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Abstract—We address theenergy-efficient data redistribution
problem in data intensive sensor networks (DISNs). The key
question in sensor networks with large volumes of sensory da
is how to redistribute the data efficiently under limited storage
and energy constraints at the sensor nodes. The goal of the
redistribution scheme is to minimize the energy consumptio
during the process, while guaranteeing full utilization of the
distributed storage capacity in the DISNs. We formulate ths
problem as a minimum cost flow problem, which can be
solved optimally. However, the optimal solution’s centraized
nature makes it unsuitable for large-scale distributed sesor
networks. We thus design a distributed algorithm for the dag
redistribution p.roblem which perfqrms Very Cllose.t.o the opilln?al, and DG3. Each circle represents each data generator’s offloadieq @ne
and compare its pgrformar]ce with various 'ntu!t've heuristics. set of sensor nodes to store the offloaded data from dataajersg)r Redis-
Our proposed algorithm relies on potential function based om-  ripytion contention arises when data generators haveapyeng offloading

putations, incurs limited message and computational overad areas — the sensor nodes in those areas are referreccemintious sensor
at both the sensor nodes and data generator nodes, and is dgsi nodes

implementable in a distributed manner. We analytically shav the
convergence of our algorithm, and demonstrate its near-ojinal
performance and scalability under various network scenards
considered. Finally, we implement our distributed algorithm in  to sample the entire audible spectrum will run out of its
TinyOS and evaluate it using TOSSIM simulator, and show that = storage in just 7 hours. When the storage capacity of a sensor
it outperforms EnviroStore, the only existing scheme for d&& 5 reached, the data has to be redistributed/offloaded ter oth
redistribution in sensor networks, in both solution quality and nodes With’ free stora Such dat distributiorotif
overhead messages. ge space. Such data redistributiomti
Keywords — Data Redistribution, Sensor Networks managed well, could be a serious energy drain not only to
the data generators’ battery power, but to other sensorsnode
I. Background and Motivation involved in the redistribution process. Therefore, a major
_ .. challenge in DISNs is how to store the massive amount of data
It has become a reality that the sensor network applicatiofgjge the sensor network comprising of nodes with limited
are no longer limited to just ambient sensing (e.g., light iorage capacity and battery power.

temperature) or environmental and weather monitoringhWit In this paper, we study how to redistribute the large amount

the emergence of a rich collection of sensory sources such0 ?giata into the network to fully utilize the storage capacit

video cameras, microphones, RFID readers, telescopes an . ! S
of all the sensor nodes, while at the same time, minimizing

seismometers, a whole new array of data-intensive SENsy) rgy consumption incurred by the data redistributiorteNo

apphcatlons have .beerll resear.ched and developed rgce%lgt in this paper, we do not consider data retrieval (and the
They include multimedia surveillance networks [11], visua

. cost incurred), and assume that the retrieval is done usitey d
and acoustic sensor networks [17,26], underwater or ocean o [24] or by human operators manuall

seismic sensor networks [15, 27, 30] and geophysical menito y_ o p y: )
ing [19, 31]. In such data intensive sensor networks (DISNs) Since data redistribution is energy-expensive wireless-co
large amount of scientific data are generated from some serféd/nication, it is preferred that a data generator offloasls it
nodes (calleddata generatory, stored in the network first, data to other sensors closeby. When there are very few data

and collected later for further analysis. generators distant f_rom each other, or the_a_mount of data to

Despite the advances in large lower-power flash memd?{fioad is small, this problem becomes trivial — each data
such as parallel NAND flash technology [1], storage is still §en€rator can perform a breadth first search (BFS) ordering
serious resource constraint in DISNs. According to [17], & Other sensor nodes in its neighborhood with respect to

acoustic sensor that has a 1GB flash memory and is desigfstiance and offload data to its one-hop neighbors first,
then two-hop neighbors and so on. The sensor nodes which

IFor the rest of the paper, we refer to non-data generatorosemnsles store the offloaded data comprise tbfﬁ;oadm_g ar_eaOf data
simply as sensor nodes. generators and are represented as circles in Fig. 1. However

Fig. 1. Data redistribution problem with three data geresab G, DGa,



when data generators are close to each other, or the amauethanisms are heuristic-based without any performance
of generated data is comparable to the amount of availalglearantees. We formulate the problem as a fundamental
storage space in the networkdistribution contentiorarises. graph-theoretic problem and show that it can be solved opti-
Fig. 1 shows three data generatdp&r,, DG5, and DG3  mally in a centralized way and also efficiently in a distrioit
with overlapping offloading areas. The challenge is how tmanner. In this paper we only focus on the in-network data
resolve such contention while still achieving energy-&ffit redistribution. To the best of our knowledge, EnviroStae i
data redistribution. the only work to extensively study data redistribution insar
Specifically, we formulate the data redistribution problemetworks.
as a graph-theoretical problem and show that it is equivéden A relateddata migration problenhas been studied exten-
the minimum cost flow problem [3, 22]. Due to the centralizesively in the field of parallel computing [23,25] and disk
nature of the optimal solution, we design a fully distriliitestorage [13]. It mainly studies how to schedule workload and
algorithm for data redistribution which still achieves neamove associated data from source processors to destination
optimal performance. We model the sensor network as tpeocessors, or change one storage configuration into anothe
electrostatic potential field wherein the data generatoes ao better respond to the data demand changes for the purpose
electrical point charges. We study the data redistributi@f load balancing. Our problem, however, is concerned with
as the movement of electric particle in the potential fielthe storage space utilization as well as minimization oadat
consequently. We also design a few centralized heuristieslistribution energy in sensor networks.
with lower time complexity which perform comparable to the There is literature in sensor networks that has adopted
optimal solution. the idea of potential functions (see [29] for a good survey
The main results and contributions of our paper includepaper). They either study how to route packets from source
1) To the best of our knowledge, our work is the first ont® destination to avoid congestion in anycast [14] or maltip
to formulate and study the data redistribution problefi®uting [20], or study the placement of mobile sinks in
in sensor networks. wireless sensor networks for energy balancing. In all those
2) We show that the data redistribution problem is equiwroblems, there are particular traffic sources and sinks. In
alent to the classic minimum cost flow problem, whiclpur data redistribution problem, we have traffic sourcesa(da
can be solved optimally in polynomial time. generators) while the challenge is to assign the sink nodes
3) We design a fully distributed, highly scalable, anfoffloading area). The goalis to efficiently utilize the stge
efficient data redistribution mechanism, and analytical§apacity in order to reduce the redistribution energy cost,
show its convergence, near-optimal performance, amdich is different from above problems.
scalability under various network scenarios considered. Recently Gao et al. [5] developed a distributed algorithm
4) Using TOSSIM simulator, we show that our distributeto match critical events occurring in the sensor network to
algorithm significantly outperforms EnviroStore [18]hearby available resources. The idea is to extract durieg pr
the only existing data redistribution scheme in sensprocessing, a hierarchical well-separated tree to apprabe
networks, in terms of both solution quality and overheadtte original network graph by a logarithmic distortion fact
messages. Later internal nodes are used to match resources and events i
its subtree. Unmatched resources or events are propagated u
Paper Organization. The rest of the paper is organized ashe tree until matched. Such preprocessing is not quitéfieas
follows. Section Il discusses the related work. In Sectibn | in this case, and also leads to a centralized solution apbroa
we first present the network model, formalize the data redigr addition, the required redistribution scheme should be
tribution problem and illustrate it with a simple examplee Wyesilient towards node failures.
then ShOW that the data redistribution problem iS equi\lalen Our prob'em bears a resemblance to the graph \oronoi
to the minimum cost flow problem and discuss its aVaiIabtﬁagram prob'em [4] in the sense of “areas Of inﬂuence”.
centralized solutions. Section IV pl’esents our pOtenthfl Graph Voronoi diagram is the graph theory equivalent Of the
based distributed algorithm, with a few centralized heiass \pronoi diagram in computational geometry. Graph Voronoi
In Section V, we compare all the different algorithms, d&u diagram characterizes regions of proximity in graphs based
the results in details, and present our insight. Sectioni-s shortest paths between nodes. Yet there are two differences
marizes our results and discusses future research dinectiopetween our data redistribution problem and graph Voronoi
Il Related Work diagram problen_1. First,.in (_:iata redistribution problene th
node has a “weight” which indicates the amount of data to

