IV), its time and message complexi-
ties are O(n2) and O(n2m) respectively. The distributed data
preservation differs from the push-relabel algorithm in lines 1
and 2 in Algorithm 5. Line 1 incurs O(kn) = O(n2) broadcast
messages, and Line 2 increases the running time by at most

10

(a) Optimal. (b) Heuristic. (c) Edmonds-Karp.

Fig. 4: Data preservation in a grid of 10 × 10 obstructed by
insufficient storage. There are four DGs, which are solid circle (with
data priority 8), solid square (with data priority 6), solid diamond
(with data priority 4), and solid triangle (with data priority 2). Each
DG has 30 data items. The remaining 96 nodes are storage nodes;
each has one storage and can store one data item. Each node has
an initial energy level of 30 units. The preserved data items are
corresponding hollow shapes. The number of preserved data items
(from highest priority to lowest) are (a) [30, 30, 30, 6] in Optimal,
(b) [30, 28, 28, 10] in Heuristic, and (c) [24, 24, 24, 24] in Edmonds-
Karp.

k times. Therefore the distributed algorithm runs in O(kn2)
and uses O(n2m+ n2) = O(n2m) messages.

VII. Performance Evaluation

In this section, we compare our priority-based data preser-
vation algorithms with data preservation algorithms based on
classic maximum flow, including Edmonds-Karp (for uniform
energy model), ILP(B) (for general energy model), and push-
relabel (for distributed algorithm). We assume all the sensor
nodes have the same initial energy level for both energy
models. Table II lists all the compared algorithms. We first in-
vestigate the uniform energy model in Section VII-A and then
consider the general energy model in Section VII-B. Where
applicable, each data point averages over 20 PDP instances,
and the error bars indicate a 95% confidence interval. For
each PDP instance, we apply all the compared algorithms on
the same PDP instance for a fair comparison. We write our
simulators in Java on a MacBook Pro with a 3.68 GHz 12-core
Apple M2 Max processor and 32 GB RAM.

A. Uniform Energy Model.
We compare the performance of the optimal GOA algorithm

(referred to as Optimal), the greedy heuristic (referred to
as Heuristic), and the distributed algorithm (referred to as
Distributed). We also implement the Edmonds-Karp max-
imum flow algorithm [9] (referred to as Edmonds-Karp),
which does not consider flow priorities when preserving data.

TABLE II: Summary of Compared Algorithms.

Uniform Model General Model Maximum Flow

Centralized GOA (Algo. 1),
Greedy (Algo. 3)

ILP(A),
Greedy (Algo. 3)

Edmonds-Karp,
ILP(B)

Distributed Distributed PDP
(Algo. 5)

Distributed PDP
(Algo. 5)

Push Relabel
[16]

(a) Optimal. (b) Heuristic. (c) Edmonds-Karp.

Fig. 5: Data preservation blocked by insufficient energy at Ei = 5.

(a) Optimal. (b) Heuristic. (c) Edmonds-Karp.

Fig. 6: Data preservation blocked by insufficient energy at Ei = 10.

Edmonds-Karp takes place in iterations; each iteration finds
the shortest augmenting path in the residual graph of the flow
network shown in Fig. 3(a). Although there are many imple-
mentations of maximum flow algorithms [3], as Edmonds-
Karp takes the shortest path in each round, it is the most
energy-efficient.

Visual Performance Comparison in Grid Networks. We adopt
grid topologies only for clear visual comparison. We inves-
tigate two scenarios in the grid network that obstruct data
preservation. There is not enough space in the network to store
all the overflow data (i.e.,

∑n
i=k+1mi < q), or sensor nodes

do not have enough energy to preserve all the overflow data
(i.e.,

∑n
i=k+1mi > q).

Data Preservation Obstructed by Insufficient Storage. In this
case, we set the grid network size as 10 × 10, as shown in
Fig. 4. There are four DGs represented using four different
shapes: solid circle (with data priority 8), solid square (with
data priority 6), solid diamond (with data priority 4), and
solid triangle (with data priority 2). These four DGs are
located at (4, 6), (7, 6), (4, 5), and (7, 5), respectively.
Each DG has 30 data items to be preserved. The preserved
data items (i.e., offloaded into the grid) are represented using
the corresponding hollow shapes. Each storage node has one
storage and can store one data item. We set the initial energy
level of each node as 30 units. Fig. 4 shows the number of data
items (from highest priority to lowest) offloaded by Optimal

TABLE III: Quantitative results of Fig. 4.

