
Budget-Constrained Traveling Salesman Problem: a
Reinforcement Learning Approach

 Jessica Gonzalez∗, Zari Magnaye∗, Christopher Gonzalez∗, Yutian Chen†, Bin Tang∗
∗Department of Computer Science, California State University Dominguez Hills
{zmagnaye1,jgonzalez1033,cgonzalez393}@toromail.csudh.edu, btang@csudh.edu

†Economics Department, California State University, Long Beach, Yutian.Chen@csulb.edu

Abstract—In many robotic applications, robots are dispatched
to accomplish tasks such as search and rescue and data collection.
As robots are mainly powered by batteries, one critical goal
for the untethered robot is to accomplish as many tasks as
possible and then return to the charging station before its
battery is depleted. Inspired by such robotic applications, we
study the Budget-Constrained Traveling Salesman Problem (BC-
TSP). Given a weighted complete graph G(V,E) where node
i ∈ V has an available prize of pi, two nodes s, t ∈ V , and
a budget, the goal of the BC-TSP is to find a route from s
to t to maximize his collected prizes while keeping his travel
cost within the budget. We design two greedy algorithms and a
multi-agent reinforcement learning (MARL) algorithm to solve
BC-TSP. Via extensive simulations, we show that the MARL
algorithm outperforms the two greedy algorithms in most cases,
demonstrating that MARL is a practical algorithm for solving
BC-TSP.

Keywords – Budget-Constrained Traveling Salesman Prob-
lem, Multi-Agent Reinforcement Learning

I. INTRODUCTION

With the recent technological breakthrough of artificial
intelligence (AI) and machine learning (ML), especially in
the area of deep reinforcement learning [9], robotic research
and the design and development of robotic applications have
entered a new phase [8], [11]. For example, tremendous
research efforts have been devoted to developing robotic
sensor networks (RSNs), where mobile robots are utilized to
enhance the system performance of wireless sensor networks
in environment monitoring, intrusion detection, and search and
rescue [10]. Below, we give a motivating example.

A Motivating Example. Consider sensor networks for moni-
toring seismic activity [14] or deep water exploration [6], [15].
In these challenging environments, as it is not feasible to install
a base station with a power outlet near the sensing field to
collect data, autonomous underwater vehicles (AUVs) [4] and
robots [18] are usually dispatched to the field to collect the
data. As AUVs and robots are mainly powered by batteries,
there is a limit on the time and distance that they can
travel before returning to the charging depot. To optimize the
performance of such RSN applications, scheduling the AUV
or robot to collect as much data as possible within its battery
power is critical and challenging.

To address the above challenge, we identify, formulate,
and solve a new variation of the traveling salesman problem
(TSP) called the budget-constrained traveling salesman prob-

lem (BC-TSP). TSP is one of the most famous combinato-
rial optimization problems in engineering, operation research,
and computer science. With numerous applications, including
DNA sequencing, chip design, and robotics [5], TSP studies
how a traveling salesman can start from a source city, visit
all other cities most efficiently, and return to the destination
city. In contrast, in BC-TSP, we assume that each node has
some amount of prize to be collected, and the goal for the
salesman is to find a subset of the nodes to visit to maximize
the collected prizes with the given budget. Here, the budget is a
resource constraint upon the traveling salesman in any network
applications modeled as BC-TSP. Therefore, the budget is
application-specific; it could be the robots’ battery power in
the above-mentioned sensing scenario, the remaining gas level
of the salesman’s car, or the computing power of the agents
in many of the AI/ML applications.

In this paper, we design a suite of efficient algorithms to
solve BC-TSP. We first design two greedy heuristics in which
the salesman iteratively makes decisions. In each iteration, it
attempts to visit an unvisited node with the maximum available
prize or the maximum prize-cost ratio. We then design a multi-
agent cooperative reinforcement learning (MARL)-based al-
gorithm to solve the BC-TSP. Unlike the handcrafted greedy
algorithms, in MARL, intelligent agents learn cooperatively by
interacting with the environment and adjusting their actions
accordingly [17]. Therefore, the MARL algorithm is more
adaptive and robust in a dynamic network environment. Via
extensive simulations, we show that the MARL algorithm
outperforms the two greedy algorithms in most cases.