Luo et al. [18] present a cooperative storage system for sef redistributed. Second, graph Voronoi diagram does not
sor networks called EnviroStore, to maximize the networkigynsider the “capacity” of each node, which in our problem,

data storage capacity. They propose two data redistributigignifies the available storage space of sensor nodes.
mechanisms. One is calleid-network data redistribution

wherein data is migrated from nodes that are highly loaded IIl. Data Redistribution Problem

in storage capacity to nodes that are not. The other is called .

cross-partition data redistributionwherein data is offloaded A. Network Model and Problem Formulation

from overloaded network partitions to underloaded parii In our model, there are some data generators generating
using mobile data mules. However, both data redistributidarge amount of sensory data, with total size much larger tha



their storage capacities. The sensory data are modeled a:
sequence of raw data items, each of which has the same u
size. Each sensor node has limited storage capacity and ¢
only hold finite amount of data items. Sensor nodes which co
lect more data than what they can store in their local stgrag
are the data generators and they have to redistribute/dfflo;
some of their data to other nodes that have available stora m,=0 mg=0
space. The objective of our data redistribution problenois t
redistribute the data items from the data generators tor oth Fig. 2. lllustrating data redistribution problem with adar network.
nodes to fully utilize the overall storage capacity of thess®
network, while minimizing the total energy consumption in o ) ,
the sensor netwo?rk to be redistributed is less than or equal to the size of thal tot

Given a general sensor network gra@ti, £) wherel =  @vailable storage space in the network.
{1,2,..., N} is the set ofV nodes, and? is the set of edges. | To formulatelou_r prob!em, lef denote the set of data
Two nodes are connected by an edge if they are within tHEMS to be redistributed in the whole network, and3¢t),
transmission range of each other and thus can communicAfterei € I, be data item’s data generator. A redistribution
directly. We assume sensor nodes are distributed unifornffiction is defined as : I — V, indicating data item < I is
at random in the deployment region since near-uniform nofedistributed to node(:) € V' via the shortest path between
deployment is an easy and practical approach to provide §ile) ar?d_r(z:). Our goalisto _f|n(_1I su_ch a redistribution function
sensing coverage and connectivity, and commonly followédi© minimize the total redistribution cost:
in sensor node placement. Lét; denote the shortest path
distance (in terms of number of hops) between two sensor st(i)r(i)a 1)
nodes: andj. i€l

There arep data generators in the network. Without 10Ss nger the storage capacity constraint that the number of

of generality, we assume that they afe,2,...,p}. Data gata items offloaded to node j is less than or equal to j's
generatori is referred to as DG. Let s; denote the number 4y 4ilaple storage capacity, i.e.

of data items DG needs to redistribute ana; denote the

available free storage space (in terms of number of datasjtem

at sensor nodee {p+1,p+2,...,N}.If s; > 0, thenm; =0, Hili € I,7(i) = 5} < m;, forall j € V.

meaning nodeé has a full storage space and thus can not store ) . _

any more data items; in this case nadis a data generator. B€low we give a simple example fo illustrate the data

If 5; — 0, then node can storem; data items offloaded from redistribution problem under storage constraint.

other data generator nodes. EXAMPLE 1_: Fig. 2 illustrates the data redlstrlpunon prob-
Each data generator redistributes one data item at a tirfd" in @ small linear sensor network. Each edge is of one hop.

