
Integrating Scheduling and Replication in Data
Grids with Performance Guarantee

Lakshmi Ravi Anikode and Bin Tang
Department of Electrical Engineering and Computer Science

Wichita State University, Wichita, KS 67260
lxravianikode@wichita.edu, bintang@cs.wichita.edu

Abstract— Data Grid consists of geographically distributed
computing and storage resources that are used in large scale
scientific applications. Job scheduling and data replication
are two well-known techniques to boost the performance of
Data Grid. There has been extensive research on integrating
both techniques to further improve performance in Data Grid.
However, most of the current work are heuristic based without
performance guarantees. In this paper, we propose to integrate
data replication and job scheduling into one framework to
minimize the total job execution time in Data Grid. We
refer to the problem as Integrated Scheduling and Replication
Problem. This problem is NP-hard. We first propose a job
scheduling and data replication algorithm, which not only
has theoretically provable performance but also dramatically
reduces the time complexity compared to that of the optimal
algorithm. We then design a series of polynomial heuristic
algorithms. Using extensive simulations, we demonstrate that
among the heuristic algorithms, the integrated replication
and scheduling algorithm performs closest to the one with
performance guarantee.

Keywords – Data Grids, Job Scheduling, Data replica-
tion, Algorithms

I. Background and Motivation

Data intensive scientific applications, such human
genome mapping [15], high energy particle physics and
astronomy [10], and climate change modeling [12], are
drawing much attention from research community in recent
years due to their potentially profound scientific and en-
gineering impact. In such applications, large amounts of
data are generated, accessed, and analyzed by scientists
worldwide. The Data Grid [16], [1], [9] is an enabling
technology for data intensive applications. It consists of
hundreds of thousands of geographically distributed com-
putation, storage, and networking resources to facilitate
data sharing and management in distributed applications.
One important functionality of Data Grids is to manage
very large amount of data sets, in the order of terabytes
and petabytes. On one hand, the data files required to run
scientific applications on Data Grid has been growing at
an unprecedented rate in both volume and scale; on the
other hand, the size of data generated by such applications
is continuing to increase exponentially.

Job scheduling and data replication are two effective
techniques to enhance the performance of Data Grid. Job
scheduling is to map and dispatch a set of jobs onto a
set of sites for executions, to minimize the maximum job
execution time (or makespan) among all the sites. Each

job usually requires multiple input files for its execution.
Therefore, when scheduling a job to a site, the data transfer
time of its input files has to be taken into consideration.
Data replication, on the other hand, is to create multiple
copies of the popular data in the Grid to reduce the data
transfer time and bandwidth consumption, and to minimize
the total job execution time in the Data Grid.

Intuitively, minimizing makespan is to utilize all the
resources of the Grid to its maximum potential from system
administrators’ perspective; while minimizing total execu-
tion time is to complete users’ submitted jobs as soon
as possible, which is from the users’ perspective. These
two techniques are complementary with each other: doing
scheduling without replication places an overhead of data
transfer time as job’s input data files have to be fetched
remotely, while doing replication without scheduling of
jobs does not result in effective utilization of the Data
Grid resources, as moving large-sized data costs more
bandwidths and takes longer transfer time than moving jobs
does. Therefore, integrating scheduling and replication to
optimize the system performance in Data Grid has been an
active research [14], [8], [4], [7], [3], [2], [6], [11].

However, most current research in this field consider job
scheduling and data replication as two independent and
parallel mechanisms in Data Grid; one with the objective
of minimizing makespan and the other minimizing total job
execution time. Since these two objectives are different, it is
difficult to optimize both simultaneously. As a result, most
of work are heuristic based without performance guarantees.
We observe that since replication brings the data files
closer to the jobs and scheduling moving the jobs closer
to its input data, it is worthwhile to integrate them into
one framework to achieve a single objective. In this work,
we propose to utilize both scheduling and replication to
minimize the total job execution time of the entire Data
Grid. We refer to the problem as the Integrated Scheduling
and Replication Problem. To tackle this problem, we pro-
pose a job scheduling and data replication algorithm that
not only gives a constant ratio performance guarantee, but
also reduces the time complexity dramatically compared
to that of optimal solution. We further propose a set of
more time efficient heuristics and show their performance
is comparable to the job scheduling and data replication
algorithm with performance guarantee. The main results and
contributions of our paper are as follows:

1) To the best of our knowledge, our work is the first
one to formally formulate and integrate job scheduling and
data replication into one framework to minimize the total
job execution time in Data Grid.