Our previous work studied the prize-collecting traveling
salesman problem (PCTSP) using a reinforcement learning
approach [16]. In PCTSP, the goal of the traveling salesman
is to find a route from s to t such that the sum of the prizes of
all the nodes along the route reaches a preset quota while the
distance along the route is minimized. As the budget is not a
constraint in PCTSP, it is less challenging than the BC-TSP, in
which the salesman has to constantly check if he has enough
budget left to return to the destination city.

II. BUDGET-CONSTRAINED TRAVELING SALESMAN
PROBLEM (BC-TSP)

A. Problem Formulation.



TABLE I: Notation Summary

Notation Description
G(V,E) A complete graph with |V | nodes and |E| edges
w(u, v) Weight of an edge (u, v) ∈ E
pi Prize available at node i ∈ V
s The source node of the traveling salesman
t The destination node of the traveling salesman
B The total budget of the traveling salesman
m The number of agents
Pj The total prizes collected by agent i, 0 ≤ j ≤ m
α The learning rate of each agent, 0 ≤ α ≤ 1
γ The discount rate of each agent, 0 ≤ γ ≤ 1
δ, β Parameters weighing the relative importance of the Q-value

and the edge length in the agent’s action selection rule

s A (2)

t

B (2)

2.5

2

0.52.5

2

C (1)D (3)
2.5

E (5)

3

4
Fig. 1: An example.

Given a weighted graph
G(V,E), where V is a set of
nodes and E is a set of edges.
Each edge (u, v) ∈ E has
a weight w(u, v), indicating
the travel distance or cost on
this edge. Each node i ∈ V
has a weight pi ≥ 0 ∈ R+,
indicating the prize available at this node. Given any route
R = {v1, v2, ...vn} in G, where (vi, vi+1) ∈ E, denote
its cost as CR =

∑n−1
i=1 w(vi, vi+1) and its total prizes as

PR =
∑
i∈R pi. Let s, t ∈ V be the traveling salesman’s

source and destination nodes, respectively. Let B denote his
budget, which indicates the distance he can travel before
returning to t. The goal of the BC-TSP is to find a route
Rs = {s = v1, v2, v3, ..., vn = t} such that its total prize
PRs

is maximized while its cost CRs
≤ B. When s = t, the

salesman must start and finish at the same node.
EXAMPLE 1: Fig. 1 illustrate BC-TSP with budget B =

8. The numbers on the edges are their weights, and the
numbers in the parentheses are the prizes available at nodes.
The optimal walk from s to t is s, E, t, C, and t, with a total
prize of 6 and a total cost of 8. Other routes are not optimal.
For example, although the path of s, A, B, C, and t is within
the budget with a cost of 7, its total prize is 5. �

B. Greedy Algorithms for BC-TSP

Below, we design two greedy heuristic algorithms viz.
Algo. 1 and 2. We first give the below definition.

Definition 1: (Budget-Feasible Nodes.) Given the current
node r the traveling salesman is located and his available
budget B, the budget-feasible nodes, denoted as F(r,B), is s’s
unvisited neighbor nodes that the salesman can travel to and
then return to destination node t with enough budget. That is,
F(r,B) = {u|(r, u) ∈ E∧ (w(r, u)+w(u, t) ≤ B)∧u ∈ U},
where U is the set of unvisited nodes. �

Greedy Algorithm 1. In Algo. 1, at any node, the salesman
always visits a budget-feasible node with the largest prize.
It first sorts all the nodes in the descending order of their
prizes (line 2) and then takes place in rounds (lines 4-12). In
each round, with the current node r and the currently available
budget B, it checks if there still exists unvisited and budget-
feasible nodes (line 4). If so, it visits the one with the largest

available prize and updates all the information accordingly
(lines 5-10). It stops when there are no unvisited nodes, or all
the unvisited nodes are not budget-feasible (line 4), at which
it goes to the destination node t and returns the route with
its total cost, total prizes collected, and its remaining budget
(lines 13 and 14). Its time complexity is O(|V |2). Algo. 1 also
works for the problem where s = t.

