
Energy-Efficient Data Redistribution in Sensor
Networks

Bin Tang, Neeraj Jaggi, Haijie Wu, and Rohini Kurkal
Department of Electrical Engineering and Computer Science

Wichita State University, Wichita, KS 67260
bintang@cs.wichita.edu, neeraj.jaggi@wichita.edu, hxwu1@wichita.edu, rxkurkal@wichita.edu

Abstract—We address theenergy-efficient data redistribution
problem in data intensive sensor networks (DISNs). The key
question in sensor networks with large volumes of sensory data
is how to redistribute the data efficiently under limited storage
and energy constraints at the sensor nodes. The goal of the
redistribution scheme is to minimize the energy consumption
during the process, while guaranteeing full utilization of the
distributed storage capacity in the DISNs. We formulate this
problem as a minimum cost flow problem, which can be
solved optimally. However, the optimal solution’s centralized
nature makes it unsuitable for large-scale distributed sensor
networks. We thus design a distributed algorithm for the data
redistribution problem which performs very close to the optimal,
and compare its performance with various intuitive heuristics.
Our proposed algorithm relies on potential function based com-
putations, incurs limited message and computational overhead
at both the sensor nodes and data generator nodes, and is easily
implementable in a distributed manner. We analytically show the
convergence of our algorithm, and demonstrate its near-optimal
performance and scalability under various network scenarios
considered. Finally, we implement our distributed algorithm in
TinyOS and evaluate it using TOSSIM simulator, and show that
it outperforms EnviroStore, the only existing scheme for data
redistribution in sensor networks, in both solution quality and
overhead messages.

Keywords – Data Redistribution, Sensor Networks

I. Background and Motivation

It has become a reality that the sensor network applications
are no longer limited to just ambient sensing (e.g., light or
temperature) or environmental and weather monitoring. With
the emergence of a rich collection of sensory sources such as
video cameras, microphones, RFID readers, telescopes and
seismometers, a whole new array of data-intensive sensing
applications have been researched and developed recently.
They include multimedia surveillance networks [11], visual
and acoustic sensor networks [17, 26], underwater or ocean
seismic sensor networks [15, 27, 30] and geophysical monitor-
ing [19, 31]. In such data intensive sensor networks (DISNs),
large amount of scientific data are generated from some sensor
nodes (calleddata generators1), stored in the network first,
and collected later for further analysis.

Despite the advances in large lower-power flash memory
such as parallel NAND flash technology [1], storage is still a
serious resource constraint in DISNs. According to [17], an
acoustic sensor that has a 1GB flash memory and is designed

1For the rest of the paper, we refer to non-data generator sensor nodes
simply as sensor nodes.

Data generator

DG1
DG2

DG3

Sensor node Contentious sensor node

Fig. 1. Data redistribution problem with three data generatorsDG1, DG2,
andDG3. Each circle represents each data generator’s offloading area (the
set of sensor nodes to store the offloaded data from data generators). Redis-
tribution contention arises when data generators have overlapping offloading
areas – the sensor nodes in those areas are referred to ascontentious sensor
nodes.

to sample the entire audible spectrum will run out of its
storage in just 7 hours. When the storage capacity of a sensor
is reached, the data has to be redistributed/offloaded to other
nodes with free storage space. Such data redistribution, ifnot
managed well, could be a serious energy drain not only to
the data generators’ battery power, but to other sensor nodes
involved in the redistribution process. Therefore, a major
challenge in DISNs is how to store the massive amount of data
inside the sensor network comprising of nodes with limited
storage capacity and battery power.

In this paper, we study how to redistribute the large amount
of data into the network to fully utilize the storage capacity
of all the sensor nodes, while at the same time, minimizing
energy consumption incurred by the data redistribution. Note
that in this paper, we do not consider data retrieval (and the
cost incurred), and assume that the retrieval is done using data
mules [24] or by human operators manually.

Since data redistribution is energy-expensive wireless com-
munication, it is preferred that a data generator offloads its
data to other sensors closeby. When there are very few data
generators distant from each other, or the amount of data to
offload is small, this problem becomes trivial – each data
generator can perform a breadth first search (BFS) ordering
of other sensor nodes in its neighborhood with respect to
distance and offload data to its one-hop neighbors first,
then two-hop neighbors and so on. The sensor nodes which
store the offloaded data comprise theoffloading areaof data
generators and are represented as circles in Fig. 1. However,

when data generators are close to each other, or the amount
of generated data is comparable to the amount of available
storage space in the network,redistribution contentionarises.
Fig. 1 shows three data generatorsDG1, DG2, and DG3

with overlapping offloading areas. The challenge is how to
resolve such contention while still achieving energy-efficient
data redistribution.

Specifically, we formulate the data redistribution problem
as a graph-theoretical problem and show that it is equivalent to
the minimum cost flow problem [3, 22]. Due to the centralized
nature of the optimal solution, we design a fully distributed
algorithm for data redistribution which still achieves near-
optimal performance. We model the sensor network as the
electrostatic potential field wherein the data generators are
electrical point charges. We study the data redistribution
as the movement of electric particle in the potential field
consequently. We also design a few centralized heuristics
with lower time complexity which perform comparable to the
optimal solution.

The main results and contributions of our paper include:
1) To the best of our knowledge, our work is the first one

to formulate and study the data redistribution problem
in sensor networks.

2) We show that the data redistribution problem is equiv-
alent to the classic minimum cost flow problem, which
can be solved optimally in polynomial time.

3) We design a fully distributed, highly scalable, and
efficient data redistribution mechanism, and analytically
show its convergence, near-optimal performance, and
scalability under various network scenarios considered.

4) Using TOSSIM simulator, we show that our distributed
algorithm significantly outperforms EnviroStore [18],
the only existing data redistribution scheme in sensor
networks, in terms of both solution quality and overhead
messages.

Paper Organization. The rest of the paper is organized as
follows. Section II discusses the related work. In Section III,
we first present the network model, formalize the data redis-
tribution problem and illustrate it with a simple example. We
then show that the data redistribution problem is equivalent
to the minimum cost flow problem and discuss its available
centralized solutions. Section IV presents our potential field
based distributed algorithm, with a few centralized heuristics.
In Section V, we compare all the different algorithms, discuss
the results in details, and present our insight. Section VI sum-
marizes our results and discusses future research directions.