For our energy cost model, we use the number of hops [§€ré are two data generators: notlihas one data item,

measure the energy consumption of redistributing the ddta 0 redistribute; nod& has two data items,, andis, to

item?. The redistribution costfor DG 4, with s; number of redistribute. The storage capacity of all other nodes exurae

data items to redistribute, is the sum of the number of hops4@t@ ittm each. The minimum cost solution is nddsifloads

redistribute alls; data items. Theotal redistribution cospf ‘1 t0 node 3, while nodé offloadsi, andis to nodess and

the sensor network is defined as the sum of the redistributibnf@Spectively. The total redistribution costds 0

cost of all the data generators. The goal of the problem is

redistribute the data items from the data generators irgo t

network with minimum total redistribution costvithout loss ~ We show that our data redistribution problem is equivalent

of generality, we assume that the total size of the data itefi#sthe minimum cost flow problem. Recall that minimum cost
flow problem [3, 22] is the following. Given a graph in which

2Note that the goal is to minimize the total energy consumptio each edge has a capacity and a cost. Some nodes are supply

the network, and not to load balance the individual energgsamption nodes and some are demand nodes. and the total supplv equals
at different sensor nodes. Our model focuses on the scemdméwe data ! Pply €q

redistribution occurs infrequently, and the total redtisttion energy cost in the total demand. The probl_em iS_ t_o find flows from supply
the network is the optimization objective. nodes to demand nodes with minimum cost such that the

3We adopt the first order radio model [9] wherein for a k-bitadater capacity constraint of each edge is satisfied.

distance |, the transmission ener@r, (k,l) = Ecjec * k + €amp * k * . L . .
12, the receiving energyEry (k) — Eeiee * ky Where Eopee and eamp Theorem 1:The data redistribution problem is equivalent

are constant. With the uniform distribution of the sensadew the average t0 the minimum cost flow problem.

distance between any two neighboring sensor nodes couldsuemad to be prgof: Given above genera| sensor network gra(bh/ E)
the same, and of unit length. Also since the data items arquidlesizes, the ’ ’

energy consumed to redistribute one data item over one hagsismed to be let Vi = {17 2, -.-,p} be the set of p data generators, and
the same throughout the network. Liu et al. [16] also asstmaettansmitting be the restV — p sensor noded/; UV, = V. We reduce the

one packet over one hop consumes one unit of energy. Sindetéi@nergy  (ata redistribution problem to the minimum cost flow problem
cost equals energy cost at each hop times the number of hup#he energy

H H / ! !/
cost at each hop is assumed to be a constant, minimizing oty cost by Chang'nQ_G(Va E) Into a new graprG (V B ) as follows
is the same as minimizing number of hops. (shown in Fig. 3).

s, =1 Sg =2

. Minimum Cost Flow Problem



Data Generators Sensor Nodes
(84, dyq)

Potential (P(i,j))

Fig. 4. Potential field of the sensor network in Examplel.

Fig. 3. Data redistribution problem is equivalent to minimwost flow oﬁlogd Its (_jata to node 5, resulting m_ ”‘?”'Qp“ma' solution
problem. In this section, we show how data redistribution is perfaime
using the concept opotential We first introduce the basic
potential field model. Then, we present our potential-based
1. V' =V u{s'}u{t'}, wheres' is the new source node, distributed algorithm called PDA, followed by the discussi
andt’ is the new sink node. of its convergence and performance.

, AN ) SN
2 51}] f[{((;-:g/)) ; 66‘/‘;1} and j € V2 UL(s9) 1 € A potential Field Model
3. For each edgéi, j), set its capacity as;, and its cost ~We study data redistribution using an analogy that the
asd,;, which is the shortest distance between Dé&hd whole sensor network is an electric potential field, wherein
sensor node j in original graph G(V,E). each data generator is an electric charge. ForiD@th s;
4. For each edgés’, i), set its capacity as; and its cost data items to offload, it has a positive electric charges;of
as 0. For each edg@, '), set its capacity as:; and For arbitrary sensor node j, its potential due to R@enoted
its cost as 0. as¢(i, ), is equal tokg j] whereky is a constant and;;
5. Set both the supply at' and the demand at’ as is the distance between DGand j (we omitk, for the rest
S°P_ | s;. The supply of other nodes i’ is set as 0. Of the paper). According to superposition principle [12je t
Now a valid flow of amoun®™?_, s; from s to ¢’ includes total pote.n_tial field of th_e.whole. sensor network is the linea
1 amount on edge’l, s amouﬁtlonslz ..., ands, amount superposition of all individual fields of the data generstor

on s'p. This is actually the maximum possible flow and i OF arbitrary node j, denote its total potentiales), we get:

exists due to the assumption df s; < > m;. Therefore p P
solving the minimum cost flow problem af’(V', E’) gives B(j) = E #(i,7) = Si (2)
the minimum redistribution cost in our data redistribution i1 = did

problem inG(V, E). Fig. 4 shows the individual potentials at different sensor

o B nodes due to the data generators (nodes 4 and 6) for the linear

The minimum cost flow problem can be solved efficientl{ansor network depicted in Fig. 2. Herg, = 1, andsg = 2.
in polynomial time using well-known algorithms [2,6-8, 107he potential values decrease symmetrically for sensoesiod
21,28]. In this paper, we use the algorithm and implemep; o directions as their distance from data generator in-
tation by Goldberg _[6,7] due to its practzlcal nature. This.aaces Note that(5) (= ¢(4,5)+(6,5) = 1+2 = 3) is the
algorithm has the time complexity aD(N=Mlog(NC)), maximum among all sensor nodes, suggesting that contention
where N, M, and C are the number of nodes, the numberyighest at this node. Also note that at nddéhe potential
of/ edges, and the maximum capacity of an edge in gragle o data generator nogeis higher than that due to data
G’. In our case,C = max;{s;}. If C is not very large, generator nodel, ie. ¢(6,1) (= 2) > ¢(4,1) (= 1), even

9

Goldberg’s algorithm is feasible for the minimum cost ﬂOVYhough nodel is located closer to nodé This is due to the
problem. Otherwise, other strong polynomial algorithms|[2 ¢5ct that the amount of data that needs to be redistributed

(O((MlogN)(M + NlogN))), [28] (O(M*)) can be used. 454 plays a major role in defining the potential values. The

potential values serve an important role in the design (and
performance) of our distributed data redistribution aitdpon.

To introduce our distributed algorithm, let’s start agaithw Intuitively, a sensor node prefers to commit storage space t
the Example 1 depicted in Fig. 2. The minimum cost optim#he data generator whose potential at the sensor node is the
solution is that node 4 sends its one data item to node 3, whiligthest. In addition, the total potential of a sensor node is
node 6 sends one data item to node 5 and the other one to nibdekey towards informing the data generators of the level of
7. However, in a distributed environment, since both nodec®ntention at a sensor node. Thus the data generator node 4
and node 5 have the same distance to node 4, node 4 cdnl&xample 1 could look at the total potential at nodes 3 and

IV. POTENTIAL-BASED DISTRIBUTED ALGORITHM (PDA)



5 and could decide to offload its data item to node 3 due to
its lower total potential.