2) We propose a job scheduling and data replication
algorithm with constant performance ratio and with time
complexity that is much lower than that of the optimal
algorithm.

3) We propose a set of heuristics and show through ex-
tensive simulations that their performances are comparable
to the job scheduling and replication algorithm with perfor-
mance guarantee. Among them, the integrated replication
and scheduling algorithm performs closest to the one with
performance guarantee.

II. Related Work

Ranganathan and Foster [14] have developed a fam-
ily of job scheduling and data movement and replication
algorithms, and use simulation studies to evaluate vari-
ous combinations. They empirically show that while it
is necessary to consider the impact of replication on the
scheduling strategies, it is not always necessary to couple
data movement and computation scheduling. Elghirani et
al. [8] present an intelligent data grid framework where
job scheduling and data/replica management are coupled
to provide an integrated environment for efficient access
to data and job scheduling. Specifically, they predict the
appropriate locations of replica and proactively replicates
the datasets coupled with Tabu Search. They show their
techniques improve both the makespan and average job
execution time compared to other heuristics.

Chang et al. [4] develop a job scheduling policy, called
HCS (Hierarchical Cluster Scheduling), and a dynamic data
replication strategy, called HRS (Hierarchical Replication
Strategy), to improve the data access efficiency in a cluster
grid. They simulate their algorithms to evaluate various
combinations of data access patterns and implement in the
Taiwan Unigrid environment. Their results show that HCS
and HRS successfully reduce data access time in compari-
son with other strategies in a cluster grid. Chakrabarti et al.
[3] propose to iteratively improve the performance based
on the coupling between the scheduling and replication
strategies. At the end of scheduling the popularity of the
files required by a set of tasks are calculated and replication
is done accordingly to facilitate ease of data access for the
next set of tasks.

Gaurav et al. in [11] has detailed a task scheduling and
file replication mechanism for a batch of data intensive
tasks that exhibit batch-shared I/O behavior. Batch shared
I/O behavior means the same file is the input of multiple
tasks in a batch. A 0-1 Integer Programming based approach
is formulated and a BiPartition heuristic that decouples
scheduling and replication is proposed. Desperez et al. [7]
combine data management and scheduling using a steady
state approach. The problem is defined as a linear program.
The objective is to maximize the throughput. Heuristic
for approximating integer solution of the linear program

does not give a good mapping of data, in worst cases it
may be far from optimal unlike our approach where we
prove our Job Scheduling and Data Replication algorithm
with performance bound of a constant ratio to the optimal.
Also their work does not take storage of resources as a
constraint whereas we take the storage limit of resources as
a constraint.

All above work attempt to integrate job scheduling and
data replication in Data Grid. However, none of them has
established a formal mathematical framework within which
both techniques are seamlessly integrated to minimize the
total job execution time of the Data Grid.

III. Problem Formulation

Network Model and Assumptions. A Data Grid is modeled
as a undirected graph G = (V,E) where V = {1, 2, .., n}
represents the set of sites in the Grid and E is the set
of weighted edges which may represent transmission band-
width, distance between sites, or loss rate. In our model the
weight of an edge represents the bandwidth. In this paper,
we assume all edges have uniform bandwidth B, but our
techniques can be applied to varying bandwidth case too.
There are m data files F = {f1, f2, ..., fm} in the Grid, with
data file fj originally produced and stored at its source site
Sj ∈ V .1 Let sj be the size of file fj . Let ci be the storage
capacity of site i ∈ V (for source site i, ci is the storage
available after storing its original data files).

Data Grid users submit jobs to their own sites. All the
submitted jobs are executed in FIFO order. There are ni
independent jobs Ji = {ji1, ji2, ..., jini} submitted in site
i, and each job jik (1 ≤ k ≤ ni) requires Fik ⊆ F as input
files for its execution. This initial job placement in the Grid
is denoted as sinit, and site i is also called the source site
of job jik (1 ≤ k ≤ ni). Let J denote the entire set of jobs
in the Data Grid, i.e. J =

⋃n
i=1 Ji. Let q = |J | be the total

number of jobs in the Data Grid. For any job, if some of the
input files are not stored locally (at the site where the job
is executed), they need to be transmitted from other sites
that have copies of the file. Note that before any replication
taking place, each data file is only stored in its source site.