II. Related Work

Luo et al. [18] present a cooperative storage system for sen-
sor networks called EnviroStore, to maximize the network’s
data storage capacity. They propose two data redistribution
mechanisms. One is calledin-network data redistribution,
wherein data is migrated from nodes that are highly loaded
in storage capacity to nodes that are not. The other is called
cross-partition data redistribution, wherein data is offloaded
from overloaded network partitions to underloaded partitions
using mobile data mules. However, both data redistribution

mechanisms are heuristic-based without any performance
guarantees. We formulate the problem as a fundamental
graph-theoretic problem and show that it can be solved opti-
mally in a centralized way and also efficiently in a distributed
manner. In this paper we only focus on the in-network data
redistribution. To the best of our knowledge, EnviroStore is
the only work to extensively study data redistribution in sensor
networks.

A relateddata migration problemhas been studied exten-
sively in the field of parallel computing [23, 25] and disk
storage [13]. It mainly studies how to schedule workload and
move associated data from source processors to destination
processors, or change one storage configuration into another,
to better respond to the data demand changes for the purpose
of load balancing. Our problem, however, is concerned with
the storage space utilization as well as minimization of data
redistribution energy in sensor networks.

There is literature in sensor networks that has adopted
the idea of potential functions (see [29] for a good survey
paper). They either study how to route packets from source
to destination to avoid congestion in anycast [14] or multipath
routing [20], or study the placement of mobile sinks in
wireless sensor networks for energy balancing. In all those
problems, there are particular traffic sources and sinks. In
our data redistribution problem, we have traffic sources (data
generators) while the challenge is to assign the sink nodes
(offloading area). The goal is to efficiently utilize the storage
capacity in order to reduce the redistribution energy cost,
which is different from above problems.

Recently Gao et al. [5] developed a distributed algorithm
to match critical events occurring in the sensor network to
nearby available resources. The idea is to extract during pre-
processing, a hierarchical well-separated tree to approximate
the original network graph by a logarithmic distortion factor.
Later internal nodes are used to match resources and events in
its subtree. Unmatched resources or events are propagated up
the tree until matched. Such preprocessing is not quite feasible
in this case, and also leads to a centralized solution approach.
In addition, the required redistribution scheme should be
resilient towards node failures.

Our problem bears a resemblance to the graph Voronoi
diagram problem [4] in the sense of “areas of influence”.
Graph Voronoi diagram is the graph theory equivalent of the
Voronoi diagram in computational geometry. Graph Voronoi
diagram characterizes regions of proximity in graphs basedon
shortest paths between nodes. Yet there are two differences
between our data redistribution problem and graph Voronoi
diagram problem. First, in data redistribution problem, the
node has a “weight” which indicates the amount of data to
be redistributed. Second, graph Voronoi diagram does not
consider the “capacity” of each node, which in our problem,
signifies the available storage space of sensor nodes.

III. Data Redistribution Problem

A. Network Model and Problem Formulation

In our model, there are some data generators generating
large amount of sensory data, with total size much larger than

their storage capacities. The sensory data are modeled as a
sequence of raw data items, each of which has the same unit
size. Each sensor node has limited storage capacity and can
only hold finite amount of data items. Sensor nodes which col-
lect more data than what they can store in their local storage,
are the data generators and they have to redistribute/offload
some of their data to other nodes that have available storage
space. The objective of our data redistribution problem is to
redistribute the data items from the data generators to other
nodes to fully utilize the overall storage capacity of the sensor
network, while minimizing the total energy consumption in
the sensor network2.

Given a general sensor network graphG(V,E) whereV =
{1, 2, ..., N} is the set ofN nodes, andE is the set of edges.
Two nodes are connected by an edge if they are within the
transmission range of each other and thus can communicate
directly. We assume sensor nodes are distributed uniformly
at random in the deployment region since near-uniform node
deployment is an easy and practical approach to provide full
sensing coverage and connectivity, and commonly followed
in sensor node placement. Letdij denote the shortest path
distance (in terms of number of hops) between two sensor
nodesi andj.

There arep data generators in the network. Without loss
of generality, we assume that they are{1, 2, ..., p}. Data
generatori is referred to as DGi. Let si denote the number
of data items DGi needs to redistribute andmi denote the
available free storage space (in terms of number of data items)
at sensor nodei ∈ {p+1, p+2, ..., N}. If si > 0, thenmi = 0,
meaning nodei has a full storage space and thus can not store
any more data items; in this case nodei is a data generator.
If si = 0, then nodei can storemi data items offloaded from
other data generator nodes.

Each data generator redistributes one data item at a time.
For our energy cost model, we use the number of hops to
measure the energy consumption of redistributing the data
item3. The redistribution costfor DG i, with si number of
data items to redistribute, is the sum of the number of hops to
redistribute allsi data items. Thetotal redistribution costof
the sensor network is defined as the sum of the redistribution
cost of all the data generators. The goal of the problem is to
redistribute the data items from the data generators into the
network with minimum total redistribution cost.Without loss
of generality, we assume that the total size of the data items

2Note that the goal is to minimize the total energy consumption in
the network, and not to load balance the individual energy consumption
at different sensor nodes. Our model focuses on the scenariowhere data
redistribution occurs infrequently, and the total redistribution energy cost in
the network is the optimization objective.

3We adopt the first order radio model [9] wherein for a k-bit data over
distance l, the transmission energyETx(k, l) = Eelec ∗ k + ǫamp ∗ k ∗

l2, the receiving energyERx(k) = Eelec ∗ k, where Eelec and ǫamp

are constant. With the uniform distribution of the sensor nodes, the average
distance between any two neighboring sensor nodes could be assumed to be
the same, and of unit length. Also since the data items are of equal sizes, the
energy consumed to redistribute one data item over one hop isassumed to be
the same throughout the network. Liu et al. [16] also assume that transmitting
one packet over one hop consumes one unit of energy. Since thetotal energy
cost equals energy cost at each hop times the number of hops, and the energy
cost at each hop is assumed to be a constant, minimizing totalenergy cost
is the same as minimizing number of hops.

