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Abstract—Many of the applications running in cloud data
center are data intensive, processing large amount of data inside
the data center. File replication, which brings data files closer to
the computing virtual machines (VMs), is an effective strategy
that reduces data access latencies and bandwidth consumption,
thus saving energy in data centers. In this paper, we formulate
and study the file replication problem (FRP) in data center, with
the goal of minimizing the total energy consumption of data file
access inside data centers. In contrast to all the existing work
of data replication in data centers, which are mainly heuristic
based, we design a time-efficient approximation algorithm with
performance guarantee for energy consumption in file replication.
In particular, our file replication algorithm is based on a novel
concept called “profit”, and optimizes over a submodular function
that can be computed efficiently. Our algorithm yields the total
profit of file replication at least half of what is achieved by an
optimal replication solution. We also design two energy- and
time-efficient heuristic file replication algorithms. Via extensive
simulations using CloudSim, a popular simulation framework for
cloud computing, we compare all the algorithms under different
network scenarios. We show that the approximation algorithm
outperforms the other two under different network parameters,
while all three effectively reducing the total energy consumptions
of data access in data centers.

Keywords – File Replication, Approximation Algorithms,
Cloud Data Centers, Energy-Efficiency

I. Introduction
Cloud computing, which provides computing applications,

platforms, and infrastructures as services, has emerged as a
popular and mainstream technology in today’s IT industry.
The current cloud data centers, such as Amazon EC2 and
Microsoft Azure, support a large number of Internet applica-
tions including social networks, video streaming, and search
engines. The cloud-based data centers enable individual and
business users to easily obtain aforesaid services with pay-as-
you-go manner, thus saving the cost of maintaining their own
compute infrastructure.

All above applications process extreme large amount of
data [17]. When users submit jobs to cloud data centers
for processing, virtual machines are allocated to execute
corresponding application programs, which process the large
amount of data. A virtual machine (VM) running on top of
physical machine (PM) is an OS environment with its dedi-
cated resources such as CPU cycles, memory, and bandwidth,
and is isolated from other parts of the PM. Such isolation
enables multiple OS environments on the same PM, allowing
that applications previously running on multiple PMs to be

consolidated into a single PM. With virtualization, a cloud
data center is able to allocate and utilize its resources more
efficiently and provide services to user applications in an
effective manner.

The execution of the user applications needs the input
data of the application available locally for its allocated VM.
Therefore how to efficiently locate and access the data for
the VMs becomes very important in data centers. Meanwhile,
power consumption is still one of the biggest concerns in
any data center [15]. Consequently, in cloud data center with
thousands of PMs and switches and hundreds of thousands of
network links, data file access could consume large amount of
energy power in data center.

Data replication, which brings data files closer to the com-
puting VMs, is an effective strategy that reduces the data ac-
cess latencies and bandwidth consumption, thus saving energy
in data centers. There have been a few research that employ
data replication techniques to reduce the energy consumption
[2], [3], [9], [5], data access delay [2], [3], [13], as well as
achieving fault tolerance [8] in data centers. However, almost
all of them design heuristic algorithms that do not offer any
performance guarantee. Consequently, it is not clearly how
performance improvement can be achieved all the time with
those heuristic algorithms. In contrast, we design a time-
efficient approximation algorithm with performance guarantee.
We prove that our data replication algorithm reduces the total
energy consumption of data access in data center by at least
half of that achieved by an optimal replication solution. Based
on a novel concept called profit, our algorithm optimizes over
a submodular function that can be computed efficiently. We
also design two other energy- and time- efficient heuristic data
replication algorithms based on the access patterns of pods
and PMs in the data centers. We show that the approximation
algorithm outperforms the other two under different network
parameters, while all three effectively reducing the total energy
consumptions of data access in data centers.

Paper Organization. The rest of the paper is organized as
follows. Section II gives an overview of the related literature
and introduces the fat-tree data center topology adopted in
this paper (however, our algorithms are designed for general
graphs, therefore are applicable to any data center topologies).
In Section III, we formulate the FRP problem. Section IV
presents the different algorithms for FRP, including the ap-



proximation data replication algorithm and two heuristic algo-
rithms. In Section V, we compare all the proposed algorithms
and discuss the results in details. We conclude the paper and
discuss possible future work in Section VI.