Optimal Heuristic Edmonds-Karp
Number of Preserved Data 96 96 96

Total Preserved Priority 552 540 480

11

(a) Optimal. (b) Heuristic. (c) Edmonds-Karp.

Fig. 7: Data preservation blocked by insufficient energy at Ei = 15.

is [30, 30, 30, 6], offloaded by Heuristic is [30, 28, 28, 10], and
offloaded by Edmonds-Karp is [24, 24, 24, 24]. It shows that
Optimal and Heuristic try to preserve data with higher priority,
while Optimal does much better to “filter” out the low-priority
data. Edmonds-Karp, however, offloads the same amount of
data for different priorities as it is “priority-blind”. Table III
summarizes the comparison results from Fig. 4. It shows that
Optimal has the most significant total preserved priority, which
Heuristic follows, and Edmonds-Karp gives the smallest total
preserved priority. However, they all preserve the same amount
of data items constrained by insufficient storage.

Data Preservation Blocked by Insufficient Energy. We also
investigate data preservation when the network has insufficient
energy to preserve all the overflow data. We set the network
size as 20 × 20, and the four DG are located at (10, 10),
(13, 10), (10, 11), and (13, 11), respectively. Each DG has 50
data items to preserve. We visualize the preservation results
in Figs. 5, 6, and 7 by increasing the initial energy level of
sensor nodes Ei from 5 to 10 to 15, respectively. They show
that with the increase of Ei, the number of preserved data
items is increased for all three algorithms. Taking a closer
look, however, we observe that Optimal and Heuristic only
preserve the two data types of higher priorities (circles and
squares) at a lower energy level of Ei = 5, and begin to
preserve the other two types of lower priorities (diamonds and
triangles) at intermediate energy level of Ei = 10, and finally
preserve relatively large amount of the two low-priority data
types at higher energy level of Ei = 15. All these demonstrate
these two algorithms’ priority-preserving efforts. In contrast,
the Edmonds-Karp always equally preserves all four data types
at different energy levels, aiming to maximize the number of
preserved data items.

Fig. 8 shows the quantitative analysis of the results in
Figs. 5, 6, and 7. Fig. 8(a) shows both Optimal and Edmonds-
Karp preserve the largest and equal amount of data items,
validating our theoretical results that under the uniform energy
model, MWF is indeed an MF. However, Fig. 8(b) shows that
the Optimal yields the largest total preserved priority among
the three algorithms. As energy efficiency is also a concern
in data preservation, we put forward a metric of energy per
priority, which is the ratio of the total energy consumption in
the data preservation versus the total preserved data priorities,
as shown in Fig. 8(c). Heuristics achieves the lowest energy

 0

 50

 100

 150

 200

5 10 15

T
o
ta

l
n
u
m

b
e
r

o
f
p
re

s
e
rv

e
d
 d

a
ta

Initial energy level

Optimal
Edmonds-Karp

Heuristic

(a) Total preserved data.

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15

T
o
ta

l
n
u
m

b
e
r

o
f
p
re

s
e
rv

e
d
 p

ri
o
ri
ti
e
s

Initial energy level

Optimal
Edmonds-Karp

Heuristic

(b) Total preserved prior-
ity.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

p
re

s
e
rv

e
d
 p

ri
o
ri
ty

Initial energy level

Optimal
Edmonds-Karp

Heuristic

(c) Energy per priority.

Fig. 8: Quantitative analysis of results in Figs. 5, 6, and 7.

per priority ratio across different energy levels, performing
better than the Optimal and Edmonds-Karp. This demonstrates
that Heuristic, a competitive data preservation algorithm, can
balance preserved priorities and energy costs incurred. Finally,
it shows that Optimal gives a lower energy per priority ratio
than Edmonds-Karp does, showing that It preserves the largest
amount of priority and is an energy-efficient data preservation
algorithm.