1 3 5 6 7

s4 = 1

m4 = 0

s6 = 2

m6 = 0

i1 i2 i3

0 92 84

Fig. 2. Illustrating data redistribution problem with a linear network.

to be redistributed is less than or equal to the size of the total
available storage space in the network.

To formulate our problem, letI denote the set of data
items to be redistributed in the whole network, and letS(i),
wherei ∈ I, be data itemi’s data generator. A redistribution
function is defined asr : I → V , indicating data itemi ∈ I is
redistributed to noder(i) ∈ V via the shortest path between
S(i) andr(i). Our goal is to find such a redistribution function
r to minimize the total redistribution cost:

∑

i∈I

dS(i)r(i), (1)

under the storage capacity constraint that the number of
data items offloaded to node j is less than or equal to j’s
available storage capacity, i.e.,

|{i|i ∈ I, r(i) = j}| ≤ mj , for all j ∈ V.

Below we give a simple example to illustrate the data
redistribution problem under storage constraint.

EXAMPLE 1: Fig. 2 illustrates the data redistribution prob-
lem in a small linear sensor network. Each edge is of one hop.
There are two data generators: node4 has one data item,
i1, to redistribute; node6 has two data items,i2 and i3, to
redistribute. The storage capacity of all other nodes equals one
data item each. The minimum cost solution is node4 offloads
i1 to node 3, while node6 offloadsi2 and i3 to nodes5 and
7, respectively. The total redistribution cost is3. �

B. Minimum Cost Flow Problem

We show that our data redistribution problem is equivalent
to the minimum cost flow problem. Recall that minimum cost
flow problem [3, 22] is the following. Given a graph in which
each edge has a capacity and a cost. Some nodes are supply
nodes and some are demand nodes, and the total supply equals
the total demand. The problem is to find flows from supply
nodes to demand nodes with minimum cost such that the
capacity constraint of each edge is satisfied.

Theorem 1:The data redistribution problem is equivalent
to the minimum cost flow problem.
Proof: Given above general sensor network graphG(V,E),
let V1 = {1, 2, ..., p} be the set of p data generators, andV2

be the restN − p sensor nodes,V1 ∪ V2 = V . We reduce the
data redistribution problem to the minimum cost flow problem
by changingG(V,E) into a new graphG′(V ′, E′) as follows
(shown in Fig. 3).

Data Generators

s’ t’

1

p

1

N-p

Sensor Nodes

Source Sink

(s1, 0)

(s2, 0)

2

(sp, 0)

(m1, 0)

(m2, 0)

2

3

(mN-p, 0)

(m3, 0)

(s1, d11)

(s2, d2N-p)

(sp, dpN-p)

(s1, d12)

Fig. 3. Data redistribution problem is equivalent to minimum cost flow
problem.

1. V ′ = V ∪{s′}∪{t′}, wheres′ is the new source node,
and t′ is the new sink node.

2. E′ = {(i, j) : i ∈ V1 and j ∈ V2} ∪ {(s′, i) : i ∈
V1} ∪ {(j, t′) : j ∈ V2}.

3. For each edge(i, j), set its capacity assi, and its cost
asdij , which is the shortest distance between DGi and
sensor node j in original graph G(V,E).

4. For each edge(s′, i), set its capacity assi and its cost
as 0. For each edge(j, t′), set its capacity asmj and
its cost as 0.

5. Set both the supply ats′ and the demand att′ as
∑p

i=1 si. The supply of other nodes inV ′ is set as 0.

Now a valid flow of amount
∑p

i=1 si from s′ to t′ includes
s1 amount on edges′1, s2 amount ons′2, ..., andsp amount
on s′p. This is actually the maximum possible flow and it
exists due to the assumption of

∑

si ≤
∑

mj . Therefore
solving the minimum cost flow problem onG′(V ′, E′) gives
the minimum redistribution cost in our data redistribution
problem inG(V,E).

The minimum cost flow problem can be solved efficiently
in polynomial time using well-known algorithms [2, 6–8, 10,
21, 28]. In this paper, we use the algorithm and implemen-
tation by Goldberg [6, 7] due to its practical nature. This
algorithm has the time complexity ofO(N2Mlog(NC)),
where N, M, and C are the number of nodes, the number
of edges, and the maximum capacity of an edge in graph
G′. In our case,C = maxi{si}. If C is not very large,
Goldberg’s algorithm is feasible for the minimum cost flow
problem. Otherwise, other strong polynomial algorithms [21]
(O((MlogN)(M +NlogN))), [28] (O(M4)) can be used.

IV. POTENTIAL-BASED DISTRIBUTED ALGORITHM (PDA)

To introduce our distributed algorithm, let’s start again with
the Example 1 depicted in Fig. 2. The minimum cost optimal
solution is that node 4 sends its one data item to node 3, while
node 6 sends one data item to node 5 and the other one to node
7. However, in a distributed environment, since both node 3
and node 5 have the same distance to node 4, node 4 could

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

j

P
ot

en
tia

l (
Φ

(i,
j))

9751

Φ(6,j)Φ(4,j)

3

Fig. 4. Potential field of the sensor network in Example1.

offload its data to node 5, resulting in non-optimal solution.
In this section, we show how data redistribution is performed
using the concept ofpotential. We first introduce the basic
potential field model. Then, we present our potential-based
distributed algorithm called PDA, followed by the discussion
of its convergence and performance.