II. Background

Related Work. Ping et al. [13] was one of the first that
proposed to replicate data across data centers. Their proposed
data replica placement algorithm can efficiently achieve near
optimal data access delay. The location of replicas for each
data object is determined by periodically processing a log of
recent data accesses, and by employing a weighted k-means
clustering of user locations and deploying replica closer to the
centroid of each cluster.

Li et al. [8] proposed a replication-based reliability model,
which analyzes data storage failures and data loss probability
to determine where to create replica copies. Dong et al. [5]
proposed replication strategy to minimize power consumption
in the backbone network across multiple data centers. They
formulated the problem as linear programming and determined
optimal points of replication based on the data center traffic
demands and popularity of data objects. Boru et al. [2], [3]
proposed a data replication technique for cloud computing
data centers for joint optimization of energy consumption and
bandwidth capacity of data centers as well as inside each data-
center. Lin et al. [9] proposed a replication placement scheme
called eStor, under which data was placed in a constrained
layout. Some replicas are placed in a sequential way, while
other replicas are placed in a random fashion. eStore allows
users to configure the replication level and number of replicas,
and turn off some nodes without data loss.

However, almost all above research does not provide any
performance guarantee for the energy consumption incurred
during the data file replication. In current cloud data centers
wherein user data and applications are massive and complex
while energy consumption is enormous, it is important that the
designed file replication algorithm can provide provable guar-
antee therefore it calls for new replication algorithms. In this
paper, we propose a time-efficient approximation algorithm
with provable performance guarantee for energy consumption
in file replication. Using a novel concept called profit, we prove
that our algorithm obtains the profit by at least half of what
is achieved by an optimal algorithm. Note that the concept of
profit in this work shares the spirit of the concept of profit
in economics, which refers to the net gain of taking certain
economic activities [10].

Cloud Data Center Topology. We adopt the fat-tree network
[1] as the cloud data center topology, as it is widely used
in data centers to interconnect commodity Ethernet switches.
However, the FRP and its algorithms are applicable to any
types of data center topologies. A k-ary fat-tree is shown
in Fig. 1 with k = 4, where k is the number of ports of
each switch. There are three layers of switches: edge switch,
aggregation switch and core switch from bottom to top. The
lower two layers are separated into k pods. A pod is a

Core	  Switches	   

Aggrega0on	  
Switches 

Edge	  Switches 

:	  PM 

:	  VM	  

1 2 5 3 4 7 8 9 10 11 12 6 15 16 13 14 

v4	  v3	  v2	  v1	  

Data	  Center	  
DB 

Fig. 1. A k-ary fat tree data center with database (Data Center DB), which
stores all the data files in the data center. Here, k = 4 and it has 16 PMs.
There are four VMs that execute users’ submitted jobs.

modular unit of compute, storage, and networking resources
that works as a unit in data center. Each pod contains k/2
aggregation switches and k/2 edge switches, which form a
complete bipartite graph in between. Each edge switch is
directly connected to k/2 PMs; and each of its remaining k/2
ports is connected to each of the k/2 aggregation switches
from the same pod. There are k2

4 k-port core switches, each
of which is connected to each of k pods. In general, a k-ary
fat-tree data center contains k3

4 PMs.
The data center has its own database called Data Center DB,

as shown in Fig. 1. The Data Center DB stores all the data files
that are needed by the user applications running on this data
center. It is connected to all the core switches. This applies
to applications such as search engine wherein information is
only queried by users, and is in consistent with the data center
layout proposed in [2], [3]. However, our problem formulation
and solutions work for a more general scenario, wherein the
data files are initially produced and placed on any PMs.
This applies to applications such as social networking where
information is generated by users. Since in both scenarios, the
data files are read much more frequently than updated, we
assume that data replicas need not be updated.

III. File Replication Problem (FRP) in Data Center

System Model. We model a cloud data center as a graph
G(V,E), where V = Vp ∪ Vs includes the set of PMs Vp
and the set of (edge, aggregate, and core) switches Vs. Each
edge in E connects either one switch to another switch or a
switch to a PM. We refer to the edges between core switches
and aggregation switches as core network links, between ag-
gregation switches and edge switches as aggregation network
links, and between edge switches and PMs as access network
links. Without loss of generality, let Vp = {1, 2, ..., |Vp|},
and Vs = {|Vp| + 1, |Vp| + 2, ..., |V |}. There are l data files
F = {f1, f2, ..., fl} in the data center, where data file fj



(1 ≤ j ≤ l) is originally produced and stored at its source
PM Sj ∈ Vp. The size of fj is sj . Note that a PM can be
the source PM of multiple data files. Let mi be the storage
capacity of PM i.