Algorithm 1: Greedy Algorithm 1 for BC-TSP.
Input: A complete weighted graph G(V,E), s, t, and

initial budget B.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, initially {s};
CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially V − {s, t};
r: the current node where the salesman is located;
B: current available budget, is B initially;
1. r = s, R = {s}, CR = PR = 0, B = B,

U = V − {s, t} = {v1, v2, ..., v|V |−2};
2. Sort nodes in U in descending order of their prizes;

WLOG, let pv1 ≥ pv2 ...,≥ pv|V |−2
;

3. k = 1; // the index of the node with largest prize
4. while (U 6= φ ∧ F(r,B) 6= φ)
5. if (vk ∈ F(r,B))
6. R = R ∪ {vk};
7. CR = CR + w(r, vk), PR = PR + pvk ;
8. B = B − w(r, vk), U = U − {u};
9. r = vk;
10. end if;
11. k ++;
12. end while;
13. R = R ∪ {t}, CR = CR + w(r, t), B = B − w(r, t);
14. RETURN R, CR, PR, B.

Greedy Algorithm 2. Given an edge (u, v) ∈ E, and the
traveling salesman is at node u, we define the prize cost ratio
of visiting v, denoted as pcr(u, v), as the ratio between the
prize available at v and the edge weight w(u, v). That is,
pcr(u, v) = pv

w(u,v) . Algo. 2 is similar to Algo. 1, except it
visits a budget-feasible node with the largest prize cost ratio
in each round. Its time complexity is O(|V |2).

Algorithm 2: Greedy Algorithm 2 for BC-TSP.
Input: A complete weighted graph G(V,E), s, t, and B.
Output: A route R from s to t, its cost CR and prize PR.
Notations: R: the current route found, starts from s;
CR: the length (i.e., the cost) of R, initially zero;
PR: the prizes collected on R, initially zero;
U : the set of unvisited nodes, initially U = V − {s, t};
r: the node where the salesman is located currently;
B: current remaining budget, is B initially;
1. r = s, R = {s}, CR = PR = 0, U = V − {s, t};
2. B = B;

// if not all nodes are visited, and there are feasible nodes



3. while (U 6= φ ∧ F(r,B) 6= φ)
4. Let u = argmaxv∈F (r,B)∩Upcr(r, v);
5. R = R ∪ {u};
6. CR = CR + w(r, u), PR = PR + pu;
7. B = B − w(r, u), U = U − {u};
8. r = u;
9. end while;
10. R = R ∪ {t}, CR = CR + w(r, t), B = B − w(r, t);
11. RETURN R, CR, PR, B.

III. MARL ALGORITHM FOR BC-TSP

In this section, we first present the basics of RL and then
our cooperative MARL framework for BC-TSP.

Reinforcement Learning (RL) [17]. We describe an agent’s
decision-making in an RL system as a Markov decision
process (MDP), which is represented by a 4-tuple (S,A, t, r):
• S is a finite set of states,
• A is a finite set of actions,
• t : S ×A→ S is a state transition function, and
• r : S × A → R is a reward function, where R is a real

value reward.
In MDP, an agent learns an optimal policy that maximizes

its accumulated reward. At a specific state s ∈ S, the agent
takes action a ∈ A to transition to state t(s, a) ∈ S while
receiving a reward r(s, a) ∈ R. The agent maintains a policy
π(s) : S → A that maps its current state s ∈ S into the
desirable action a ∈ A. In the context of the BC-TSP, the
states are all the nodes V , and the actions available for an
agent at a node are all the edges emanating from this node.
We consider a deterministic policy wherein, given the state, the
policy outputs a specific action for the agent. A deterministic
policy suits the BC-TSP well, as in BC-TSP, when an agent
at a node takes action (i.e., follows one of its edges), it will
surely end up with the node on the other end of the edge.