The transmission time of sending data file fj ∈ F along
any edge is sj/B. Let tij be the number of transmissions
needed to transmit a data file from site i to site j (which is
equal to the number of edges between i and j). Therefore
the time transmitting fj from site i to j is tij × sj/B. As
demonstrated by the experiments of Chervenak et al. [5], in
data intensive applications, the time to execute a scientific
job is mainly the time it takes to transfer the needed input
files from source sites to local sites. Therefore, in this work,
we assume that once the input files of a job are ready in
the local storage, processing the job takes negligible time
compared to the data file transmission time. We define the
job execution time of a job as the sum of the transmission
time fetching each input file from its source site. The total

1Note that a site can be the source site of multiple data files. We assume
that the source site always keeps its initial data files.

job execution time of site i without data replication and job
scheduling is the time taken to transmit all the input files
of all its jobs from their source sites to site i:2

ni∑
k=1

∑
fl∈Fik

tiSl
× sl/B. (1)

Aggregate Demand. We define the aggregate demand of site
i to data file fj as the number of times site i accesses fj
as an input file to execute its jobs, and denote it as wij .
wij =

∑ni

k=1 xk, where xk = 1 if fj ∈ Fik and xk = 0
otherwise. Equation 1 can be rewritten as

m∑
j=1

wij × tiSj
× sj/B. (2)

The total job execution time of the entire Data Grid
without data replication and job scheduling is the sum of
the total job execution time of each site:

n∑
i=1

m∑
j=1

wij × tiSj
× sj/B. (3)

The objective of the Integrated Scheduling and Replica-
tion Problem is to minimize the total execution time of the
Data Grid by replicating data files and scheduling jobs in
the Data Grid. With data replication, multiple copies of the
same data file exist in the Grid while the source site keeps
the original copy of a data file; whereas for job scheduling,
there is only one copy of each job, which is dispatched from
its source site to another site to execute (note that a job can
also be executed in its source site). For each site, if the
data file needed for job execution is not located in its local
storage, it always accesses it from its closest site that has a
replica copy. Below is a formal definition of the Integrated
Scheduling and Replication Problem.

Problem Formulation. A scheduling function is defined
as s : J → V , indicating that a job i ∈ J is dispatched
to node s(i) ∈ V for execution. As mentioned, the initial
job placement in the Grid is referred to as sinit. After job
scheduling s, let Js

i = {jsi1, jsi2, ..., jsins
i
} be the set of nsi

jobs in site i, where job jsik (1 ≤ k ≤ nsi) needs a subset F s
ik

of F as its input files for execution. If we use ws
ij to denote

the aggregate demand of site i towards fj after scheduling
s, then ws

ij =
∑ns

i

k=1 xk, where xk = 1 if fj ∈ F s
ik and

xk = 0 otherwise.
The total demand of each file fj , which is defined as

the total number of time fj being accessed by all the Grid
sites to execute their jobs, does not change before and after
each job scheduling s. That is,

∑n
i=1 wij =

∑n
i=1 w

s
ij for

any data file fj . We call this file demand constraint.3 With

2Note that without data replication taking place in the local storage of
site i, the same data file needed by different jobs in i needs to be accessed
and transmitted multiple times from its source site. We show in following
text that good replication strategy can be found using the aggregate demand
towards a file from a site.

3However, because the input files of each job are the same before and
after scheduling s, ws

ij cannot change arbitrarily while just satisfying∑n
i=1 wij =

∑n
i=1 w

s
ij , for any data file fj .

the job scheduling s and without data replication, the total
execution time of the Data Grid is

n∑
i=1

m∑
j=1

ws
ij × tiSj

× sj/B. (4)

The integrated scheduling and replication problem in the
Data Grid is to find a scheduling function s, and to select a
set of sets R = {R1, R2, ..., Rm} where Rj ⊆ V is a set of
Grid sites (or replica set) that contains a replica copy of file
fj , to minimize the total execution time in the Data Grid:

τ(G,R, s) =

n∑
i=1

m∑
j=1

ws
ij ×mink∈(Sj∪Rj)tik × sj/B, (5)

under the storage capacity constraint that

|{Rj |i ∈ Rj}| ≤ ci, ∀i ∈ V,

and file demand constraint that
n∑

i=1

wij =

n∑
i=1

ws
ij , ∀j ∈ J.