A. Potential Field Model

We study data redistribution using an analogy that the
whole sensor network is an electric potential field, wherein
each data generator is an electric charge. For DGi with si
data items to offload, it has a positive electric charge ofsi.
For arbitrary sensor node j, its potential due to DGi, denoted
asφ(i, j), is equal tok0 si

dij
, wherek0 is a constant anddij

is the distance between DGi and j (we omitk0 for the rest
of the paper). According to superposition principle [12], the
total potential field of the whole sensor network is the linear
superposition of all individual fields of the data generators.
For arbitrary node j, denote its total potential asφ(j), we get:

φ(j) =

p
∑

i=1

φ(i, j) =

p
∑

i=1

si

dij
. (2)

Fig. 4 shows the individual potentials at different sensor
nodes due to the data generators (nodes 4 and 6) for the linear
sensor network depicted in Fig. 2. Here,s4 = 1, ands6 = 2.
The potential values decrease symmetrically for sensor nodes
in both directions as their distance from data generator in-
creases. Note thatφ(5) (= φ(4, 5)+φ(6, 5) = 1+2 = 3) is the
maximum among all sensor nodes, suggesting that contention
is highest at this node. Also note that at node1, the potential
due to data generator node6 is higher than that due to data
generator node4, ie. φ(6, 1)

(

= 2
5

)

> φ(4, 1)
(

= 1
3

)

, even
though node1 is located closer to node4. This is due to the
fact that the amount of data that needs to be redistributed
also plays a major role in defining the potential values. The
potential values serve an important role in the design (and
performance) of our distributed data redistribution algorithm.
Intuitively, a sensor node prefers to commit storage space to
the data generator whose potential at the sensor node is the
highest. In addition, the total potential of a sensor node is
the key towards informing the data generators of the level of
contention at a sensor node. Thus the data generator node 4
in Example 1 could look at the total potential at nodes 3 and

5 and could decide to offload its data item to node 3 due to
its lower total potential.

B. Potential-based distributed algorithm (PDA)

The PDA takes place in iterations. Each iteration consists
of the following three stages:

1. Advertisement Stage.For DG i that has data items
to offload, it floods an advertisement message to the
network with its ID and number of data items to
offload (si)4. An integer (initialized as 0) is included in
the advertisement message and incremented every time
the message is forwarded. This information is used to
capture the distance between any sensor node and DG
i.

2. Storage Commitment Stage.For each sensor node
j with available storage spacemj > 0, on receiving
advertisement message from DGi, it performs the
following steps (In addition, each node j forwards the
advertisement message, the first time it receives it.):

A. Computes its potential value due to the DGi,
φ(i, j) = si

dij
. φ(i, j) = 0 if j did not receive

DG i’s advertisement message. It also computes
its total potentialφ(j) after receiving all the ad-
vertisement messages.

B1. Finds the data generator that gives the maximum
potential value. Ties are broken randomly. Sup-
pose such data generator is DGk where k =
argmax1≤i≤pφ(i, j), j commitsone unit of storage
space to DGk and updatesmj = mj − 1.

B2. If mj > 0, j still has free storage space to commit,
it updatessk = sk − 1, φ(k, j) = sk

dkj
, and goes

back to Step B1. Otherwise, it has committed all
its storage and goes to Step C.

C. Sends a message to each data generator (DGi)
to which it has committed storage, along with
the number of storage space committed (cij), its
current total potentialφ(j), as well asdij . Note
dij has been obtained in Stage 1.

3. Data Offloading Stage.We denote the set of sensor
nodes who commit storage to DGi asCi. After receiv-
ing all the commitment messages fromCi, each DGi

performs the following computations:
A. Compares the total number of received commit-

ment,
∑

j∈Ci
cij , with its current number of data

items to offload,si. If
∑

j∈Ci
cij > si, it goes to

Step B1 below. Otherwise, DGi can completely
satisfy all the commitment and thus sends to each
committed sensor node the amount of data it
committed to store for DGi. After this, it updates
si = si−

∑

j∈Ci
cij . If si > 0, DG i still has data

to offload, it starts another iteration and goes back
to Stage 1 for advertisement.

B1. In this step, DGi needs to decide how many data
items to offload to which of the committed sensor

4We adoptpure flooding, wherein each node only broadcasts the advertise-
ment message the first time it receives it. Therefore, the message complexity
in advertisement stage is onlyO(N).

nodes. To do that, DGi decides to offload one data
item to the closest sensor node, say node k, among
all the committed sensorsj ∈ Ci. If there are
multiple closest nodes, break the tie by choosing
the node with the least total potential. Then, DGi
updatessi = si − 1, andcik = cik − 1. If cik = 0
(the data generator has decided to offload as much
data to nodek as committed by nodek during
storage commitment stage), removek from the set
Ci.

B2. If DG i still has data to redistribute (si > 0), it
recomputesφ(j) = φ(j)− 1

dij
for all j ∈ Ci, and

goes back to Step B1 to find the next sensor node
to offload one data item. Otherwise, DGi goes to
Step C.

C. DG i offloads all the data items to sensor nodes
according to above calculation.

PDA stops when all the data generators have offloaded
their data items. In each iteration, each sensor commits allits
storage space. However, it could be the case that the sensor’s
commitment is not fully utilized by data generators. At the end
of an iteration, if a node receives less offloaded data than what
it had committed, the node is free to commit its remaining
available storage in the next iteration. Note that either sensor
nodes that no longer have storage spaces available or data
generators that no longer have data items to offload do not
actively participate in the next iteration, other than forwarding
the advertisement message.

Discussion of PDA.It is easy to check that PDA solves the
Example 1 optimally in just one iteration. PDA takes place
in iterations, thus some synchronization is needed. However,
PDA is a fully distributed, highly scalable, and efficient data
distributed mechanism, with the following characteristics.

• PDA is an online distributed algorithm and applicable to
environments where data generation occurs dynamically.
It does not require the data generators to communicate
with each other for redistribution contention resolution.
The contention is resolved during the storage commit-
ment stage by the sensor nodes.

• In PDA, data generators do not need to have the knowl-
edge of the remaining storage capacity of other sensor
nodes. In addition, the sensor nodes do not have the
knowledge of the data generator’s redistribution needs.

• It is also adaptable to network dynamics such as dynamic
data generating and node failures.

Note that in the storage commitment stage, each sensor
node will commit all its free storage space, even when the
total number of data items advertised in the received adver-
tisement messages is less than its storage space size. This
over-commitmenthappens only when

∑p

i=1 si < mj for some
sensor nodej. If that happens, the current iteration becomes
the last iteration of the algorithm as all data generators can
offload all their data in the current iteration. Thus over-
commitment does not incur much computational overhead in
PDA.