TABLE I
NOTATION SUMMARY

Notation Explanation
Vp The set of physical machines (PMs) in the data center
Vs The set of switches in the data center
mi The storage capacity of PM i
eij The energy cost between PM (or switch) i and j
F The set of l files fj (1 ≤ j ≤ l) in the data center
sj The size of file fj
aij The request frequency of PM i towards fj
Fi The set of files that is finally stored at PM i
s(Fi) The size of the set of files that is stored at PM i
Aij PM i’s access PM for file fj
E(F) The energy consumption of data access

for F = {F1, F2, ..., F|Vp|}
n The number of jobs submitted to the data center
ni The number of jobs allocated to PM i
Fik The set of files needed by kth job on PM i

There are n user jobs that are submitted to the cloud data
center, and the VMs in PMs are allocated to process these
jobs. Suppose that PM i is allocated ni jobs {ti1, ti2, ..., tini},
wherein job tik (1 ≤ k ≤ ni) requires some of the data files
Fik ⊆ F as input files for execution.

∑|Vp|
i=1 ni = n. Let aij be

the number of times that PM i needs to access data file fj in
order to execute all its ni jobs. That is, aij =

∑ni
k=1 xk, where

xk = 1 if fj ∈ Fik and xk = 0 otherwise. aij is also referred
to as the request frequency of PM i to file fj . A file with a
larger request frequency therefore needs to be brought closer
to the PMs that need them the most, which can be achieved
by our data replication algorithm proposed in Section IV.
Energy Model. We measure the power consumption of one
time access of data file fj from PM i as the minimum number
of switches existing between PM i and Sj , the source PM
of fj . This is in accordance to the finding made by Meng
et al. [11], which observes that the energy consumption of
communication inside data center is proportional to the num-
ber of switches the communication traverses. However, our
problem and algorithm can be easily adjusted to accommodate
the scenario that different switches consumes different amount
of energy (for example, high-end core switches consume more
power than aggregation and edge switches.).

Let eij denote the energy consumption between any two
nodes (switches or PMs) i ∈ V and j ∈ V . First, we calculate
the total energy consumption in the data center to execute all
the jobs without any data replication, which is the sum of
energy consumption of each PM accessing each data file from
its source PM. Denote it as E init, we have

E init =

|Vp|∑
i=1

l∑
j=1

aij · eiSj . (1)

Problem Formulation. The objective of the FRP is to min-
imize the total energy consumption of data access in the

data center by replicating data files into different PMs while
satisfying the storage capacity of each PM. Let’s give the
following definitions and notations.

File Sets and Set of File Sets. Define file set of a PM as the
set of data files that this PM stores (including the initial files
it stores as a source PM). For PM i, let Fi ⊆ F denote its file
set, and let s(Fi) =

∑
fj∈Fi s(fj) denote the total size of data

files in Fi. Let F = {F1, F2, ..., F|Vp|} denote the set of file
sets. Initially, Fi is the set of files that have PM i as source
PMs. That is, Fi =

⋃
1≤j≤l xi, 1 ≤ i ≤ |Vp|, where

xi =

{
{fj} if (i == Sj),
φ (empty set) otherwise.

We denote the above initial file set of each PM and the
set of file sets as F init

i (1 ≤ i ≤ |Vp|) and F init =
{F init

1 , F init
2 , ..., F init

|Vp| }, respectively. Table I shows all the
notations used in the paper.

Energy Consumption of Data Access in Data Center. With
replication, multiple copies of the same data file can exist in
the data center. For the purpose of energy saving, each PM
accesses the copy that incurs the smallest amount of energy.
Given any F and any PM i, we refer to the PM that stores
a copy of fj that i can access fj with smallest amount of
energy as i’s access PM for fj , and denote it as Aij(F).
That is,

Aij(F) = arg min
k

(eik,where j ∈ Fk).

Given any F = {F1, F2, ..., F|Vp|}, the minimum energy
consumption of data access in data center is therefore

E(F) =

|Vp|∑
i=1

l∑
j=1

aij · eiAij(F ). (2)

E init in Equation 1 can then be rewritten as E(F init).