This problem in NP-hard, since the data replication prob-
lem without scheduling is NP-hard [13].4 In next section, we
propose a job scheduling and data replication algorithm and
show its performance guarantee. We also present a series of
efficient heuristic algorithms.

IV. Job Scheduling and Data Replication Algorithms
in Data Grids

We first present a job scheduling and data replication
algorithm with performance guarantee. Then we show a
suite of polynomial heuristics, each of which integrates job
scheduling and data replication in a different way.

Job Scheduling and Data Replication Algorithm With
Performance Guarantee. For a Grid with total n sites and
q jobs, there are nq scheduling outputs (or job placements).
For each of the scheduling output, we run a greedy data
replication algorithm (line 4 to line 11 in Algorithm 1) as
follows. First, all Grid sites have all empty storage space
(except for sites that originally produce and store some
files). Then, at each step, it places one data file into the
storage space of one site such that the reduction of total
job execution time in the Data Grid is maximized at that
step. The algorithm terminates when all storage space of the
sites has been occupied by replicated data files, or the total
execution time in the Data Grid cannot be reduced further.
We return the set of replica sets for each data file and the
job placement that give the minimum total execution time.
Below is the job scheduling and data replication algorithm.

Algorithm 1: Job Scheduling and Data Replication
Algorithm

4Note that however, when each job has only one input file, the problem
becomes trivial, since all the jobs with input file fj can all be scheduled
to the source site of fj , resulting in zero total execution time.

BEGIN
1. R = ∅ (empty set); smin = sinit; τmin = infinite;
2. for each of the nq job scheduling s
3. R1 = R2 = . . . = Rm = ∅ (empty set);
4. while (the total job execution time can still be
5. reduced by replicating data files in some sites)
6. Among all sites with available storage and
7. all data files, let replicating data file fi on
8. site l give the maximum
9. τ(G, {R1, R2, . . . , Ri, . . . , Rm}, s)−
10. τ(G, {R1, R2, . . . , Ri ∪ {l}, . . . , Rm}, s);
11. Ri = Ri ∪ {l};
12. end while;
13. If (τ(G, {R1, R2, . . . , Rm}, s) < τmin)
14. R = {R1, R2, . . . , Rm};
15. smin = s;
16. τmin = τ(G, {R1, R2, . . . , Rm}, s);
17. end for;
18. RETURN R, smin, and τmin;

END. ♦

The time complexity of Algorithm 1 is O(m2n3+qc),
where n, m, and q are the number of sites, data files, and
jobs in the Data Grid, respectively, and c is the average
storage capacity of a site. Before we show Algorithm
1’s performance guarantee, we first present the exhaustive
optimal scheduling and replication algorithm.
Optimal Job Scheduling and Data Replication Algorithm.
For a Data Grid with n sites and q jobs, m data files
of unit size, and each site has storage capacity c, the
optimal algorithm is for each of the nq job placements,
to enumerate all possible file replication placements in
the Data Grid, and find the job placement and replication
placement combination with minimum total job execution
time. There are (Cc

m)n such file placements, where Cc
m

is the number of ways selecting c files out of m files.
Therefore the time complexity of the optimal algorithm is
O((Cc

m)n × nq), which is much higher than that of above
integrated scheduling and replication algorithm.
Performance Guarantee of Algorithm 1. Below we show
that τmin resulted in Algorithm 1 is close to the optimal
total execution time with some constant performance ratio.
Before we show that Algorithm 1 yields a constant perfor-
mance ratio, we first present our previous result about the
data replication algorithm (line 4 to line 11 in Algorithm 1)
for a fixed scheduling s [13].

Theorem 1: For any fixed job scheduling s, and data
size being unit one, if the total job execution time without
replication is less than 40 times the optimal job execution
time, then the total job execution time yielded by the data
replication algorithm is less than 20.5 times the optimal total
job execution time.