PDA is more applicable in challenging scenarios where
the number of data items and number of data generators are

0 5 10 15 20
0

5

10

15

20

Fig. 5. Optimal (redistribution cost = 3160).

0 5 10 15 20
0

5

10

15

20

Fig. 6. PDA (redistribution cost = 3205).

0 5 10 15 20
0

5

10

15

20

Fig. 7. Cooperative (redistribution cost = 3200).

0 5 10 15 20
0

5

10

15

20

Fig. 8. Greedy (redistribution cost = 3524).

0 5 10 15 20
0

5

10

15

20

Fig. 9. Random (redistribution cost = 5235).

01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 06 0 0 07 0 0 08 0 0 09 0 0 01 0 0 0 0
Corner Center Random

T
o

ta
l

R
e
d

is
tr

ib
u

ti
o

n
 C

o
st

Optimal

PDA

Cooperative

Greedy

Random

Fig. 10. Performance with different DG locations.

TABLE I
TIME COMPLEXITY COMPARISON OF ALL DATA REDISTRIBUTION ALGORITHMS.

Optimal Greedy Cooperative Random PDA
O(N2Mlog(NC)) O((p + m̄)N2) O((p + m̄)N2) O(m̄N2) O(m̄N3)

large. In sparse networks (where number of data generators
and/or the number of data items are less), the PDA algorithm
could be modified to reduce the complexity by sending out
advertisements to a few hops only. Or a simple greedy
heuristic could be used instead of PDA.

C. Performance and convergence analysis of PDA

Below we provide convergence and performance analysis
of PDA, including its message and time complexity analysis.

Theorem 2:The PDA will stop in at mostp iterations,
where p is the number of data generators in the network.

Proof: We first show that in each iteration, at least one data
generator would receive commitment more than its number of
data items to be offloaded, by way of contradiction. Assume
that in the first iteration of PDA, none of the data generator
receives more commitment than number of its data items. That
is,

∑

j

cij < si, ∀i ∈ {1, 2, ..., p}.

Sum up among all the data generators, we get
∑

i

(
∑

j

cij) <
∑

i

si,

which implies
∑

i

∑

j

cij <
∑

i

si.

Since all sensor nodes commit all their storage space dis-
jointly to different data generators,

∑

i

∑

j

cij =
∑

j

mj ,

which implies
∑

j

mj <
∑

i

si.

This contradicts with the assumption that the total size of the
data items to be redistributed of all the data generators is less
than or equal to the size of the total available storage spacein
the network. So at least one data generator finishes offloading
in the first iteration.

In subsequent iterations, total data to be offloaded (
∑

i si)
and total available storage (

∑

j mj) get decremented by
exactly the same amount. Therefore, the result holds for other
iterations as well. Thus PDA takes at mostp iterations.
Message Complexity.We calculate the number of transmis-
sions in PDA. Each iteration there are at most p data gener-
ators broadcasting advertisement messages, reaching all the

N sensor nodes. There are at most p iterations from Theo-
rem 2. So the total number of transmissions of advertisement
messages isO(p2N). In each storage commitment stage, a
sensor node sends at most p commitment messages. The
number of hops from any sensor node in the network to
any data generator node is at mostN . So the total number
of transmissions of commitment messages is O(p2N2). For
the data offloading, there are total

∑p

i=1 si ≤ Nm̄ data
items to offload, each travels at mostN hops, resulting
in total O(N2m̄) offloading transmissions, wherēm is the
average storage capacity of each sensor node. So the total
number of transmissions (or message overhead) in PDA5 is
O((p2 + m̄)N2).

Time Complexity.In the storage commitment stage of each
iteration, each sensor node makes an averagem̄ commitments,
each of which is towards one of (at most)p data generators.
So the total N sensors incurO(Nm̄p) computations. There
are at most p iterations. The total number of commitment
computations is thusO(Nm̄p2). For the data offloading, to
offload one of its data items, each data generator chooses one
sensor node, which takesO(N) computations. There are at
mostNm̄ data items. So the total number of computations
in data offloading isO(N2m̄). Therefore the total time
complexity of PDA isO(Nm̄p2 + N2m̄), which is of the
orderO(N3m̄), sincep can be at most of orderO(N).

D. Centralized Heuristics

We design a set of centralized and intuitive heuris-
tics, namely random algorithm (Random), greedy algorithm
(Greedy), and cooperative algorithm (Cooperative), and later
compare their performances with PDA and Optimal.

In Random, each data generator randomly selects a sen-
sor node to offload its data items. Its time complexity is
O(

∑p

i=1 siN) = O(m̄N2). It is the most efficient heuristic
in terms of time complexity.

In Greedy, data generators take turn to redistribute the data
in the ascending order of their IDs. For each data generator,
it performs a BFS ordering of all other nodes (O(N2)), and
offloads all the data items to the closest unoccupied sensor
nodes (O(siN) for DG i, and tie is broken randomly). So
the time complexity of Greedy isO(pN2 +

∑p

i=1 siN) =
O(pN2 + Nm̄N) = O((p + m̄)N2). Note the first equality
is due to

∑p

i=1 si ≤ Nm̄.
Cooperative takes place in rounds. In each round, similar

to the Greedy, the data generators take turn to redistributethe
data in the ascending order of their IDs. However, unlike the
Greedy, each data generator only offloads one data item at
a time to its closest unoccupied sensor node (ties are broken
randomly). The time complexity is the same as that of Greedy,
i.e., O((p + m̄)N2), however this heuristic tends to perform
much better than Greedy as we show in Section V.

Table I shows the time complexity comparison of different
data redistribution algorithms. In terms of time complexity,
Random< Greedy, Cooperative< PDA < Optimal. Note

5Note that we do not account for this message complexity in theredistri-
bution cost. Nevertheless, we compare the message overheadof PDA with
that of EnviroStore in Section V.