A widely used class of RL algorithms is value-based [17],
[12], which finds the optimal policy based on the value func-
tion at each state s, V πs = E{

∑∞
t=0 γ

tr(st, π(st))|s0 = s}.
The value at each state is the expected value of a discounted
future reward sum with the policy π at state s. Here, γ
(1 ≤ γ ≤ 1) is the discounted rate that determines the
importance of future rewards; the larger of the γ, the more
important the future rewards. Recall that r(s, π(s)) is the
reward received by the agent at state s by taking action
following policy π.

Q-Learning. Q-learning is a family of value-based algorithms
[17]. It learns how to optimize the quality of the actions
in terms of the Q-value Q(s, a). Q(s, a) is defined as the
expected discounted sum of future rewards obtained by taking
action a from state s following an optimal policy. The optimal
action at any state is the action that gives the maximum Q-
value. For an agent at state s, when it takes action a and
transitions to the next state t, Q(s, a) is updated as

Q(s, a)← (1−α)·Q(s, a)+α·[r(s, a)+γ ·maxbQ(t, b)], (1)

where 1 ≤ α ≤ 1 is the learning rate that decides to what
extent newly acquired information overrides old information in
the learning process. In Eqn. 1, maxbQ(t, b) is the maximum
reward that can be obtained from the next state t.

Multi-agent Reinforcement Learning (MARL) Algorithm.
In our MARL framework for BC-TSP, there are multiple
agents that all start from the node s. They work synchronously
and cooperatively to learn the state-action Q-table and the
reward table and take action accordingly. We first introduce
the action rules for all the learning agents and then present
our MARL algorithm.
Action Rule of Agents. Each agent follows the same action
rule specifying the next node it moves to during the learning
process. It consists of the following three scenarios.
• Exploitation. In exploitation, the agent always chooses

the node

t = argmaxu∈U∩F (s,B){
[Q(s, u)]δ × pu

[w(s, u)]β
}

to move to. Here, U is the set of nodes not visited yet
by the agent and F(s,B) is node s’s budget-feasible
nodes, and δ and β are preset parameters. That is, an
agent, located at node s, always moves to an unvisited
and feasible node u that maximizes the learned Q-value
Q(s, u) weighted by the length w(s, u) and the prize
pu available at node u. When q ≤ q0, where q is a
random value in [0, 1] and q0 (0 ≤ q0 ≤ 1) is a
preset value, exploitation is selected; otherwise, the agent
chooses exploration explained below.

• Exploration. In exploration, the agent chooses a node
t ∈ U∩F(s,B) to move to by the following distribution:

p(s, t) =
([Q(s, t)]δ × pu)/[w(s, t)]β∑

u∈U∩F (s,B)([Q(s, u)]δ × pu)/[w(s, u)]β
.

That is, a node u ∈ U ∩ F(s,B) is selected with
probability p(s, u), while

∑
u∈U∩F (s,B) p(s, u) = 1. The

distribution p(s, t) characterizes how good the nodes are
at learned Q-values, the edge lengths, and the node prizes.
The higher the Q-value, the shorter the edge length, and
the larger the node prize, the more desirable the node is
to move to.

• Termination. When an agent is located at node s and
U ∩ F(s,B) = φ, it does not have an unvisited budget-
feasible node. In this case, the agent goes to destination
t and terminates in this episode.

MARL Algorithm. Next, we present our MARL algorithm viz.
Algo. 3, which consists of a learning stage for the m agents
(lines 1-32) and an execution stage for the traveling salesman
(lines 33-39). The learning stage takes place in a preset number
of episodes. Each episode consists of the below two steps.