Objective of FRP. The objective of FRP is to select a set of
|Vp| file sets F = {F1, F2, ..., F|Vp|}, such that the minimum
total energy consumption of data access in data center

Emin = minFE(F) (3)

can be achieved under the storage capacity constraint that

s(Fi) =
∑
fj∈Fi

sj ≤ mi,∀i ∈ Vp.

The FRP is NP-hard [7], [14]. Below we design time-
efficient approximation algorithm as well as heuristic algo-
rithms to solve it.

IV. Algorithms for FRP
A. An Approximation Algorithm.

Definition 1: (Profit of Replicating file fj at PM i under
F , ∆E(F , fj , i)) The profit of replicating file fj at PM
i under F = {F1, F2, ..., F|Vp|}, denoted as ∆E(F , fj , i),
is the reduction of total energy cost in the data center



when placing a copy of fj at PM i divided by the size
of fj s(fj), given that the current set of file sets is F .
Let F

′
= {F1, F2, ..., Fi−1, Fi ∪ {fj}, Fi+1, ..., F|Vp|}. Then,

∆E(F , fj , i) =
(
E(F)− E(F

′
)
)
/s(fj). �

Obviously, in above definition, if fj ∈ Fi, i.e., a copy of
fj is already located at PM i, then ∆E(F , fj , i) = 0. The
intuition behind the “profit” is that replicating a file into a PM
is more profitable if this reduces more energy consumption
of file access in the data center as well as the file has a
smaller size (so that less storage space of a PM it occupies).
We therefore should choose a file-PM pair for replication that
achieves the maximum reduction of energy consumption while
costing least amount of storage space for the replicated file.

Algorithm 1 below is our “profit”-based greedy algorithm,
which takes place in rounds. In each round, it decides that
by replicating which file at which PM, it can reduce the total
energy of data access the most (Line 5-15). Here we refer to
such a file and PM in that round as target file and target PM,
respectively. This continues until either there is no storage
space available at any PMs for file replication, or it can no
longer reduce the total energy energy by replication (Line 1).
Let’s denote the set of file sets produced by Algorithm 1 as
Fg = {F g

1 , F
g
2 , ..., F

g
|Vp|}.

Algorithm 1: Data Replication Algorithm.
Input: A data center G(V,E) with l data files and n jobs.
Output: Fg = {F g

1 , F
g
2 , ..., F

g
|Vp|} and E(Fg).

Notations:
p: the target PM in each round
f : the target file in each round
profit: the profit of placing f at p in each round

0. Calculate initial energy consumption and sets of
file sets before replication:

Find F init
i , 1 ≤ i ≤ |Vp|;

F init = {F init
1 , F init

2 , ..., F init
|Vp| };

Calculate E(F init);
F g
i = F init

i , 1 ≤ i ≤ |Vp|;
Fg = {F g

1 , F
g
2 , ..., F

g
|Vp|};

smin = min1≤j≤ls(fj);
1. while

(
∃k, 1 ≤ k ≤ |Vp|, s.t. mk − s(F g

k ) ≥ smin

)
2. p = −1;
3. f = −1;
4. profit = 0;
5. for (i = 1 to |Vp|)
6. (for j = 1 to l)
7. if (fj /∈ F g

i and s(F g
i ) + s(fj) ≤ mi)

8. if (∆E(Fg, fj , i) > profit)
9. profit = ∆E(Fg, fj , i);
10. p = i;
11. f = fj ;
12. end if;
13. end if;
14. end for;
15. end for;
16. if (p == −1)

17. break;
18. end if;
19. F g

p = F g
p ∪ {f}; /* Update PM p’s file set*/

20. E(Fg) = E(Fg)− profit; /* Update energy */
21. end while;
22. RETURN Fg = {F g

1 , F
g
2 , ..., F

g
|Vp|} and E(Fg).

Time Complexity of Algorithm 1. The initialization stage
(Line 0) takes O(|Vp|3 + |Vp| · l), as finding minimum en-
ergy consumption between any two PMs takes O(|Vp|3), and
calculating the total energy consumption without replication
(Equation 1) takes |Vp| · l. The while loop (Line 1) takes about∑

1≤i≤|Vp|mi∑
1≤j≤l s(fj)/l

rounds, which can be upper-bounded by |Vp|·m̄
with m̄ being the average storage capacity of a PM. Each
round takes at most (|Vp|2 · l), since it iterates over all PM-file
pairs to decide which file is replicated into which PM, and it
takes O(|Vp|) to calculate ∆E . Therefore, the time complexity
of Algorithm 1 is O(|Vp|3 + |Vp| · l + |Vp| · m̄ · |Vp|2 · l) =
O(|Vp|3 · m̄ · l).