0.001

0.01

0.1

1

P
er

fo
rm

a
n

ce
 D

if
fe

re
n

ti
a

l

Corner Center Random

PDA

Cooperative

Greedy

Random

Fig. 11. Performance percentage differential under different scenarios.

that, the centralized heuristics (as well as Optimal) are not
suitable for distributed environments, and are considered
mainly for performance comparisons with PDA.

V. Performance Evaluation

In this section, we first compare the performance of PDA
and other centralized heuristics with that of the optimal so-
lution for the minimum cost flow problem. We then compare
PDA with EnviroStore, an existing data redistribution scheme
in sensor networks.

A. Comparison among Optimal, PDA, and Other Heuristics

We first visually compare the performances of different
algorithms. For this purpose, we assume each sensor node has
one unit storage space and adopt a sensor network with grid-
like topology (note that our proposed algorithms are applica-
ble to all topologies). We then compare different algorithms
under various network scenarios wherein data generators’
locations are varied appropriately. To study the scalability of
each algorithm, we vary the number of data generators and
number of data items to redistribute in a large scale sensor
network (10,000 nodes), and compare the performances of
different algorithms. In all cases, the transmission rangeof
the sensor is one unit, the length of each grid edge.

Visual Performance Comparison.We deploy 400 sensor
nodes evenly on a20 × 20 grid network. Fig. 5-9 show
the visual comparison of the following algorithms: Optimal,
PDA, Cooperative, Greedy, and Random, with the total re-
distribution cost as indicated. There are four data generators
in the network, located at (8, 10), (12, 10), (8, 9), (12,
9). Each data generator has 99 data items to offload. The
four different filled shapes correspond to location of the
four data generators. The unfilled shapes correspond to the
offloading area of their respective data generators. We observe
that Cooperative and PDA both perform close to Optimal.
However, the performance of Greedy and Random algorithms
is far from optimal. This is visibly apparent from the structure
of offloading areas for different data generators in the optimal
solution. Both PDA and Cooperative are able to successfully
estimate this inherent structure. Note that the differencein
performance between PDA and Cooperative is not large in

this case. However, as we shall show later in Fig. 12, when
the size of the problem is sufficiently large, PDA outperforms
Cooperative. In addition, note that Cooperative is an intuitive
but centralized heuristic, and thus is not suitable for practical
deployment.

Performance Comparison Under Various Scenarios.We
use the same parameters as in the above visual performance
comparison, and compare different algorithms under the fol-
lowing scenarios: 1) all data generators are located at one
corner of the network; 2) all data generators are located
at the center of the network; 3) all data generators are
randomly placed in the network. Fig. 10 compares the total
redistribution cost of each algorithm under these scenarios.
We observe that, all the algorithms incur the largest redis-
tribution cost when all the data generators are at one corner,
followed by when all the data generators are at the center, and
the cost is the smallest when data generators are randomly
placed in the network. This is as expected, since with data
generators in one corner, most of the data items have to
be offloaded to distant nodes, compared with the other two
scenarios. Similarly, the random location results in less total
redistribution cost compared to the center scenario. In allthe
cases, the performance trend observed is given by Optimal>

PDA > Cooperative> Greedy> Random.

Performance Percentage Differential (PPD).Next, we ex-
plore how different algorithms perform compared to Optimal
under different scenarios. We calculate theperformance per-
centage differentialof each algorithm, which is defined as
the difference of the cost between the algorithm and Optimal,
divided by the cost of Optimal. Fig. 11 shows the PPD
of Greedy, Random, Cooperative, and PDA algorithms. We
observe that the performance difference of PDA is within5%
of the optimal performance in all the scenarios. Also note
that as the location of data generator is changed from corner
to random, the optimal redistribution cost decreases, but the
PPD increases in almost all cases. This is because the optimal
solution seems to have a better structured offloading area for
each data generator in center and random scenarios, which is
difficult to estimate using either PDA or the heuristics6.

Varying Number of Data Generators and Number of
Data Items. Below we study the performance comparison
by varying number of data generators and data items to be
redistributed. We consider a100× 100 network, with 10000
sensor nodes each with unit storage capacity. We vary the
number of data generators from 20, 40, 60 to 80 and total
number of data items of each data generator from 50, 70 to 90.
The data generators are randomly placed in the network. From
Fig. 12, we observe that PDA performs comparable to Opti-
mal and Greedy algorithm performs worse than Cooperative.
The difference between the redistribution algorithms is seen
clearly when there are more number of data generators with
larger amount of data items to be redistributed. As the number
of data generators and the total data items increase, the PPDof
the centralized heuristics increase significantly compared with
PDA. Therefore, PDA is suitable for large scale data intensive

6Due to space limitations, we omit the visual performance comparison for
corner and random scenarios.

01 0 0 0 02 0 0 0 03 0 0 0 04 0 0 0 05 0 0 0 06 0 0 0 0

2 0 4 0 6 0 8 0T o t a l N u m b e r O f D a t a G e n e r a t o r sT ot alR edi st rib uti onC ost 5 0 O p t i m a l5 0 P D A5 0 C o o p e r a t i v e5 0 G r e e d y7 0 O p t i m a l7 0 P D A7 0 C o o p e r a t i v e7 0 G r e e d y9 0 O p t i m a l9 0 P D A9 0 C o o p e r a t i v e9 0 G r e e d y
Fig. 12. Varying number of data generators and data items in100 × 100
network.

sensor networks, with heavy data redistribution requirements.
We observed with our simulations that the proposed Po-

tential Field Based data redistribution algorithm performs
comparable to the optimal. In all the scenarios considered,
the difference between the optimal performance and the
performance obtained by PDA is less than5%.

B. Comparison between PDA and EnviroStore[18]

We implement PDA using TinyOs 2.1, and compare it with
EnviroStore using TOSSIM simulator7. We first provide an
overview of EnviroStore.