In the first step (lines 3-26), all the m agents are initially
located at the starting node s with zero collected prizes. Then
each independently follows the action rule to move to the
next budget-feasible node to collect prizes and collaboratively
updates the Q-value of the involved edges. This takes place in



parallel for all the agents. When an agent can no longer find
a feasible unvisited node to move to due to its insufficient
budget, it terminates and goes to t (lines 8-14); in this case, it
must wait for other agents to finish in this episode. Otherwise,
it moves to the next node, collects the prize, and continues the
prize-collecting process (lines 15-23). In either case, it updates
the Q-values of the involved edge. Here, we assume the prizes
at each node can be collected multiple times (as this is the
learning stage).

In the second step (lines 27-31), the m agents communicate
with each other and find among the m routes the one with the
maximum collected prizes. It then updates the reward value
and Q-value of the edges of this route.

Finally, in the execution stage (lines 33-38), the traveling
salesman starts from s, visits the node with the largest Q-value
in the Q-table, and ends at t, collecting the prizes along the
way. Note we set the initial Q-value and reward value for edge
(u, v) as pu+pv

w(u,v) and −w(u,v)
pv

, respectively, to reflect the fact
that the more prizes available and less length of an edge, the
more valuable of the edge for the salesman to travel.

Algorithm 3: MARL Algorithm for PC-TSP.
Input: A graph G(V,E), s, t, and a budget B.
Output: A route R from s to t, CR, and PR.
Notations: i: index for episodes; j: index for agents;
Uj : set of nodes agent j not yet visits, initially V − {s, t};
Rj : the route taken by agent j, initially empty;
Bj : the currently available budget of agent j, initially B;
lj : the cost (i.e., the sum of edge weights) of Rj , initially 0;
Pj : the prizes collected on Rj , initially 0;
rj : the node where agent j is located currently;
sj : the node where agent j moves to next;
isDonej : agent j has finished in this episode, initially false;
R: the final route found the MARL, initially empty;
Q(u, v): Q-value of edge (u, v), initially pu+pv

w(u,v) ;

r(u, v): Reward of edge (u, v), initially −w(u,v)
pv

;
α: learning rate, α = 0.1;
γ: discount factor, γ = 0.3;
q0: trade-off between exploration and exploitation, q0 = 0.5;
δ, β: parameters in node selection rule; δ = 1 and β = 2;
W : a constant value of 100;
epi: number of episodes in the MARL, epi = 30000;
1. for (1 ≤ i ≤ epi) // Learning stage
2. All the m agents are at node s, rj = s, 1 ≤ j ≤ m;
3. for (j = 1; j ≤ m; j++) // Agent j
4. Pj = 0, Bj = Bj , isDonej = false;

end for;
// At least one agent has not finished in this episode

5. while (∃ j, 1 ≤ j ≤ m, isDonej == false)
6. for (j = 1; j ≤ m; j++) // Agent j
7. if (isDonej == false) // Agent j has not finished
8. if (Uj ∩ F(rj , Bj) == φ) // Agent j terminates
9. isDonej = true;
10. Rj = Rj ∪ {t}; // Agent j goes to t
11. lj = lj + w(rj , t), Bj = Bj − w(rj , t);
12. Q(rj , t) = (1− α) ·Q(rj , t)+

 0

 500

 1000

 1500

 2000

 2500

 3000

10000 20000 30000 40000

P
ri
z
e
 C

o
lle

c
te

d

Budget

GA1
GA2

MARL

(a) Total Prize Collected.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

10000 20000 30000 40000

D
is

ta
n
c
e
(M

ile
s
)

Budget

GA1
GA2

MARL

(b) Total Distance Traveled.

Fig. 2: Comparing MARL, GA1, and GA2.