Submodularity. A set function φ : 2U → N is called
submodular if for every A ⊆ B ⊆ U and e ∈ U − B it
holds that

φ(A ∪ {e})− φ(A) ≥ φ(B ∪ {e})− φ(B).

Next we prove that E(F) is submodular when all the files
have the same unit size.

Theorem 1: E(F) is submodular when sj1 = sj2 = 1 ∀
1 ≤ j1 6= j2 ≤ l.
Proof: In each round of Algorithm 1, it selects a data file fj
and places a copy of it into the storage of PM i. It is equivalent
to say that a variable Dijk is selected, where 1 ≤ i ≤ |Vp|,
1 ≤ j ≤ l, and 1 ≤ k ≤ mi, which indicates that fj is
placed in the kth storage slot of PM i. Therefore, Algorithm 1
essentially selects a sequence of such variables. Then we can
rewrite E(F) as E(A), where A is the set of variables selected
so far. Next we prove that E(A) is submodular.

Let U be the entire set of variables selected after the
algorithm, and let A ⊆ B ⊆ U . Let Dijk ∈ U − B.
Since E(A) is a minimization function, we need to show that
E(A)− E(A ∪ {Dijk}) ≥ E(B)− E(B ∪ {Dijk}).

Let Ej(A) denote the total energy consumption accessing
fj after A is selected. Since Dijk can only possibly affect the
energy consumption accessing fj , we only need to show that
Ej(A) − Ej(A ∪ {Dijk}) ≥ Ej(B) − Ej(B ∪ {Dijk}). This
is indeed true since in each round of Algorithm 1, it finds the
PM-file pair that reduces the energy consumption the most.

Next we show that Algorithm 1 delivers a solution whose
total “profit” is at least one half of the optimal “profit”. The
proof technique used below is similar to that used in [12]
for a closely related problem of data replication in data grid
scientific applications.

Theorem 2: Given any instance of FRP, let E init be the
total energy consumption of data access without replication,
Emin be the optimal total energy consumption of data access



with replication, and Eg be the total energy consumption of
data access given by Algorithm 1. We have

E init − Eg
E init − Emin

>
1

2

when all the files have the same unit size.
Proof: Let L be the total number of rounds in Algo-
rithm 1. And let the sequence of selections in Algorithm 1 be
{ng1f

g
1 , n

g
2f

g
2 , ..., n

g
Lf

g
L}, with ngi f

g
i indicating that at round i,

data file fgi is replicated at PM ngi . Let the optimal sequence
of selections be {no1fo1 , no2fo2 , ..., no

Lf
o
L}, with noi f

o
i indicating

that at round i, data file foi is replicated at site noi . Let
O = E init − Emin and C = E init − Eg be the profit from
optimal algorithm and Algorithm 1 respectively.

Consider a new data center graph G′, where the storage
capacity of each PM i is changed from mi to 2mi. For each
PM i, let its first mi storage slots store the data files obtained
in Algorithm 1, and its second mi storage slots store the data
files selected in optimal algorithm. Now we calculate the profit
O′ for G′. O′ ≥ O, because each site in G′ stores extra data
files beyond the data files stored in the same PM in G.

Let the sequence of selections in G′ be
{ng1f

g
1 , n

g
2f

g
2 , ..., n

g
Lf

g
L, n

o
1f

o
1 , n

o
2f

o
2 , ..., n

o
Lf

o
L}. The profit

after the first L selections is C. For the second L selections,
we need to calculate the profit when adding noi f

o
i (1 ≤ i ≤ L)

on {ng1f
g
1 , n

g
2f

g
2 , ..., n

g
Lf

g
L, n

o
1f

o
1 , n

o
2f

o
2 , ..., n

o
i−1f

o
i−1}. From

Theorem 1, it is less than the profit when adding noi f
o
i on

{ng1f
g
1 , n

g
2f

g
2 , ..., n

g
i−1f

g
i−1}. According to Algorithm 1, the

latter is less than the profit due to the addition of ngi f
g
i based

on the same sequence of {ng1f
g
1 , n

g
2f

g
2 , ..., n

g
i−1f

g
i−1}. Thus the

sum of the profits due to selection of {no1fo1 , no2fo2 , ..., no
Lf

o
L}

is less than or equal to C too. Therefore O is less than or
equal to O′, which is less than or equal to 2 times of C.