Overview of EnviroStore.EnviroStore is a cooperative stor-
age system designed for disconnected sensor networks, where
the sensed data is stored inside the network until it is collected
by human operator or data mule. EnviroStore addresses how
to fully utilize the storage of the network in an energy-efficient
way. To do this, each node monitors its own remaining storage
and exchanges this information periodically with its one-
hop neighbors. When its remaining storage is less than a
particular threshold and the imbalance (or difference) between
the average remaining storage of its neighbors and its own
remaining storage is larger than another threshold, the node
begins to offload some amount of data to one of the under-
loaded neighbors. However, if several nodes simultaneously
offload data to the same node, this node will be overloaded
in storage and will offload data back to its neighbors, causing
unnecessary energy and bandwidth consumption. To prevent
this so called data ping-pong phenomenon, in EnviroStore,
the amount of data offloaded is bounded using appropriate
thresholds based upon the imbalance value mentioned above.
EnviroStore also provides reliable unicast for nodes to transfer
data. The simulations in [18] show significant improvement
in the amount of data collected using EnviroStore.

Routing Support in PDA.One difference between PDA and
EnviroStore is that in PDA, nodes rely upon routing tables
for storage commitment and data offloading. However, the

7EnviroStore is implemented in TinyOS 1.x. The major difference between
1.x and 2.x is that 2.x includes layer-2 source addresses in the packets while
1.x does not, which does not affect the algorithm comparisonin this paper.

necessary routing information can be readily obtained in ad-
vertisement and commitment stages of PDA, without costing
additional overhead messages. In advertisement stage, when
a sensor receives the advertisement message from a neighbor,
it records the neighbor as the next hop to the data generator
of the advertisement message. This information is used in
storage commitment stage to route the commitment messages
back to the data generators. Meanwhile, in storage commit-
ment stage, a node also constructs routing information for
the committing sensor nodes, and this information is used for
data delivery in data offloading stage. In both advertisement
and commitment stages, a TTL field is used in the message to
record the number of hops between nodes. Like EnviroStore,
reliable communication is also implemented in PDA, in both
commitment and data offloading stages.

Simulation Setup.We adopt the grid-like sensor deployment
in [18], with 36 nodes placed in a grid manner; the only
difference being that all the nodes are connected in the
deployment, since we focus on in-network data redistribution
in this paper. In the deployment, each sensor can communicate
directly with its neighbors only. Among the 36 nodes, two
nodes are configured as data generators, which periodically
generate data and create input for both EnviroStore and PDA.
For EnviroStore simulation, we adopt all the default threshold
values in [18], i.e., the remaining storage threshold is 0.95S,
imbalance threshold (between the average remaining storage
of its neighbors and its own remaining storage) is 0.05S, node
advertisement threshold is 0.01S (S is the total storage of a
node, which is 16KB). The size of each data packet is set as
22 bytes in both PDA and EnviroStore simulations8. The data
generating rate is set as 64 bytes/sec in both schemes.

Comparison of Redistribution Cost.In this part, we compare
the total redistribution cost (using Equation 1) of EnviroStore
and PDA at various values of simulation running time. The
time for each iteration in PDA is set to 80 seconds. Fig. 13
shows that the total redistribution cost of PDA is much smaller
than that of EnviroStore for most values of the simulation
time, indicating PDA is more energy-efficient than EnviroS-
tore in terms of the solution quality. There are mainly two
reasons for this. First, in EnviroStore, each sensor (including
the data generator) tends to redistribute data to far-away nodes
even when the nearby nodes have not exhausted their storage
capacities. In addition, the sensor nodes to which the data
is offloaded, can again redistribute this data to other nodes.
Such behavior leads to ping-pong phenomena and could
possibly result in data redistribution loops. While in PDA,
the DGs offload all of their data to nearby nodes, and these
sensor nodes do not redistribute the data items avoiding ping-
pong phenomena and loops. Fig. 14 depicts this performance
comparison in detail. Second, EnviroStore only requires each
node to talk with its one-hop neighbors. Whereas in PDA,
the advertisement and storage commitment phases enable

8In [18], the size of each data is 32 bytes, which requires two data messages
to transmit each data (one data message can transmit 29 bytesof data). This
results in a waste of message space and additional energy consumption for
data delivery. Thus, we set the data size to 22 bytes so that itcan be delivered
using one data message (plus 7 bytes header).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 200 400 600 800 1000 1200 1400 1600

T
ot

al
 R

ed
is

tr
ib

ut
io

n
C

os
t

Simulation Time (s)

EnviroStore
PDA

Fig. 13. Comparison of total redistribution cost between EnviroStore and
PDA.

1 3 502 0 0 04 0 0 06 0 0 08 0 0 01 0 0 0 01 2 0 0 01 4 0 0 01 6 0 0 01 8 0 0 0
1 2 3 4 5 6

123456(a) (b) 1 3 502 0 0 04 0 0 06 0 0 08 0 0 01 0 0 0 01 2 0 0 01 4 0 0 01 6 0 0 01 8 0 0 0
1 2 3 4 5 6

Fig. 14. 3D comparison of data redistribution between EnviroStore and
PDA. (a) PDA, (b) EnviroStore. Here, the z-axis represents the amount of
data redistributed to sensor nodes at different grid locations. When using
PDA, most of the data gets redistributed to nodes near the DG locations,
unlike in EnviroStore.

the effective communication between data generators and all
other sensor nodes leading to a more energy-efficient data
redistribution. Therefore, PDA seems to be able to utilize
the network storage better than Envirostore. In addition, PDA
can naturally eliminate data ping-pong problem, reducing the
unnecessary energy consumption incurred in EnviroStore.

Comparison of Message Overhead.Above comparison only
focuses on the quality of the solution achieved by PDA
and EnviroStore. Here, we study the message overhead of
both schemes. The overhead messages in PDA include the
advertisement messages and the storage commitment mes-
sages while the overhead messages in EnviroStore includes
periodic advertisement messages sharing remaining storages
among nodes. From the Fig. 15 we observe that the message
overhead of PDA is less than that of EnviroStore. The
reason is that PDA does not perform periodic advertisement
messages, instead PDA incurs advertisement at the beginning
of each iteration. Therefore, a decrease in the time period of
one iteration (for eg. from 320 to 160 seconds in Fig 15) leads
to an increase in the occurrence frequency of advertisement
stages, resulting in larger overhead over a period of timeT .
If the time period of one iteration is reduced further, at some
small value the overhead of PDA would become comparable

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 400 600 800 1000 1200 1400 1600

T
ot

al
 N

um
be

r
of

 O
ve

rh
ea

d
M

es
sa

ge
s

Simulation Time (s)

EnviroStore
PDA (T=160s)
PDA (T=320s)

Fig. 15. Comparison of total overhead messages between EnviroStore and
PDA.

to that of EnviroStore.