Now we show the performance guarantee yielded by
Algorithm 1.

Theorem 2: For each of the nq job scheduling solutions,
if the total job execution time without replication is less than
40 times the optimal job execution time using optimal data
replication algorithm, then the minimum total job execution

time τmin yielded by Algorithm 1 is less than 20.5 times
the optimal total job execution time.
Proof: Let O be the optimal total job execution time, i.e.,
the minimum job execution time among all the (Cc

m)n×nq
job scheduling and data replication combinations. Without
loss of generality, assume that the xth job scheduling is the
job scheduling in the optimal solution. Let τx be the total job
execution time corresponding to the xth job scheduling in
Algorithm 1. Let Ox be the optimal total job execution time
corresponding to the xth job scheduling in Algorithm 1, then
Ox = O. Let τmin be the minimum total job execution time
yielded by Algorithm 1, then τmin ≤ τx. From Theorem 1,
we have τx < 20.5Ox. We have therefore, τmin ≤ τx <
20.5Ox = 20.5O.

Heuristic Algorithms. Even though the time complexity of
Algorithm 1 is much lower than that of the optimal, it is
still exponential. Therefore, we develop a suite of heuristics
with polynomial time complexity.

Algorithm 2: Replication + Scheduling Heuristic
BEGIN
R = ∅ (empty set); smin = sinit; τmin = infinite;
R1 = R2 = . . . = Rm = ∅ (empty set);
while (the total job execution time can still be

reduced by replicating data files in some sites)
Among all sites with available storage and
all data files, let replicating data file fi on site l
give the maximum
τ(G, {R1, R2, . . . , Ri, . . . , Rm}, sinit)−
τ(G, {R1, R2, . . . , Ri ∪ {l}, . . . , Rm}, sinit);
Ri = Ri ∪ {l};

end while;
for each job i ∈ J

Map job i to site j such that total execution time
for job i is minimized;
Update smin and τmin;

end for;
RETURN R, smin, and τmin;

END. ♦

In Algorithm 2, we first run the greedy data replication
algorithm for initial job placement sinit. Then, we schedule
each job to a site that gives the minimum execution time for
that job. The time complexity of the greedy replication is
O(m2n3c), and time complexity of the scheduling is O(nq).
So the time complexity of Algorithm 2 is O(m2n3c+ nq).

Algorithm 3: Scheduling + Replication Heuristic
BEGIN

First schedule each job to a site that gives the
minimum execution time for that job based on the
initial data file placement. Then run the greedy
data replication strategy for this job scheduling.

END. ♦

Algorithm 3 changes the order of the executions of the
data replication and scheduling algorithms in Algorithm 2.
The time complexity is the same as that of Algorithm 2.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 6 8 10 12 14 16 18 20

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Number of Files

SR-P

IRS

SR

RS

(a) Varying number of data files.

 0

 10

 20

 30

 40

 50

 60

 4 6 8 10 12 14 16 18 20

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Number of Jobs

SR-P

IRS

SR

RS

(b) Varying number of jobs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 3 4 5 6 7 8 9

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Storage Capacity

SR-P
IRS
SR
RS

(c) Varying storage capacity.

Fig. 1. Performance comparison of SR-P, IRS, SR, and RS in a small Grid of 5 sites. Unless varied, the number of data files is 10,
the number of jobs is 10, and storage capacity of each site is 5. Data file size is 1.

Algorithm 4: Integrated Replication and Scheduling
Heuristic

BEGIN
R = ∅ (empty set); smin = sinit; τmin = infinite;
R1 = R2 = . . . = Rm = ∅ (empty set);
while (the total job execution time can still be

reduced by replicating data files in some sites)
Among all sites with available storage and
all data files, let replicating data file fi on site l
give the maximum
τ(G, {R1, R2, . . . , Ri, . . . , Rm}, smin)−
τ(G, {R1, R2, . . . , Ri ∪ {l}, . . . , Rm}, smin);
Ri = Ri ∪ {l};
for each job i ∈ J

Map job i to site j such that total execution
time for job i is minimized;
Update smin and τmin;

end for;
end while;
RETURN R, smin, and τmin;

END. ♦

Algorithm 4 takes place in rounds. In each round, first a
data file is replicated into one site such that the reduction
of total job execution time in the Data Grid is maximized,
then we schedule each job to a site that gives the minimum
execution time for that job (note if the current site of the job
gives its minimum execution time, the job is not scheduled
to other sites). The process of one replication followed by
a scheduling terminates when all storage space of the sites
has been replicated with data files, or the total job execution
time cannot be reduced further. The time complexity of this
algorithm is O(m2n3c×nq) = O(m2n4qc), which is much
lower than that of Algorithm 1 while higher than those of
Algorithm 2 and 3.