Performance Comparison in General Topologies. Next, we
consider the general topologies of the BSN, wherein 100 sen-
sor nodes are randomly generated in a field of 2000m×2000m
and the transmission range as 200m. The initial energy of
nodes is 500 mJ. Each DG has 500 data items, and each is
400 bytes. The storage capacity of each storage is 51.2 Kbytes.
The priority of each DG is a random number in [1, 100].
Fig. 9 compares the performances of Optimal, Heuristic, and
Edmonds-Karp, by varying numbers of DGs in [20, 30, 40,
50]. Fig. 9 (a) shows that Edmonds-Karp and Optimal preserve
the same amount of data, more than Heuristic, again validating
that under the uniform energy model, MWF is indeed a
maximum flow. Even so, Fig. 9 (b) shows that Optimal
preserved more priorities than Heuristic, which preserves more
than Edmonds-Karp. This is because Optimal maximizes the
total preserved priority while the other two do not. This seems
more prominent when DGs are large (at 30, 40, and 50).
However, Fig. 9 (c) shows Edmonds-Karp yields less energy
consumption per preserved priority than Optimal and Heuristic
most of the time. This is due to the algorithm, which always
finds the global minimum energy path in the residual graph
when offloading a data item in each round.

Comparing Priority-Based Distributed Algorithm and Dis-
tributed Push-Relabel Algorithm. Fig. 10 compares distributed
data preservation with data priorities (referred to as Dis-
tributed) and without considering data priorities (referred to

 0

 2000

 4000

 6000

 8000

 10000

 12000

20 30 40 50

T
o
ta

l
n
u
m

b
e
r

o
f
p
re

s
e
rv

e
d
 d

a
ta

Number of DGs

Optimal
Heuristic

Edmonds-Karp

(a) Total preserved data.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

20 30 40 50

T
o
ta

l
n
u
m

b
e
r

o
f
p
re

s
e
rv

e
d
 p

ri
o
ri
ti
e
s

Number of DGs

Optimal
Heuristic

Edmonds-Karp

(b) Total preserved priority.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

20 30 40 50

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 p

e
r

p
re

s
e
rv

e
d
 p

ri
o
ri
ty

Number of DGs

Optimal
Heuristic

Edmonds-Karp

(c) Energy per priority.

Fig. 9: Performance Comparison in General BSN Topologies.

12

as PushRelabel). We use and modify the implementation of
a distributed push-relabel algorithm available at [1]. It shows
that both algorithms achieve the same amount of distributed
data. However, the Distributed yields a higher total preserved
priority than PushRelabel. Due to the broadcast messages
coordinating the data distribution of different DGs, distributed
data preservation incurs more energy consumption.

B. General Energy Model.
Finally, we compare the three algorithms under the general

energy model. We refer to the ILP(A) as MWF (i.e., maximum
weighted flow), ILP(B) as MF (i.e., maximum flow), and the
Algo. 3 as Greedy. We don’t use grid networks as the general
energy model degenerates to the uniform energy model in a
grid (with all its edges having the same unit weight). For each
BSN instance, 100 sensor nodes (with a transmission range of
200m) are randomly generated in a field of 2000m× 2000m;
50 are DGs, and 50 are storage nodes. Unless otherwise
mentioned, di = mi = 100; each DG has 100 data items
(each 400 bytes), and each storage can store 100 overflow
data packets. In this case, the BSN will be entirely stored if
all the 5000 data items are preserved. The priority of each DG
is a random number in [1, 100]. Given any BSN instance from
a randomly generated BSN graph, we first use ILP(B) to find
the minimum Ei such that all the data items can be offloaded
successfully. We refer to this energy level as the minimum
feasible energy (MFE) for this BSN instance.

Energy Insufficiency. We first study data preservation due to
the insufficient energy powers of sensor nodes. Fig. 11 shows
the performance comparison by varying the sensor nodes’
initial energy levels Ei as 20%, 40%, 60%, and 100% of
the MFE value for that BSN instance. Fig. 11(a) shows that
with the increase of Ei, the total preserved priority for all the
algorithms increases. It also shows both MWF and Greedy
achieve more preserved priority than MW, while MWF has the
most. This demonstrates that MW is not necessarily a MWF.
In particular, MWF outperforms MF by 12.13% at Ei = 20%
of MFE. Their performance difference (i.e., the difference of
their preserved priorities divided by MW’s preserved priority),
shown in Table IV, decreases with the increase of Ei. This is
because when increasing Ei, the data-preserving capabilities
of both algorithms will converge by preserving more and more
data items and finally preserving all the available priority when
all the data items are preserved at Ei = 100% of MFE.
Fig. 11(b) shows that at Ei = 20% of MFE, both MWF and