VI. Conclusion and Future Work

In this paper, we study the data redistribution problem in
sensor networks. Our results are two-fold. First, we show that
the data redistribution problem is equivalent to the minimum
cost flow problem, which can be solved optimally in a
centralized manner. Second, for a distributed algorithm, we
have applied the idea of electrostatic potential field to develop
a distributed data redistribution mechanism. Through simula-
tions, we show that our distributed algorithm performs very
close to the optimal centralized solution. In all the scenarios
considered, the difference between the optimal performance
and the performance obtained by PDA is less than5%. Using
TOSSIM simulator, we show that our proposed distributed
algorithm performs better than the existing data redistribution
technique (EnviroStore) in terms of both the solution quality
and overhead messages.

In future, we plan to explore the effect of spatio-temporal
correlations among the data generated in sensor network on
the performance of the proposed redistribution algorithm.
Also, we have only considered data redistribution due to
storage overflow. However, data redistribution would also
be needed in case of energy depletion at the sensor nodes,
which we plan to explore in future. Energy depletion triggered
redistribution would lead to multiple redistribution instances
for the same data item over time, and network lifetime would
be an appropriate metric to optimize in that case.

VII. A CKNOWLEDGEMENT

We would like to thank Dr. Bayram Yildirim for helpful
discussions. We also thank Ashok Madhvesh for help with
Matlab.

REFERENCES

[1] G. Aathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power
data storage for sensor networks. InProc. of IPSN 2006.

[2] R. Ahuja, A. V. Goldberg, J. Orlin, and R. E. Tarjan. Finding minimum-
cost flows by double scaling.Mathematical Programming, 53:243–266,
1992.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

[4] Martin Erwig and Fernuniversitat Hagen. The graph voronoi diagram
with applications.Networks, 36:156–163, 2000.

[5] J. Gao, L. Guibas, N. Milosavljevic, and D. Zhou. Distributed resource
management and matching in sensor networks. InProc. of IPSN 2009.

[6] A. V. Goldberg. Andrew goldberg’s network optimizationlibrary.
http://www.avglab.com/andrew/soft.html.

[7] A. V. Goldberg. An efficient implementation of a scaling minimum-cost
flow algorithm. Journal of Algorithms, 22(1):1–29, 1997.

[8] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flowal-
gorithms by successive approximation.Mathematics of Operations
Research, 15(3):430–466, 1990.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensornetworks.
In Proc. of HICSS 2000.

[10] Bruce Hoppe and E. Tardos. The quickest transshipment problem.
Math. Oper. Res., 25(1):36–62, 2000.

[11] K. R. Chowdhury I. F. Akyildiz, T. Melodia. A survey on wireless
multimedia sensor networks. Computer Networks, 51(4):921–960,
2007.

[12] J. D. Jackson.Classical Eletrodynamics. John Wiley and Sons, third
edition, 1999.

[13] Samir Khuller and Yoo ah Kim. Algorithms for data migration with
cloning. In SIAM Journal on Computing, pages 27–36. ACM Press,
2003.

[14] V. Lenders, M. May, and B. Plattner. Density-based anycast: A robust
routing strategy for wireless ad hoc networks.IEEE/ACM Transactions
on Networking, 16:852–863, 2008.

[15] S. Li, Y. Liu, and X. Li. Capacity of large scale wirelessnetworks
under gaussian channel model. InProc. of MOBICOM 2008.

[16] Changlei Liu and Guohong Cao. Distributed monitoring and aggrega-
tion in wireless sensor networks. InProc. of Infocom 2010.

[17] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and J. Stankovic.
Design, implementation, and evaluation of enviromic: A storage-centric
auio sensor network.ACM Transactions on Sensor Networks, 5(3):1–
35, 2009.

[18] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic. Envirostore:
A cooperative storage system for disconnected operation insensor
networks. InProc. of INFOCOM 2007.

[19] K. Martinez, R. Ong, and J.K. Hart. Glacsweb: a sensor network for
hostile environments. InProc. of SECON 2004.

[20] N. T. Nguyen, A.-I. A. Wang, P. Reiher, and G. Kuenning. Electricfield-
based routing: A reliable framework for routing in manets.ACM Mobile
Computing and Communications Review, 8(2):35–49, 2004.

[21] J. Orlin. A faster stronly polynomial minimum cost flow algorithm.
Operations Research, 41(2):338–466, 1990.

[22] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization:
Algorithms and complexities.Prentice Hall, 1982.

[23] A. Pinar and B. Hendrickson. Interprocessor communication with
limited memory. IEEE Transactions on Parallel and Distributed
Systems, 15:606–616, 2004.

[24] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data
mules: Modeling a three-tier architecture for sparse sensor networks.
In Proc. of SNPA 2003.

[25] Stephen F. Siegel and Andrew R. Siegel. Madre: The memory-aware
data redistribution engine. InProc. of PVM/MPI 2008.

[26] S. Soro and W. Heinzelman. A survey of visual sensor networks.
Advances in Multimedia, 2009.

[27] Affan A. Syed, Wei Ye, and John Heidemann. T-lohi: A new class of
mac protocols for underwater acoustic sensor networks. InProc. of
INFOCOM 2008.

[28] E. Tardos. A strongly polynomial minimum cost circulation algorithm.
Combinatorica, 5(3):247–255, 1985.

[29] S. Toumpis. Mother nature knows best: A survey of recentresults
on wireless networks based on analogies with physics.Computer
Networks, 52:360–383, 2008.

[30] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data
collection, storage, and retrieval with an underwater sensor network. In
Proc. of SenSys 2005.

[31] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In Proc. of OSDI 2006.