B. Heuristic Algorithms.

We further propose two other time-efficient heuristic file
replication algorithms, and compare them with the approxi-
mation algorithm via simulations.
Local Greedy Algorithm. In Local Greedy, it replicates each
PM’s most frequently requested data files in its local storage.
That is, for PM i with mi storage capacity, it places the mi

data files (out of the l files) that have the highest request
frequencies by PM i. Using a heap, finding the top mi

files from l files take O(l + mi · logl). Therefore it takes
O(|Vp| · (l + m̄ · logl)) for all the |Vp| PMs, where m̄ is
the average storage capacity of a PM. After this replication,
calculating the total energy cost is |Vp| · l · |Vp| · m̄, since for
each PM-file pair, finding a copy of this file that is closest to
the PM takes |Vp| · m̄ time. Therefore the time complexity for
the Local Greedy is O(|Vp|2 · m̄ · l).
Pod-Based Greedy Algorithm. In this algorithm, it first finds
the aggregate request frequency of each file in each pod, which
is the sum of the request frequencies of all the PMs in this pod
for that data file. Then in each pod, it replicates the data files
with the highest aggregate request frequency that are allowed
by the total storage capacity of that pod. Specifically, we start

with the file with the highest aggregate frequency, and place a
copy of it to the PM that has the highest request frequency to
it. If this PM is full, it tries the PM with the second highest
request frequency to this file, etc. This finishes until all those
data files are placed into the pod. Finding the aggregate request
frequencies takes O(|Vp|·l), placing replica copies of data files
into all the pods takes O(|Vp| · l), and calculating the total
energy cost is |Vp| · l · |Vp| · m̄. Therefore the time complexity
for the Pod-Based Greedy is O(|Vp|2 · m̄ · l).

V. Performance Evaluation

Simulation Setting. In this section, we compare the perfor-
mances of the three file replication algorithms. We refer to
our approximation algorithm as Profit, the pod-based greedy
algorithm as Pod, and the local greedy algorithm as Local. We
generate fat-tree data centers of different sizes: k = 8, a small
data center with 128 PMs; and k = 16, a large data center with
1024 PMs. The size of each data file and its replica copies is
2 GB. The storage capacity of each PM is varied from 100GB
to 500GB. There are 1000 data files that are either located in
the central database of the cloud data center (referred to as
Central DB), or are randomly placed on the PMs (referred to
as Random Placement). Each data point is the average of five
simulation runs.

Energy Consumption Models. We use re, ra, and rc to
denote the power consumption of transmitting one data file
copy on the edge, aggregate, and core switches respectively.
We consider two energy consumption models that are currently
adopted in cloud data center research:
• In uniform energy model, the energy consumption of

data access is measured as number of switches the data
traverses [11]. In this model, re = ra = rc = 1.

• In skewed energy model, the core switches handle huge
amount of traffic across the entire data center, therefore
consuming more energy power than aggregate switches,
which consume more energy power than edge switches
[2]. Core links usually have higher bandwidth than ag-
gregation links, which have higher bandwidth than access
links. In this model, we set re = 1, ra = 5, and rc = 10.

Data File Access Pattern. We adopt two data file access
patterns to characterize the request frequencies of data files.
• In Zipf distribution, the request frequency to access the
jth (1 ≤ j ≤ l) popular data file is represented by Pj =

1
jθ

∑l
k=1 1/kθ

. We choose θ to be 0.6 based on the real
trace studies collected at Facebook data center [6], [16].

• In random access, the request frequency of each file by
each PM is a random number between 0 and 100.

Performance Comparison Under Uniform and Skewed
Energy Models. Fig. 2 and Fig. 3 show the total energy
consumption of the three algorithms by varying the storage
capacity of each PM, under uniform and skewed energy mod-
els, respectively. It shows that all three replication algorithms
effectively reduce the total energy consumption of file access
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Fig. 2. Performance comparison for data center with 128 PMs under uniform
energy model. “NoRep” indicates the total energy consunmption without any
replication. Here, we adopt random access pattern and central DB.
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Fig. 3. Performance comparison for data center with 128 PMs under skewed
energy model. Here, we adopt random access pattern and central DB.

in the data center. Profit outperforms Local and Pod in the
entire parameter range under both energy models. We also
observe that all three algorithms perform better under skewed
energy model than under uniform energy model by reducing
more energy consumptions. This is because in skewed energy
model, core switches cost more energy than aggregation and
edge switches. By storing the replica copies at local PMs,
access traffic does not go through core switches often, there-
fore reducing energy consumption more in skewed energy
model than in uniform energy model. Finally, we observe that
under each energy model, the energy consumption by all three
algorithms decrease with the increase of storage capacity in
most cases, except for Pod when storage capacity exceeds 200
GB. Under Pod, each pod continues storing only one copy of
each data file with the increasing of storage, therefore keeping
the energy consumption the same.