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

20 40 60 80

T
o
ta

l
n
u
m

b
e
r

o
f
p
re

s
e
rv

e
d
 d

a
ta

Number of DGs

P-PushRelabel
PushRelabel

(a) Total preserved data.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

20 40 60 80

T
o
ta

l
n
u
m

b
e
r

o
f
p
re

s
e
rv

e
d
 p

ri
o
ri
ti
e
s

Number of DGs

P-PushRelabel
PushRelabel

(b) Total preserved priority.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

20 40 60 80

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Number of DGs

Distributed
PushRelabel

(c) Total energy cost.

Fig. 10: Comparing Distributed and PushRelabel.

MF preserve more than 4000 out of the total 5000 (i.e., 80%
of) data items, while it takes another 80% of MFE for them
further to preserve the rest of 20% of the data items. This
result conforms to the well-known Pareto Principle [34], which
says that in many societal and economic scenarios, roughly
80% of the outcomes and consequences come from 20% of
causes (a.k.a. the ”vital few”). While the Pareto Principle
was observed mainly in societal and economic settings, our
work complements it by validating it from the perspective of
resource allocation in computer networking.

Besides, Fig. 11(b) shows that MF preserves more data
items than MWF and Greedy, showing that MWF does
not necessarily achieve the maximum amount of flow. At
Ei = 100% of MFE, it can be seen both MF and MWF can
successfully preserve all the 5000 data items while Greedy
cannot. This can be explained by Fig. 11(c), which shows
Greedy is the least energy-efficient among the three algo-
rithms. MF’s underlying implementation of Edmonds-Karp
algorithms always looks for the shortest path (i.e., the most
energy-efficient) to preserve the data items, so it is the most
energy-efficient. To investigate the tradeoff between preserved
priority and incurred cost, we calculate the priority-cost ratio
(i.e., the ratio of the total preserved priority and total energy
cost) achieved by each algorithm, as shown in Fig. 11(d).
This ratio decreases with the increase of Ei for all algorithms,
while MF gives a larger priority-cost ratio than the other two.
With less energy, Greedy and MWF can choose higher priority
packets over lower priority packets, resulting in higher value-
cost ratios. With more energy, all algorithms can preserve more
packets regardless of their priority values, thus resulting in
lower value-cost ratios.

Storage and Energy Insufficiency. Finally, we investigate data
preservation due to the insufficiency of both energy and
storage. Fig. 12 increases the number of data items di at each
DG from 50, 60, ..., to 100, while keeping Ei = 20% of
MFE and mi = 50 for all the sensor nodes; therefore, both
energy and storage are not enough to preserve all the data
items in all the cases. Although Fig. 12(a) and Fig. 12(b)
show that preserved priority and preserved data items increase
when increasing di, there are a few different and non-intuitive
observations compared to Fig. 11. First, the performance
differences between MWF and MF are much more significant,
between 16.78% and 33.29%, as shown in Table IV. This
shows that MWF is superior to MW in more resource-scarce
scenarios, where MWF can still utilize minimal energy and
storage resources to preserve the highest-priority data items.

TABLE IV: Performance difference between MWF and MF
in preserved data priorities by varying Ei and di. Here, the
performance difference = MWF−MF

MF ; (i.e., the difference of
their preserved priorities divided by MF’s preserved priority).

Varying Ei (MFE %), 20 40 60 80 100
di = mi = 100 12.13 8.28 5.31 2.84 0.45

Varying di, 60 70 80 90 100
mi = 50, Ei = 20% MFE 16.78 22.63 27.35 31.08 33.29

13

 190000

 200000

 210000

 220000

 230000

 240000

 250000

 260000

 270000

20% 40% 60% 80% 100%

T
o

ta
l
p

re
s
e

rv
e

d
 d

a
ta

 v
a

lu
e

s

Ei

Greedy
MF

MWF

(a) Total preserved priority.

 3800

 4000

 4200

 4400

 4600

 4800

 5000

20% 40% 60% 80% 100%

T
o

ta
l
p

re
s
e

rv
e

d
 d

a
ta

 i
te

m
s

Ei

Greedy
MF

MWF

(b) Total preserved data items.