B. Potential-based distributed algorithm (PDA)

The PDA takes place in iterations. Each iteration consists
of the following three stages:

1. Advertisement Stage.For DG i that has data items
to offload, it floods an advertisement message to the
network with its ID and number of data items to
offload (s;)*. An integer (initialized as 0) is included in
the advertisement message and incremented every time
the message is forwarded. This information is used to
capture the distance between any sensor node and DG
1.

2. Storage Commitment Stage.For each sensor node
j with available storage space:; > 0, on receiving
advertisement message from DG it performs the

nodes. To do that, D&decides to offload one data
item to the closest sensor node, say node k, among
all the committed sensorg € C;. If there are
multiple closest nodes, break the tie by choosing
the node with the least total potential. Then, DG
updatess; = s; — 1, andc;, = ¢ — 1. If ¢ =0

(the data generator has decided to offload as much
data to nodek as committed by nodé during
storage commitment stage), remdv&om the set

C;.
B2. If DG i still has data to redistributesz( > 0), it
recomputesh(j) = ¢(j) — — for all j € C;, and

goes back to Step B1 to f|nd the next sensor node
to offload one data item. Otherwise, D@oes to
Step C.

C. DG i offloads all the data items to sensor nodes
according to above calculation.

following steps (In addition, each node j forwards the PDA stops when all the data generators have offloaded

advertisement message, the first time it receives it.): their data items. In each iteration, each sensor committsall

A. Computes its potential value due to the D storage space. However, it could be the case that the sensor’
¢(i,j) = z=. #(i,j) = 0 if j did not receive commitmentis not fully utilized by data generators. At tinele
DG i’s advertisement message. It also comput&¥ an iteration, if a node receives less offloaded data thaat wh
its total potentialp(j) after receiving all the ad- it had committed, the node is free to commit its remaining
vertisement messages. available storage in the next iteration. Note that eithesee

B1. Finds the data generator that gives the maximunedes that no longer have storage spaces available or data
potential value. Ties are broken randomly. Supgenerators that no longer have data items to offload do not

pose such data generator is DGwhere k = actively participate in the next iteration, other than farding
argmax,,¢(i, j), ] commitsone unit of storage the advertisement message.
space to DGk and updatesn; = m; — 1. Discussion of PDAIt is easy to check that PDA solves the

B2. If m; > 0, ] still has free storage space to commitExample 1 optimally in just one iteration. PDA takes place
it updatessy. = s — 1, ¢(k,j) = &, and goes in iterations, thus some synchronization is needed. Homeve
back to Step B1. Otherwise, it has committed alPDA is a fully distributed, highly scalable, and efficientala
its storage and goes to Step C. distributed mechanism, with the following characteristic

C. Sends a message to each data generator DG
to which it has committed storage, along with
the number of storage space committegd)( its
current total potential(j), as well asd;;. Note
d;; has been obtained in Stage 1.

3. Data Offloading Stage.We denote the set of sensor
nodes who commit storage to DiGasC,. After receiv- o
ing all the commitment messages frafp each DGi
performs the following computations:

A. Compares the total number of received commit-
ment, Z ¢y, With its current number of data e
items to offload,sl If Z eC, Cij > Sis it goes to

o PDA is an online distributed algorithm and applicable to

environments where data generation occurs dynamically.
It does not require the data generators to communicate
with each other for redistribution contention resolution.
The contention is resolved during the storage commit-
ment stage by the sensor nodes.

In PDA, data generators do not need to have the knowl-
edge of the remaining storage capacity of other sensor
nodes. In addition, the sensor nodes do not have the
knowledge of the data generator’s redistribution needs.
It is also adaptable to network dynamics such as dynamic
data generating and node failures.

Step B1 below. OtherW|se D@ can completely  Note that in the storage commitment stage, each sensor
satisfy all the commitment and thus sends to eactode will commit all its free storage space, even when the
committed sensor node the amount of data fbtal number of data items advertised in the received adver-
committed to store for DG. After this, it updates tisement messages is less than its storage space size. This
si = si— ., Cij- If si >0, DG still has data over-commitmertiappens only whel?_, s; < m; for some
to offload, it starts another iteration and goes badensor nodg. If that happens, the current iteration becomes
to Stage 1 for advertisement. the last iteration of the algorithm as all data generators ca
B1. In this step, DG needs to decide how many dataffload all their data in the current iteration. Thus over-
items to offload to which of the committed sensocommitment does not incur much computational overhead in

=]
4We adoptpure flooding wherein each node only broadcasts the advertise-

ment message the first time it receives it. Therefore, thesagescomplexity PDA is more app_llcable n Cha”eng'ng scenarios where
in advertisement stage is on@y (V). the number of data items and number of data generators are