Performance Comparison Using CloudSim [4]. For the rest
of simulations, we use CloudSim, one of the most popular
open source cloud simulators in the research and academia.
We set the link bandwidth as 100MB/s in CloudSim, and
measure the total access time of data files yielded by the three
algorithms, as shown in Fig 4. We observe that Profit performs
better than Local, which outperforms Pod. In particular, when
the storage is large (500 GB), Profit can reduce the total access
time of the data center by roughly half via replication. Note
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Fig. 4. Performance comparison for data center with 128 PMs with
CloudSim. Here, we adopt random access pattern and central DB. The
bandwidth of each link is 100MB/s.
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Fig. 5. Performance comparison for data center with 128 PMs, with random
access pattern and random initial placement. The bandwidth of each access
link is 1GB, each aggregation link is 2GB, and each core link is 5GB.

that under CloudSim, both uniform and skewed energy models
perform the same, since the access time only depends on file
sizes and link bandwidth.

Random Placement of Data Files. All simulations so far as-
sume the availability of a central DB, where all the data
files are initially stored. Next we study the effects of the
random initial placement of data files. We set the bandwidth
of the access links as 1GB, the aggregation links as 2GB, and
core links as 5GB. Fig. 5 shows that the total access cost of
different algorithms. The performance comparison of the three
algorithms stays the same as in the central DB. However, the
costs are much smaller than those in Fig. 4, since the links
have much higher bandwidth.

Study of Scalability. We study the performances of the three
algorithms in larger data center of 1024 PMs, in order to
understand their scalability, as shown in Fig. 6. All the set up is
the same as in Fig. 5, except for the size of the data center. We
only show the total energy consumptions of Profit and Local
in Table II, since both outperform Pod. We set the storage
capacity of each PM as 300GB, the medium in the storage
parameter range. The last column, Improvement Percentage,
is calculated as the energy consumption difference between
Profit and Local divided by energy consumption of Local. It
shows that in small data center, Profit improves upon Greedy



TABLE II
STUDY OF SCALABILITY. STORAGE CAPACITY = 300GB.

Data Center Size Local Profit Improvement
Percentage (%)

128 24740267.60 22747692.00 8.05
1024 201923359.5 174080000 13.78
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Fig. 6. Performance comparison for data center with 1024 PMs, with random
access pattern and random initial placement. The bandwidth of each access
link is 1GB, each aggregation link is 2GB, and each core link is 5GB.

by 8.05% while in large data center, it is 13.78% improvement.
This shows that our approximation algorithm performs better
than Local in large data centers, therefore is more scalable.
Zipf Distribution. Finally we study the performance of the
proposed algorithms under Zipf distribution access pattern.
Fig. 7 shows that under Zipf distribution, the performance
difference between Profit and Local is even larger. This shows
that Profit works particularly well for data files with distinct
popularity levels. When data files have distinct popularity
levels, the popular data is always be replicated to more PMs
according to our approximation algorithm, therefore reducing
the energy consumption the most.

VI. Conclusion and Future Work
We studied file replication problem in data intensive cloud

data centers, and designed a time-efficient approximation
algorithm with performance guarantee. It was based on a
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Fig. 7. Performance comparison for data center with 128 PMs with Zipf
distribution access pattern. The bandwidth of each access link is 1GB, each
aggregation link is 2GB, and each core link is 5GB.

novel concept called “profit”, and optimizes over a submodular
function that can be computed efficiently. Our algorithm
reduces the total energy consumption of data access by at least
half of what is achieved by an optimal replication solution.
We also designed two energy- and time-efficient heuristic file
replication algorithms. Currently, we assume that the VMs
that execute user jobs stay in a particular PM for its entire
lifetime. As future work, it would be interesting to investigate
how dynamics of VM migration can interplay with the file
replication, to better achieve the energy efficiency in cloud
data centers.
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