 40

 60

 80

 100

 120

 140

 160

 180

 200

20% 40% 60% 80% 100%

T
o

ta
l
e

n
e

rg
y
 c

o
s
t

(J
)

Ei

Greedy
MF

MWF

(c) Total energy cost.

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

20% 40% 60% 80% 100%

P
ri
o

ri
ty

-c
o

s
t

ra
ti
o

Ei

Greedy
MF

MWF

(d) Priority-cost ratio.

Fig. 11: Varying initial energy level Ei (in percentage of MFE) under general energy model. Here, di = mi = 100.

Second, with the increase of di, the performance differences
between MWF and MF increase, whereas they decrease with
the increase of Ei in Fig. 11. A close look at Fig. 12(a)
shows that with the increase of di, the increase of preserved
priorities for MWF is much more significant than that for MW.
Despite the insufficiency of storage and energy, increasing
di allows MWF to discard low-priority data for high-priority
data, thus increasing its preserved priorities. In contrast, as
MW is blind towards the data priority, increasing di can only
increase preserved priorities as much as storage and energy
allow. Fig. 12(c) shows that although the total energy cost of
data preservation increases for MWF and Greedy, MW has
no clear trend. This might be due to the randomness of how
the ILP implementation finds the best flow arcs to maximize
throughput without considering the value and cost. Finally,
Fig. 12(d) shows that with the increase of di, the priority-cost
ratios slightly increase for all the algorithms while MF has
the largest ratios, striking a good balance between preserved
priorities and energy cost.

VIII. Conclusion and Future Work
The maximum weighted flow problem studied in this paper

is uniquely derived from the priority-based data preservation
problem in base station-less sensor networks of many emerg-
ing sensing applications. It is a theoretically fundamental prob-
lem since it generalizes the classic maximum flow problem.
Because of this theoretical root, the techniques proposed in
this paper could be applicable in any network applications in
which data priorities and resource constraints coexist, such as
flow control in data centers and crowd-sourcing in smartphone
communication. It is a very simple but general information
producer and consumer model that has yet to be adequately
explored in any other context.

This work establishes an architectural framework with sev-
eral potential future directions. Currently, the PDP is a static
problem in which the data to be preserved is generated at
the beginning and only once. In future work, we will address
a real-time problem where data is generated and transmitted
dynamically and periodically, and storage-depleted nodes may
vary over time. Second, the paper assumes that the overflow
data of DGs can be offloaded to only the storage nodes. To
maximize the total priorities preserved, it would be interesting
to explore if certain DGs of low priority can discard their
locally generated data and make room to store the data

from other DGs of high priority. Third, we will study how
generalized edge capacity constraint derived from the general
energy model, wherein one unit of flow from source s to sink
t could cost different amounts of edge capacities on different
edges, will affect the existing network flow theories and algo-
rithms. Finally, we will consider the spatial correlation among
the data items. Designing energy-efficient data preservation
techniques that take advantage of spatial correlation to reduce
data redundancy while maximizing their priorities becomes a
new and exciting problem.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants CNS-
1419952 and CNS-2131309.

REFERENCES

[1] http://avglab.com/andrew/soft.html.
[2] Maximum priority flow. http://www.nada.kth.se/ viggo/wwwcompendium/

node120.html.
[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network

Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.
[4] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and

D. Turgut. Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle. In
Proc. of INFOCOM, 2014.

[5] S. Basagni, L. Bölöni, P. Gjanci, C. Petrioli, C. A. Phillips, and
D. Turgut. Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle. In
IEEE INFOCOM 2014 - IEEE Conference on Computer Communica-
tions, pages 988–996, 2014.

[6] Mihir Bellare. Interactive proofs and approximation: Reductions from
two provers in one round. In Proceedings of the Second Israel
Symposium on Theory and Computing Systems, pages 266–274, 1992.

[7] Sobin CC, V. Raychoudhury, G. Marfia, and A. Singla. A survey of
routing and data dissemination in delay tolerant networks. Journal of
Network and Computer Applications, 67:128–146, 2016.

[8] C. T. Chou, A. Ignjatovic, and W. Hu. Efficient computation of robust
average of compressive sensing data in wireless sensor networks in the
presence of sensor faults. IEEE Transactions on Parallel and Distributed
Systems, 24(8):1525–1534, 2013.