V. Performance Evaluation
In this section, we refer to Algorithm 1 as SR-P, Algo-

rithm 2 as RS, Algorithm 3 as SR, and Algorithm 4 as IRS.
We first compare different heuristics (RS, SR, and IRS) with
SR-P. Then we compare all the heuristics in large scale.

Comparing Heuristics With SR-P. Due to SR-P’s high

time complexity we experiment on a small Grid with 5 sites.
We vary the number of files in the Grid, number of jobs in
the Grid, and storage capacity of each site. Unless otherwise
varied, we set number of files m = 10, number of jobs
q = 10, and storage capacity of each site c = 5. Here we
assume each file has unit size. Initially one copy of each file
is placed randomly in any of the site. We assume that each
job has five input files, which are randomly chosen from all
the files. The jobs are also randomly submitted at each site.

Varying Number of Data Files. We vary m to be 5, 10, 15,
and 20. As shown in Figure 1 (a), with the increase of the
number of files the total job execution time in Data Grid
increases for all the algorithms, with SR-P < IRS < SR <
RS. This demonstrates that SR-P performs better than other
heuristics due to its performance guarantee. We observe
that IRS performs next to SR-P, because IRS constantly
couples scheduling with replication for the purpose of
minimizing total execution time. We also observe that SR
performs better than RS. In SR, small-sized jobs are first
dispatched closer to their input files, which results in less
data replication and movement; whereas in RS, large-sized
data files are replicated and moved closer to their jobs,
which takes much more time than moving jobs. It also
shows that when the storage capacity of each site is five
and the total number of files is five, all four algorithms
eventually replicate all five files into each Grid site, resulting
in zero total execution time.

Varying Number of Jobs. We vary the number of jobs as 5,
10, 15, and 20 while keeping the number of files 10 and
storage capacity 5. As seen in Figure 1 (b), with the increase
of the number of jobs, the total execution time increases for
all the algorithms. This is as expected since as more jobs
need to be executed, more data files need to transmit from
remote site to local sites. Again, we observe that SR-P <
IRS < SR < RS.

Varying Storage Capacity. We vary c from 3, 5, 7, to 9
units, as shown in Figure 1(c). It is obvious that with the
increase of memory capacity of each Grid site, the total
execution time decreases since more file replicas are able to
be placed into the Data Grid. We observe that when c = 9,
the total execution time becomes zero. This is because in
average, each of the five site already has two of 10 data

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1000 1500 2000 2500

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Number of Files

IRS

SR

RS

LGRS

R

(a) Varying number of data files.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1000 1500 2000 2500

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Number of Jobs

IRS

SR

RS

LGRS

R

(b) Varying number of jobs.

 0

 2000

 4000

 6000

 8000

 10000

 30 50 70 90

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Storage Capacity

IRS
SR
RS

LGRS
R

(c) Varying storage capacity.

Fig. 2. Performance comparison of IRS, SR, RS, LGRS, and R in a Grid with 30 sites. Unless varied, the number of data files is 1500,
the number of jobs is 1500, and storage capacity of each site is 50. Data file size is 1.

files, therefore for each of the site, its storage space of 9
can store the rest 8 data files.

Comparing Heuristics in Large Scale. We study the
scalability of different heuristics by considering a Data Grid
with 30 sites, 500 to 2,000 data files, storage capacity of
each site varying from 30 to 90, and 1000 to 2500 jobs.
We also compare the heuristics with a) the greedy data
replication algorithm only R (that is, using only initial job
placement), and b) local greedy replication and scheduling
algorithm LGRS: for each site, the data files are replicated
locally in the ascending order of their access frequencies
until the storage of the site is full; then each job is scheduled
to a site that minimizes its job execution time. Figure 2
shows that for all different scenarios, IRS < SR < RS <
LGRS < R.