20 20 20

000000OOOOODDODODOOOOOD ODoDoD00000000000OOOOOD oooo00000OODOOOOOOOOD
00000000CO0ODOoODODOOOOOD Oopo000000O0OO0ODODOoOoOoOOoOoODO 0Op000000COO0ODOoODOoDOoOOOODn
000O00O0O0OOOCOODOOODOOODOODO 0O000000OO0OOOODOOOOOODODO 00000O0O0OOOCOODOODODOOODOODO
0000O0O0OOOCOODODOOOODOOODO 00000O0O0OOOOOODOOOOODOOO 0000OO0O0OOOCOODODODOOODOOODO
]15f000000000OODOOODOODOOOO 1500000000 00CODOODOOOODO 15f000000000OCOODOODOODOOODO
00000O0O0OOOCOODOOODOOODOODO 0O0000O0O0OOO0OOODODOOOOOODODO 00000O0O0OOOCOODOOODOOODOODO
0000000000O0OOOOOOOODO 0000000000OOOOOOOOODO 00000000000O0O0OOOOOODO
00000000OODOODODOOOOODO 00000000000OOOOOOODODO 000000000OOOOODODOOOOON
00000000CO0ODOoODODOOOOOD 00000000000 DOODOOODOODO 0000000000 0ODDOOOOOOD
1085000000807 ARARARRR2 10800000080 ARRR2ARA2 108500000080  ARARARRR2
Q00000000 Q00000000 0000000000 ¢
0000000000 00000000000 0000000000
QRQ0QQ000Q 138888000 0% QP00 00000 0
50000000000 5100000000000 50000000000
0000000000 0000000000 00000000000
QRQ0QQ000Q 135888000 '8% QRQ0QQ000Q
Q00000000 Q00000000090 Q0000000000
Q00000000 Q00009000 Q0QQO0Q000
0F 0000000000 0 0000000 02000000000
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Fig. 5. Optimal (redistribution cost = 3160). Fig. 6. PDA (redistribution cost = 3205). Fig. 7. Cooperative (redistribution cost = 3200).
20, 20
0000 Qoon OoLr00ADAOOOOODGDOD
Q0000 OnoD o QALo0O0ODmoOQooooodn 10000
Lo XeXoRoXoRoNuliuNululn] o ooondoooooooo
0000000 nDDoooo [3e) o¢oooo oo0o0¢oBmo 7 000
15 O0O000000OODDDOOO 15t¢200A0A0A00ODADADOODO 8 8000 = Optimal
¢0QQ0000000OODDOOOD Loxed ooLro ooooAoon
000000000 0OOODDDDOD 0DADOODOOOOO®ADOOAD £ 7000 EPDA
QQQO0000O0O0O0O0O0O0OODODDOOD o¢osrpooooond [eX+XoXoXeN=Ne) =
9$0000000000000DDOOD oAo 00ADQALA0000AGDG = 6000 .
10t ¢o0o000000O@OOOmMOOODDDOD 10;0040000L @00/ A MO0O O 2 Cooperative
$Qo00000OOOOAOODDODD o Ooooed AoAODO oo & s000
9990000000000 DDOOOODN ooso o 00$oooQOPOO 2 000 H Greedy
466600000000 DDOOODD 00AA00A6004040060600 T
QOO0 QQ0000O0OODDDOOODO ooooooonid QA09ODO0O & 3000 = Random
500009000000 Dnnoooo 5 oooADAOQDOAQOOOOAD —
000660000 nnnonoD Q06D AOOD00ALA0AGGADO0 g 2000
00900000 onOnnDn ¢oQooooon QOALOAODO £ 10w
0000000 ¢noD 00000900~ 09AD000QDA0D
000000900 D 0000009000000 00QOOO 0
0 0000000 0r00040004040000000000
0 5 10 15 20 0 5 10 15 20 Corner Center Random
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TABLE |
TIME COMPLEXITY COMPARISON OF ALL DATA REDISTRIBUTION ALGORTHMS.

Optimal Greedy Cooperative Random PDA
O(N?*Mlog(NC)) | O(lp+m)N?) | O((p+ m)N?) | O(mN?) | O(mN3)

large. In sparse networks (where number of data generatasich implies
and/or the number of data items are less), the PDA algorithm Z Z cij < Z Si-
could be modified to reduce the complexity by sending out i g i

advertisements to a few hops only. Or a simple greedy,qq 4| sensor nodes commit all their storage space dis-
heuristic could be used instead of PDA. jointly to different data generators,

C. Performance and convergence analysis of PDA o=
g E ij = E myj,
v J J

Below we provide convergence and performance analysis
of PDA, including its message and time complexity analysi%hich implies

Theorem 2:The PDA will stop in at mostp iterations, Zm - ZS
where p is the number of data generators in the network. - J - v

Proof: We first show that in each iteration, at least one datdis contradicts with the assumption that the total sizenef t
generator would receive commitment more than its number @t items to be redistributed of all the data generatoess |
data items to be offloaded, by way of contradiction. Assuni@@n or equal to the size of the total available storage sjpace
that in the first iteration of PDA, none of the data generattyf‘e network. So at least one data generator finishes offlgadin

receives more commitment than number of its data items. Thagthe first iteration.
is., In subsequent iterations, total data to be offloadey ;)

Zcij < s, Vie{1,2,...p}. and total available storageZ(j m;) get decremented by
r exactly the same amount. Therefore, the result holds faroth
iterations as well. Thus PDA takes at mesiterations. g
Message ComplexityWe calculate the number of transmis-
Z(Z cij) < Z si, sions in PDA. Each iteration there are at most p data gener-
PR 3 ators broadcasting advertisement messages, reachinigeall t

Sum up among all the data generators, we get




N sensor nodes. There are at most p iterations from Theo-
rem 2. So the total number of transmissions of advertisement . R
messages i€)(p?N). In each storage commitment stage, a A
sensor node sends at most p commitment messages. sThe A

number of hops from any sensor node in the network gom "
any data generator node is at m@ét So the total numberg Cooperative
of transmissions of commitment messages {$°0/?). For
the data offloading, there are totﬁl:f:lsi < Nm data
items to offload, each travels at moaf hops, resulting
in total O(N?m) offloading transmissions, where is the
average storage capacity of each sensor node. So the total

number of transmissions (or message overhead) in*PBA ),
O((p2 + ﬁ”L)N2) Corner Center Random

®PDA

. ¢ Greedy

rmance Di

0.01 - A Random

(})

o=

Per
[ ]

Time Complexity.In the storage commitment stage of each
iteration, each sensor node makes an averagemmitments,  Fig. 11. Performance percentage differential under differscenarios.
each of which is towards one of (at mogtdata generators.

So the total N sensors incd?(Nmp) computations. There

are at most p iterations. The total number of commitme#iat, the centralized heuristics (as well as Optimal) are no
computations is thug)(Nmp?). For the data offloading, to suitable for distributed environments, and are considered
offload one of its data items, each data generator chooses Br@nly for performance comparisons with PDA.

sensor node, which take3(N) computations. There are at

most Nm data items. So the total number of computations ) ] ]
in data offloading isO(N2m). Therefore the total time In this section, we first compare the performance of PDA

complexity of PDA isO(Nmp? + N2m), which is of the and other centralized heuristics with that of the optimal so

V. Performance Evaluation

orderO(N?m), sincep can be at most of orded (). lution for the minimum cost flow problem. We then compare
PDA with EnviroStore, an existing data redistribution stiee
D. Centralized Heuristics in sensor networks.