[9] Thomas Corman, Charles Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

[10] Yefim Dinitz. Algorithm for solution of a problem of maximum flow in
a network with power estimation. page 1277–1280, 1970.

[11] L. Terray et al. From sensor to cloud: An iot network of radon outdoor
probes to monitor active volcanoes. Sensors, 20(10), 2020.

[12] Panagiota Fatourou, Marios Mavronicolas, and Paul Spirakis. Max-
min fair flow control sensitive to priorities. In Proceedings of the 2nd
International Conference on Principles of Distributed Systems, pages
45–59, 1999.

[13] F. Fazel, M. Fazel, and M. Stojanovic. Random access compressed
sensing for energy-efficient underwater sensor networks. IEEE Journal
on Selected Areas in Communications, 29(8):1660–1670, 2011.

14

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

50 60 70 80 90 100

T
o

ta
l
p

re
s
e

rv
e

d
 d

a
ta

 v
a

lu
e

s

di

Greedy
MF

MWF

(a) Total preserved priority.

 1900

 1950

 2000

 2050

 2100

 2150

 2200

 2250

 2300

 2350

 2400

 2450

50 60 70 80 90 100

T
o

ta
l
p

re
s
e

rv
e

d
 d

a
ta

 i
te

m
s

di

Greedy
MF

MWF

(b) Total preserved data items.

 20

 25

 30

 35

 40

 45

 50

50 60 70 80 90 100

T
o

ta
l
e

n
e

rg
y
 c

o
s
t

(J
)

di

Greedy
MF

MWF

(c) Total energy cost.

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

50 60 70 80 90 100

P
ri
o

ri
ty

-c
o

s
t

ra
ti
o

di

Greedy
MF

MWF

(d) Priority-cost ratio.

Fig. 12: Varying number of data packets di at DGs under general energy model. Here, mi = 50 and Ei = 20% of MFE.

[14] R. Ghaffarivardavagh, S. S. Afzal, O. Rodriguez, and F. Adib. Ultra-
wideband underwater backscatter via piezoelectric metamaterials. In
Proc. of the ACM SIGCOMM, 2020.

[15] S. M. Ghoreyshi, A. Shahrabi, and T. Boutaleb. An efficient auv-
aided data collection in underwater sensor networks. In 2018 IEEE
32nd International Conference on Advanced Information Networking
and Applications (AINA), 2018.

[16] A V Goldberg and R E Tarjan. A new approach to the maximum flow
problem. In Proceedings of the eighteenth annual ACM symposium on
Theory of computing, STOC ’86, pages 136–146, 1986.

[17] S. Guo, C. Wang, and Y. Yang. Joint mobile data gathering and
energy provisioning in wireless rechargeable sensor networks. IEEE
Transactions on Mobile Computing, 13(12):2836–2852, 2014.

[18] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In
Proc. of HICSS 2000.

[19] Xiang Hou, Zane Sumpter, Lucas Burson, Xinyu Xue, and Bin Tang.
Maximizing data preservation in intermittently connected sensor net-
works. In Proc. of IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS 2012). Short Paper.

[20] S. Hsu, Y. Yu, and B. Tang. dre2: Achieving data resilience in wireless
sensor networks: A quadratic programming approach. In Proc. of IEEE
MASS, 2020.

[21] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in
wireless sensor networks: A survey on tasks. Computer Networks,
148:1–19, 2019.

[22] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in
wireless sensor networks: A survey on tasks. Computer Networks,
148:1–19, 2019.

[23] J. Jang and F. Adib. Underwater backscatter networking. In Proc. of
the ACM SIGCOMM, 2019.

[24] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras. Applications
of wireless sensor networks: An up-to-date survey. Applied System
Innovation, 3(1), 2020.

[25] Hoon Kim. Priority-based qos mac protocol for wireless sensor net-
works. In IEEE International Symposium on Parallel & Distributed
Processing (IPDPS 2009).

[26] Dexter Kozen. Lexicographic flow. Technical report, Computing and
Information Science, Cornell University, June 2009.

[27] Raju Kumar, Riccardo Crepaldi, Hosam Rowaihy, Albert F. Harris III,
Guohong Cao, Michele Zorzi, and Thomas F. La Porta. Mitigating per-
formance degradation in congested sensor networks. IEEE Transactions
on Mobile Computing, 7(6):682–697, June 2008.