α · γ ·maxz∈Uj∩F (t,Bj)
Q(t, z);

13. rj = t;
14. end if;
15. else
16. Finds the next node sj following action rule;
17. Rj = Rj ∪ {sj};
18. lj = lj + w(rj , sj), Bj = Bj − w(rj , sj);
19. Pj = Pj + psj ; // Collect prize
20. Q(rj , sj) = (1− α) ·Q(rj , sj)+

α · γ ·maxz∈Uj∩F (sj ,Bj)
Q(sj , z);

21. rj = sj ; // Move to node sj ;
22. Uj = Uj − {sj};
23. end else;
24. end if;
25. end for;
26. end while;
27. j∗ = argmax1≤j≤mPj ; // Route of largest prize
28. for (each edge (u, v) ∈ Rj∗)
29. r(u, v) = r(u, v) + W

Pj∗
; // Reward value r(u, v)

30. Q(u, v)← (1− α) ·Q(u, v)+
α · [r(u, v) + γ ·maxbQ(v, b)]; // Update Q-value

31. end for;
32. end for; // End of each episode in learning stage

// Execution stage
33. r = s, R = {s}, CR = 0, PR = 0, B = B;
34. while (r! = t)
35. u = argmaxbQ(r, b);
36. R = R ∪ {u}, CR = CR + w(r, u), PR = PR + pu,

B = B − w(r, u);
37. r = u;
38. end while;
39. RETURN R, CR, PR, B.

Discussions. There are epi episodes of learning. In each
episode, the first step takes at most m · |V |, where |V | is
the total number of nodes, and the second step takes at most
m + |E|, where |E| is the total number of edges. Thus the
time complexity of Algo. 3 is O(epi ·m · |V |).

IV. PERFORMANCE EVALUATION

Experiment Setup. We write our own simulator in Java on
a Windows 10 with AMD Processor (AMD Ryzen 7 3700X



8-Core) and 16GB of DDR4 memory. We refer to the Algo. 1
as GA1, Algo. 2 as GA2, and the MARL algorithm Algo. 3 as
MARL. We compare them on traveling salesman tours of 48
state capital cities on the US mainland [2]. Given the latitude
and longitude of each city, the distance between any two cities
can be computed using the Haversine formula [1]. The prize
at each city is a random number in [1, 100]. Each data point
in our plots is an average of 20 runs with a 95% confidence
interval; in each run, a state capital city is randomly chosen
as the source and destination city.

Comparing MARL, GA1, and GA2. Fig. 2 compares all
three algorithms by varying the budgets. Fig. 2(a) shows
the total prizes collected. We observe that MARL and GA2
outperform GA1, and the performance differences are more
prominent at smaller budgets. As GA1 always tries to collect
the largest prize available, it could travel long distances, thus
exhausting its budget quickly. Fig. 2(b) shows that at smaller
budgets, all three algorithms travel the same distances to
collect prizes. This is because they all have exhausted their
budgets. At larger budgets, MARL yields less distance cost
than GA2, which has less cost than GA1. These demonstrate
that the MARL algorithm is more efficient (distance-wise) and
effective (prize-wise) than the handcrafted greedy algorithms.

Impacts of Number of Agents m on MARL. Next, we
study the impact of the number of agents m on the MARL’s
performance. We vary m from 1, 5, 10, 15, to 20, and the
budget B from 10,000, 20,000, 30,000, to 40,000. Fig. 3(a)
shows that for each m, the higher the B, the larger the collected
prize. When B = 30, 000 and 40, 000, it has collected all the
available prizes in the network. However, varying m seems
to have no clear effect on the collected prizes. This shows
the total collected prize does not depend on m in MARL.
Fig. 3(b) shows the traveled distance of the MARL w.r.t. m
and B. The higher the B, the more distances it can travel.
Again, we observe that varying m does not seem to affect
the traveled distance of the salesman. Finally, Fig. 3(c) shows
for each B, with the increase of m, the execution time of the
MARL algorithm increases. This is because we have a prefixed
number of episodes of 25,000, each of which takes more time
to execute when more agents join the learning process.