We design a set of centralized and intuitive heurisx, Comparison among Optimal, PDA, and Other Heuristics
tics, namely random algorithm (Random), greedy algorithm

(Greedy), and cooperative algorithm (Cooperative), atet Iaalgorithms. For this purpose, we assume each sensor node has

compare their performances with PDA and Optimal. one unit storage space and adopt a sensor network with grid-
In Random, each (_jata generator randpmly selects 2 Skikk topology (note that our proposed algorithms are ajpplic

sor npode to o_ffloaq 't52 data_l ftems. Its time comple>_<|ty 'Ble to all topologies). We then compare different algorishm

O3 =y 5iN) = O(mN”). It is the most efficient heuristic under various network scenarios wherein data generators’

in terms of time complexity. locations are varied appropriately. To study the scalghilf

. In Greedy, Qata generators _take trn to redistribute the d%%ch algorithm, we vary the number of data generators and
n thef ascend:ggsordzr qf the]:r Illljs.hFor e%cegdaga genearat&rrmber of data items to redistribute in a large scale sensor
It periorms a ordering of all other no ((N )).’ and network (10,000 nodes), and compare the performances of
offloads all the data |te'ms to t_he_closest unoccupied SeNSHarent algorithms. In all cases, the transmission raafje
nodes Q(s;N) for DG i, and tie is broken randomly). SO,q sensor is one unit, the length of each grid edge.

. . H 2 P . =
the “Te corpplexny of Gre?dy 2|Q(pN + Zl’.zl silV) N Visual Performance Comparison.We deploy 400 sensor
O(pN® + NmN) = O((p +m)N~). Note the first equality ;g evenly on &0 x 20 grid network. Fig. 5-9 show

H P . o . . . . .
is due tozézl si < Nm. . ._.the visual comparison of the following algorithms: Optimal
Cooperative takes place in rounds. In each round, S|m|I@ A, Cooperative, Greedy, and Random, with the total re-

o th? Greedy, the Qata generators take turn to redistrt_bete distribution cost as indicated. There are four data geoeyat
data in the ascending order of their IDs. However, unlike tqﬁ the network, located at (8, 10), (12, 10), (8, 9), (12
Gr(_eedy, e_ach data generato_r only offloads one data itemg U Each data generator has 99 data items to offload. The
a time fo its clos_est unoccup_|eo_l sensor node (ties are bro; O different filled shapes correspond to location of the
randgmly). The t|2mehcompleX|tt¥ 'S;he same asdthat of Gfree dur data generators. The unfilled shapes correspond to the
€., o (ép t m%N )(’3 ovx(/jevert IS r(]aur|§t|csten IS 10 pertorMynading area of their respective data generators. Werobse
much better than Greedy as we show in Section V. . that Cooperative and PDA both perform close to Optimal.

Table I shows the time complexity comparison of differenyq, yeyer, the performance of Greedy and Random algorithms
data redistribution algonthms: In terms of time complexit is tar from optimal. This is visibly apparent from the struet
Random< Greedy, Cooperativec PDA < Optimal. Note ¢ otfinading areas for different data generators in theroati

5 . ... solution. Both PDA and Cooperative are able to successfully

Note that we do not account for this message complexity inréléstri- timate this inh t struct Note that the differei
bution cost. Nevertheless, we compare the message ovedigaDA with ~€Stmate this inherent structure. Note a_ e ireremce )
that of EnviroStore in Section V. performance between PDA and Cooperative is not large in

We first visually compare the performances of different



this case. However, as we shall show later in Fig. 12, when 60000
the size of the problem is sufficiently large, PDA outperferm 50 Optimal
Cooperative. In addition, note that Cooperative is an fivieli 50000 - ESOPoA
but centralized heuristic, and thus is not suitable for ficat
deployment.

Performance Comparison Under Various ScenariosWe

—-50 Cooperative
—50 Greedy
40000 | <70 Optimal
~#=70 PDA

30000 | —-70 Cooperative
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comparison, and compare different algorithms under the fol 20000 |

lowing scenarios: 1) all data generators are located at one @ —+-s0PDA
corner of the network; 2) all data generators are located 10000 - / +:Z:pav(
at the center of the network; 3) all data generators are
randomly placed in the network. Fig. 10 compares the total 0 \ \ \ \
redistribution cost of each algorithm under these scesario 20 40 60 80
. . . Total Number Of Data Generators

We observe that, all the algorithms incur the largest redis-
tribution cost when all the data generators are at one corner
followed by when all the data generators are at the centdr, a{;ﬁpt\'/vii
the cost is the smallest when data generators are randorrﬁy '
placed in the network. This is as expected, since with data
generators in one corner, most of the data items have dénsor networks, with heavy data redistribution requirmse
be offloaded to distant nodes, Compared with the other twowe observed with our simulations that the proposed Po-
scenarios. Similarly, the random location results in lesalt tential Field Based data redistribution algorithm perferm
redistribution cost compared to the center scenario. Ithall comparable to the optimal. In all the scenarios considered,
cases, the performance trend observed is given by Optimathe difference between the optimal performance and the
PDA > Cooperative> Greedy> Random. performance obtained by PDA is less thH.
Performanc_e Percentagg Differential (PPINext, we ex- E? Comparison between PDA and EnviroStore[18]
plore how different algorithms perform compared to Optima . ) o
under different scenarios. We calculate therformance per- _ We implement PDA using TinyOs 2.1, and compare it with
centage differentiabf each algorithm, which is defined asEnviroStore using TOSSIM simulatorWe first provide an
the difference of the cost between the algorithm and Optim&verview of EnviroStore.
divided by the cost of Optimal. Fig. 11 shows the PP@verview of EnviroStoreEnviroStore is a cooperative stor-
of Greedy, Random, Cooperative, and PDA algorithms. Waye system designed for disconnected sensor networkse wher
observe that the performance difference of PDA is witsfih  the sensed data is stored inside the network until it is ctelte
of the optimal performance in all the scenarios. Also notey human operator or data mule. EnviroStore addresses how
that as the location of data generator is changed from cornefully utilize the storage of the network in an energy-édfitt
to random, the optimal redistribution cost decreases, limit tway. To do this, each node monitors its own remaining storage
PPD increases in almost all cases. This is because the dptianad exchanges this information periodically with its one-
solution seems to have a better structured offloading area f@p neighbors. When its remaining storage is less than a
each data generator in center and random scenarios, whicpasticular threshold and the imbalance (or differenceyben
difficult to estimate using either PDA or the heuristfcs the average remaining storage of its neighbors and its own