[28] B. Li, J. Springer, G. Bebis, and M. H. Gunes. Review: A survey of
network flow applications. J. Netw. Comput. Appl., 36(2):567–581, mar
2013.

[29] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and J. Stankovic.
Design, implementation, and evaluation of enviromic: A storage-centric
audio sensor network. ACM Transactions on Sensor Networks, 5(3):1–
35, 2009.

[30] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic. Envirostore:
A cooperative storage system for disconnected operation in sensor
networks. In Proc. of INFOCOM 2007.

[31] K. Martinez, R. Ong, and J.K. Hart. Glacsweb: a sensor network for
hostile environments. In Proc. of SECON 2004.

[32] Ioannis Mathioudakis, Neil M. White, and Nick R. Harris. Wireless
sensor networks: Applications utilizing satellite links. In Proc. of the

IEEE 18th International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC 2007), pages 1–5, 2007.

[33] M. Noormohammadpour and C. S. Raghavendra. Datacenter traffic
control: Understanding techniques and tradeoffs. IEEE Communications
Surveys & Tutorials, 20(2):1492–1525, 2018.

[34] Vilfredo Pareto. Pareto principle.
https://en.wikipedia.org/wiki/Pareto principle.

[35] M. Rahmati and D. Pompili. Uwsvc: Scalable video coding transmission
for in-network underwater imagery analysis. In Proc. of IEEE MASS
2019.

[36] M. Rani, S. B. Dhok, and R. B. Deshmukh. A systematic review of
compressive sensing: Concepts, implementations and applications. IEEE
Access, 6:4875–4894, 2018.

[37] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin. Wireless sensor
networks: A survey on recent developments and potential synergies. J.
Supercomput., 68(1):1–48, apr 2014.

[38] J. Rivera, Y. Chen, and B. Tang. On the performance of nash equilibria
of data preservation in base station-less sensor networks. In IEEE MASS
2023.

[39] B. Tang. dao2: Overcoming overall storage overflow in intermittently
connected sensor networks. In Proc. of IEEE INFOCOM, 2018.

[40] B. Tang, N. Jaggi, H. Wu, and R. Kurkal. Energy efficient data redis-
tribution in sensor networks. ACM Transactions on Sensor Networks,
9(2), May 2013.

[41] B. Tang, H. Ngo, Y. Ma, and B. Alhakami. dao2: Overcoming
overall storage overflow in intermittently connected sensor networks.
IEEE/ACM Transactions on Networking, 2023.

[42] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data
collection, storage, and retrieval with an underwater sensor network.
In Proc. of SenSys 2005.

[43] C. Wang, J. Li, Y. Yang, and F. Ye. Combining solar energy harvesting
with wireless charging for hybrid wireless sensor networks. IEEE
Transactions on Mobile Computing, 17(3):560–576, 2018.

[44] L. Wang, Y. Yang, D. K. Noh, H. K. Le, J. Liu, T. D. Abdelzaher, and
M. Ward. Adaptsens: An adaptive data collection and storage service for
solar-powered sensor networks. In 2009 30th IEEE Real-Time Systems
Symposium, pages 303–312, 2009.

[45] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity
and yield in a volcano monitoring sensor network. In Proc. of OSDI
2006.

[46] A. Wichmann, T. Korkmaz, and A. S. Tosun. Robot control strategies for
task allocation with connectivity constraints in wireless sensor and robot
networks. IEEE Transactions on Mobile Computing, 17(6):1429–1441,
2018.

[47] X. Xue, X. Hou, B. Tang, and R. Bagai. Data preservation in
intermittently connected sensor networks with data priorities. In Proc.
of SECON, 2013.

[48] X. Xue, X. Hou, B. Tang, and R. Bagai. Data preservation in inter-
mittently connected sensor networks with data priority. In 2013 IEEE
International Conference on Sensing, Communications and Networking
(SECON), pages 122–130, 2013.

[49] H. Yedidsion, A. Banik, P. Carmi, M. J. Katz, and M. Segal. Efficient
data retrieval in faulty sensor networks using a mobile mule. In Proc.
of WiOpt 2017.

[50] Y. Yu, S. Hsu, A. Chen, Y. Chen, and B. Tang. Truthful and optimal data
preservation in base station-less sensor networks: An integrated game
theory and network flow approach. ACM Trans. Sen. Netw., 20(1), oct
2023.

15