V. CONCLUSIONS AND FUTURE WORK

We proposed an algorithmic problem called budget-
constrained TSP (BC-TSP) that arises from many robotic ap-
plications, wherein robots are dispatched to accomplish some
tasks with limited battery power. Such applications include
robotic sensor networks, electrical cars in ride-sharing, and
automated warehouses. We designed two greedy algorithms
and a multi-agent reinforcement learning (MARL) algorithm
to solve BC-TSP. The MARL algorithm performs better than
the handcrafted greedy algorithms in both distance costs and
prizes collected. As an ongoing and future work, we will study
performance guarantees and the convergence of the greedy and
MARL algorithms. We will also answer the question below:

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

1 5 10 15 20

P
ri
z
e
 C

o
lle

c
te

d

Agents

Β=10000
Β=20000
Β=30000
Β=40000

(a) Total Prize.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 5 10 15 20

D
is

ta
n
c
e
(M

ile
s
)

Agents

Β=10000
Β=20000
Β=30000
Β=40000

(b) Total Distance.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1 5 10 15 20

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Agents

Β=10000
Β=20000
Β=30000
Β=40000

(c) Execution Time.

Fig. 3: MARL with varying number of agents m.

Do m agents in t episodes and one agent in m × t episodes
have the same learning performance to solve BC-TSP?

ACKNOWLEDGMENT

This work was supported by NSF Grant CNS-2240517 and
the Google exploreCSR program.

REFERENCES

[1] Haversine formula. https://en.wikipedia.org/wiki/Haversine formula.
[2] Traveling salesman tour of us capital cities.

https://www.math.uwaterloo.ca/tsp/data/usa/index.html.
[3] Reinforcement learning for combinatorial optimization: A survey. Com-

puters & Operations Research, 134, 2021.
[4] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and

D. Turgut. Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle. In
Proc. of INFOCOM, 2014.

[5] Omar Cheikhrouhou and Ines Khoufi. A comprehensive survey on
the multiple traveling salesman problem: Applications, approaches and
taxonomy. Computer Science Review, 40, may 2021.

[6] R. W. L. Coutinho, A. Boukerche, and S. Guercin. Performance
evaluation of candidate set selection procedures in underwater sensor
networks. In Proc. of IEEE ICC 2019.

[7] L. Gao, Y. Chen, and B. Tang. Service function chain placement in cloud
data center networks: a cooperative multi-agent reinforcement learning
approach. In the 11th EAI International Conference on Game Theory
for Networks (GameNets 2021).

[8] L. C. Garaffa, M. Basso, A. A. Konzen, and E. P. de Freitas. Rein-
forcement learning for mobile robotics exploration: A survey. IEEE
Transactions on Neural Networks and Learning Systems, 34(8):3796–
3810, 2023.

[9] J. Hua, L. Zeng, G. Li, and Z. Ju. Learning for a robot: Deep
reinforcement learning, imitation learning, transfer learning. Sensors,
21(4), 2021.

[10] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in
wireless sensor networks: A survey on tasks. Computer Networks,
148:1–19, 2019.

[11] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics:
A survey. 32(11), 2013.

[12] Michael L. Littman. Value-function reinforcement learning in markov
games. Cognitive Systems Research, 2(1):55–66, 2001.

[13] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement
learning for combinatorial optimization: A survey. CoRR, 2020.

[14] D. E. Phillips, M. Moazzami, G. Xing, and J. M. Lees. A sensor network
for real-time volcano tomography: System design and deployment. In
Proc. of IEEE ICCCN 2017.

[15] M. Rahmati and D. Pompili. Uwsvc: Scalable video coding transmission
for in-network underwater imagery analysis. In Proc. of IEEE MASS
2019.

[16] J. Ruiz, C. Gonzalez, Y. Chen, and B. Tang. Prize-collecting traveling
salesman problem: a reinforcement learning approach. In Proc. of IEEE
ICC, 2023.

[17] R. S. Sutton and A. G. Barto. Reinforcement Learning, An Introduction.
The MIT Press, 2020.

[18] A. Wichmann, T. Korkmaz, and A. S. Tosun. Robot control strategies for
task allocation with connectivity constraints in wireless sensor and robot
networks. IEEE Transactions on Mobile Computing, 17(6):1429–1441,
2018.