Varying Number of Data Generators and Number of remaining storage is larger than another threshold, the nod
Data Items. Below we study the performance comparisobegins to offload some amount of data to one of the under-
by varying number of data generators and data items to loaded neighbors. However, if several nodes simultangousl
redistributed. We consider B00 x 100 network, with 10000 offload data to the same node, this node will be overloaded
sensor nodes each with unit storage capacity. We vary tinestorage and will offload data back to its neighbors, causin
number of data generators from 20, 40, 60 to 80 and totahnecessary energy and bandwidth consumption. To prevent
number of data items of each data generator from 50, 70 to #iis so called data ping-pong phenomenon, in EnviroStore,
The data generators are randomly placed in the network. Frdme amount of data offloaded is bounded using appropriate
Fig. 12, we observe that PDA performs comparable to Opthresholds based upon the imbalance value mentioned above.
mal and Greedy algorithm performs worse than CooperativienviroStore also provides reliable unicast for nodes totier
The difference between the redistribution algorithms isnsedata. The simulations in [18] show significant improvement
clearly when there are more number of data generators withthe amount of data collected using EnviroStore.

larger amount of data items to be redistributed. As the m"mtﬁouting Support in PDAOne difference between PDA and
of data generators and the total data items increase, th@PPBiroStore is that in PDA, nodes rely upon routing tables

the centralized heuristics increase significantly cormb_widﬂ for storage commitment and data offloading. However, the
PDA. Therefore, PDA is suitable for large scale data intensi

90 Optimal

Varying number of data generators and data item)inx 100

"EnviroStore is implemented in TinyOS 1.x. The major differe between
5Due to space limitations, we omit the visual performance mamison for 1.x and 2.x is that 2.x includes layer-2 source addressdweipackets while
corner and random scenarios. 1.x does not, which does not affect the algorithm comparigathis paper.



necessary routing information can be readily obtained in ad 18000
vertisement and commitment stages of PDA, without costing 16000 -
additional overhead messages. In advertisement stagey whe
a sensor receives the advertisement message from a negighbor
it records the neighbor as the next hop to the data generator
of the advertisement message. This information is used in
storage commitment stage to route the commitment messages
back to the data generators. Meanwhile, in storage commit-
ment stage, a node also constructs routing information for 4000 |
the committing sensor nodes, and this information is used fo 2000
data delivery in data offloading stage. In both advertiseamen 0 ) ) ) ) ) )
and commitment stages, a TTL field is used in the message to 200 400 600 800 1000 1200 1400 1600
record the number of hops between nodes. Like EnviroStore, Simulation Time (s)
reliable communication is also implemented in PDA, in both _ o .

. . Fig. 13. Comparison of total redistribution cost betweewit$tore and
commitment and data offloading stages. PDA.

T T
EnviroStore —+—

14000 -
12000 -
10000 -
8000 -
6000

Total Redistribution Cost

Simulation SetupWe adopt the grid-like sensor deployment

in [18], with 36 nodes placed in a grid manner; the only
difference being that all the nodes are connected in thew
deployment, since we focus on in-network data redistrdsuti “’
in this paper. In the deployment, each sensor can commenica,, |
directly with its neighbors only. Among the 36 nodes, two o |
nodes are configured as data generators, which periodicall{f |
generate data and create input for both EnviroStore and PDAww
For EnviroStore simulation, we adopt all the default thodgh ™ |
values in [18], i.e., the remaining storage threshold i$8,9
imbalance threshold (between the average remaining &orag
of its neighbors and its own remaining storage) is 0.05Senod (a) (b)

advertisement threshold is 0.01S (S is the total storage of a

node, which is 16KB). The size of each data packet is set@g. 14. 3D comparison of data redistribution between ErSfore and
22 bytes in both PDA and EnviroStore simulati®nEhe data PDPA. (@) PDA, (b) EnviroStore. Here, the z-axis represehts amount of

. . . data redistributed to sensor nodes at different grid lonati When using
generating rate is set as 64 byteS/SeC in both schemes. PDA, most of the data gets redistributed to nodes near the &@@&tions,

unlike in EnviroStore.

18000 ;
16000 |
14000
12000 7
10000

8000 -+

Comparison of Redistribution Cogh this part, we compare
the total redistribution cost (using Equation 1) of Envit@®

and PDA at various values of simulation running time. Th ) L
time for each iteration in PDA is set to 80 seconds. Fig. ke effective communication between data generators dnd al
shows that the total redistribution cost of PDA is much sarall Other sensor nodes leading to a more energy-efficient data

than that of EnviroStore for most values of the simulatioffdistribution. Therefore, PDA seems to be able to utilize
time, indicating PDA is more energy-efficient than Envirosthe network storage better than Envirostore. In additid¥ P

tore in terms of the solution quality. There are mainly tw&an naturally eliminate data ping-pong problem, reducireg t
reasons for this. First, in EnviroStore, each sensor (il UNNEcessary energy consumption incurred in EnviroStore.

the data generator) tends to redistribute data to far-awdgsi Comparison of Message Overheatbove comparison only
even when the nearby nodes have not exhausted their stofag@ises on the quality of the solution achieved by PDA
capacities. In addition, the sensor nodes to which the datad EnviroStore. Here, we study the message overhead of
is offloaded, can again redistribute this data to other nodg®sth schemes. The overhead messages in PDA include the
Such behavior leads to ping-pong phenomena and couldvertisement messages and the storage commitment mes-
possibly result in data redistribution loops. While in PDAsages while the overhead messages in EnviroStore includes
the DGs offload all of their data to nearby nodes, and thegeriodic advertisement messages sharing remaining s®rag
sensor nodes do not redistribute the data items avoidirgr pimmong nodes. From the Fig. 15 we observe that the message
pong phenomena and loops. Fig. 14 depicts this performams@rhead of PDA is less than that of EnviroStore. The
comparison in detail. Second, EnviroStore only requireheareason is that PDA does not perform periodic advertisement
node to talk with its one-hop neighbors. Whereas in PDAyessages, instead PDA incurs advertisement at the beginnin
the advertisement and storage commitment phases enajileach iteration. Therefore, a decrease in the time period o
one iteration (for eg. from 320 to 160 seconds in Fig 15) leads
8In [18], the size of each data is 32 bytes, which requires tata chessages t0 an increase in the occurrence frequency of advertisement
to transmit each data (one data message can transmit 29dfydesa). This stages, resulting in larger overhead over a period of fime
results in a waste of message space and additional energyroption for . . . . .
data delivery. Thus, we set the data size to 22 bytes so tbahibe delivered If the time period of one iteration is reduced further, at som
using one data message (plus 7 bytes header). small value the overhead of PDA would become comparable
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Comparison of total overhead messages betweemdStwre and

to that of EnviroStore.