VI. Conclusion and Future Work
We have formulated and studied the problem of integrat-

ing job scheduling and data replication in data intensive
scientific applications. The objective is to minimize the
total job execution time by placing the data replicas and
scheduling jobs onto the right sites. We designed a job
scheduling and data replication algorithm with provable
performance guarantee. We also developed a set of efficient
heuristics and validated our results with simulations and
analysis. As ongoing and future directions, we are exploring
polynomial-time approximation algorithm that integrates
both scheduling and replication. We also plan to implement
the integrated algorithm in a distributed environment. Fi-
nally, this work focuses on scheduling independent jobs; the
algorithms can be extended to incorporate job dependencies
in workflow environment.

VII. Acknowledgements
The research described in this paper has been partially

supported by NSF Grants CNS-1116849 and EPS-0903806.
We also thank Dr. Himanshu Gupta and the anonymous
reviewers for the helpful suggestions.

REFERENCES

[1] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and I. Foster. Secure,
efficient data transport and replica management for high-performance
data-intensive computing. In Proc. of IEEE Symposium on Mass
Storage Systems and Technologies, 2001.

[2] W.H. Bell, D.G. Cameron, R. Cavajal-Schiaffino, K. Stockinger, and
F. Zini. Analysis of scheduling and replica optimization strategies
for data grids using optorsim.

[3] R. Chakrabarti, A. Dheepak, and S. Sengupta. Integration of
scheduling and replication in data grids. In Proc. of In International
Conference on High Performance Computing (HiPC), 2004.

[4] R.S. Chang, J.S. Chang, and S.Y. Lin. Job scheduling and data
replication on data grids. Future Generation Computer Systems,
23:846–860, 2007.

[5] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe.
Wide area data replication for scientific collaboration. In Proc. of
IEEE/ACM International Workshop on Grid Computing (Grid 2005).

[6] N.N Dang and S.B. Lim. Combination of replication and scheduling
in data grids. International Journal of Computer Science and Network
Security, 7:304–308, 2007.

[7] F. Desprez and A. Vernois. Simultaneous scheduling of replication
and computation for data-intensive applications on the grid. Technical
Report, 2005.

[8] A. Elghirani, R. Subrata, and Albert Y. Zomaya. Intelligent schedul-
ing and replication in datagrids: a synergistic approach. In Proc. of
Seventh IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’07), 2007.

[9] I. Foster. The grid: A new infrastructure for 21st century science.
Physics Today, 55:42–47, 2002.

[10] J. C. Jacob, D.S. Katz, T. Prince, G.B. Berriman, J.C. Good, A.C.
Laity, E. Deelman, G.Singh, and M.-H Su. The montage architecture
for grid-enabled science processing of large, distributed datasets. In
Proc. of the Earth Science Technology Conference, 2004.

[11] G. Khanna, N. Vydyanathan, U. V.Catalyurek, T. M. Kurc, S. Krish-
namoorthy, P. Sadayappan, and J. H. Saltz. Task scheduling and file
replication for data-intensive jobs with batch-shared io. In Proc.
of the 15th IEEE International Symposium on High-Performance
Distributed Computing (HPDC-15), 2006.

[12] M. Mineter, C. Jarvis, and S. Dowers. From stand-alone programs
towards grid-aware services and components: A case study in agri-
cultural modelling with interpolated climate data. Environmental
Modelling and Software, 18(4):379–391, 2003.

[13] D.T Nukarapu, B. Tang, L. Wang, and S. Lu. Data replication in data
intensive scientific applications with performance guarantee. IEEE
Transactions on Parallel and Distributed Systems, In Print.

[14] K. Ranganathan and I. Foster. Decoupling computation and data
scheduling in distributed data-intensive applications. In Proc. of 11th
IEEE International Symposium on High Performance Distributed
Computing (HPDC-11), 2002.

[15] A. Rodriguez, D. Sulakhe, E. Marland, N. Nefedova, M. Wilde, and
N. Maltsev. Grid enabled server for high-throughput analysis of
genomes. In Proc. of Workshop on Case Studies on Grid Applications,
2004.

[16] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of
data grids for distributed data sharing, management, and processing.
ACM Computing Surveys, 38(1), 2006.