VI. Conclusion and Future Work

[4] Martin Erwig and Fernuniversitat Hagen. The graph vaiodiagram
with applications.Networks 36:156—-163, 2000.

[5] J. Gao, L. Guibas, N. Milosavljevic, and D. Zhou. Distribd resource
management and matching in sensor networksrbt. of IPSN 2009

[6] A. V. Goldberg. Andrew goldberg’s network optimizatioiibrary.
http://www.avglab.com/andrew/soft.html.

[7] A. V. Goldberg. An efficient implementation of a scalingmmum-cost
flow algorithm. Journal of Algorithms 22(1):1-29, 1997.

[8] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flcal
gorithms by successive approximationMathematics of Operations
Research15(3):430-466, 1990.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. ergn
efficient communication protocol for wireless microsens@tworks.
In Proc. of HICSS 2000

[10] Bruce Hoppe and E. Tardos. The quickest transshipmeoiblgm.
Math. Oper. Res.25(1):36—-62, 2000.

[11] K. R. Chowdhury I. F. Akyildiz, T. Melodia. A survey on véless
multimedia sensor networks. Computer Networks51(4):921-960,
2007.

[12] J. D. JacksonClassical EletrodynamicsJohn Wiley and Sons, third
edition, 1999.

[13] Samir Khuller and Yoo ah Kim. Algorithms for data migaat with
cloning. In SIAM Journal on Computingpages 27-36. ACM Press,
2003.

[14] V. Lenders, M. May, and B. Plattner. Density-based asy.cA robust
routing strategy for wireless ad hoc networkSEE/ACM Transactions
on Networking 16:852—-863, 2008.

In this paper, we study the data redistribution problem 5] s. Li, V. Liu, and X. Li. Capacity of large scale wirelesgtworks

sensor networks. Our results are two-fold. First, we shat th
the data redistribution problem is equivalent to the mimimu

under gaussian channel model. fnoc. of MOBICOM 2008
[16] Changlei Liu and Guohong Cao. Distributed monitoringl aaggrega-
tion in wireless sensor networks. Rroc. of Infocom 2010

cost flow problem, which can be solved optimally in &7] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and anBovic.

centralized manner. Second, for a distributed algorithra, w

have applied the idea of electrostatic potential field toettgy

a distributed data redistribution mechanism. Through Emu[18] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic.

Design, implementation, and evaluation of enviromic: Arage-centric
auio sensor networkACM Transactions on Sensor Netwqrkg3):1—
35, 2009.

Eostiore:

tions, we show that our distributed algorithm performs very A cooperative storage system for disconnected operatioseimsor

close to the optimal centralized solution. In all the scasar [19]
considered, the difference between the optimal performanc

and the performance obtained by PDA is less th#n Using

TOSSIM simulator, we show that our proposed distributed

algorithm performs better than the existing data redistiin

technique (EnviroStore) in terms of both the solution gyali

and overhead messages.

In future, we plan to explore the effect of spatio-tempora#s] A. Pinar and B. Hendrickson.

networks. InProc. of INFOCOM 2007

K. Martinez, R. Ong, and J.K. Hart. Glacsweb: a sensdwork for

hostile environments. IfProc. of SECON 2004

[20] N. T. Nguyen, A.-l. A. Wang, P. Reiher, and G. Kuennindedricfield-

based routing: A reliable framework for routing in man&t€&M Mobile

Computing and Communications Revje8(2):35-49, 2004.

[21] J. Orlin. A faster stronly polynomial minimum cost flowgarithm.
Operations Research11(2):338-466, 1990.

[22] C.H. Papadimitriou and K. Steiglitz. Combinatorial tiopization:
Algorithms and complexitiesPrentice Hall 1982.

Interprocessor commutigoa with

correlations among the data generated in sensor network on limited memory. IEEE Transactions on Parallel and Distributed

the performance of the proposed redistribution algorith

Systems15:606-616, 2004.
4] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brein®ata

Also, we have only considered data redistribution due t0~ mules: Modeling a three-tier architecture for sparse senstworks.

storage overflow. However, data redistribution would alsg

In Proc. of SNPA 2003
Stephen F. Siegel and Andrew R. Siegel. Madre: The mgraoare

be_needed in case of energy depletion at the sensor noél%sé,data redistribution engine. IRroc. of PVM/MPI 2008
which we plan to explore in future. Energy depletion triggger [26] S. Soro and W. Heinzelman. A survey of visual sensor ngtal

redistribution would lead to multiple redistribution iasices

for the same data item over time, and network lifetime Woul[an

be an appropriate metric to optimize in that case.

VIlI. ACKNOWLEDGEMENT

We would like to thank Dr. Bayram Yildirim for helpful
discussions. We also thank Ashok Madhvesh for help wi

Matlab.

REFERENCES

[1] G. Aathur, P. Desnoyers, D. Ganesan, and P. Shenoy.-Iditrgpower
data storage for sensor networks. Rroc. of IPSN 2006

[2] R. Ahuja, A. V. Goldberg, J. Orlin, and R. E. Tarjan. Findiminimum-
cost flows by double scalindviathematical Programmings3:243-266,
1992.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Ofiietwork
Flows: Theory, Algorithms, and Application®rentice Hall, 1993.

Bo

Advances in Multimedja2009.

Affan A. Syed, Wei Ye, and John Heidemann. T-lohi: A nelass of

mac protocols for underwater acoustic sensor networksProt. of

INFOCOM 2008

[28] E. Tardos. A strongly polynomial minimum cost circidet algorithm.
Combinatorica 5(3):247-255, 1985.

[29] S. Toumpis. Mother nature knows best: A survey of recasults

on wireless networks based on analogies with physi&omputer

Networks 52:360-383, 2008.

I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Cork®ata

collection, storage, and retrieval with an underwater senstwork. In

Proc. of SenSys 2005

[31] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, dtran Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensetwork.
In Proc. of OSDI 2006



