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Abstract— In this paper we study a seismic sensing platform using 
Shakebox, a low-noise and low-power 24-bit wireless accelerometer 
sensor. The advances of wireless sensor offer the potential to monitor 
earthquake in California at unprecedented spatial and temporal 
scales. We are exploring the possibility of incorporating Shakebox 
into California Seismic Network (CSN), a new earthquake 
monitoring system based on a dense array of low-cost acceleration 
seismic sensors. Compared to the Phidget/Sheevaplug sensors 
currently used in CSN, the Shakebox sensors have several 
advantages. However, Shakebox sensor collects 4K Bytes of seismic 
data per second, giving around 0.4G Bytes of data in a single day. 
Therefore how to process such large amount of seismic data becomes 
a new challenge. We adopt Hadoop/MapReduce, a popular software 
framework for processing vast amounts of data in-parallel on large 
clusters of commodity hardware. In this research, the testbed-
generated seismic data generation will be reported, the map and 
reduce function design will be presented, the application of 
MapReduce on the testbed-generated data will be illustrated, and the 
result will be analyzed. 
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I. INTRODUCTION 
Sitting on the tectonic boundary between the Pacific and the 
North American Plate, California is the state with second-most 
earthquakes in the United States. Large earthquakes are 
inevitable in California -- according to the 2007 Working 
Group on California Earthquake Probabilities (WGCEP 2007), 
the probability of a magnitude 6.7 or larger earthquake 
striking the greater Los Angeles area before 2038 is 67%. The 
recent 6.0-magnitude South Napa Earthquake, the strongest 
earthquake in 20 years, caused over $400 million in damage 
and served as a wakeup call of how serious the situation could 
be.  
 
Currently California Integrated Seismic Network (CISN, 
http://www.cisn.org/) is the statewide system in California for 
earthquake monitoring, emergency response, and loss 
mitigation. It has deployed around 3000 seismic stations in 
California and western Nevada. A seismic station includes a 
sensor (short-period, broadband, and strong-motion) to record 
the ground motion, a computer to save the data, a GPS for 
accurate timing and location, telemetry or radio equipment to 
send the data back to a processing center and a power source 
to run the station. While these stations provide high fidelity 

and reliable data themselves, California still lags in the 
number of stations needed to provide high quality of 
earthquake information throughout the state. Besides, being 
bulky and power-hungry, these stations have been costly to 
install and maintain, preventing them from large-scale 
deployment.  As a result, these sparsely distributed stations 
only provide limited coverage and coarse-grain monitoring for 
earthquake. 
 
The California Seismic Network (CSN, www.csn.caltech.edu) 
is a transformative approach to earthquake detection, science, 
and outreach.  The CSN is a new earthquake monitoring 
system based on a dense array of low-cost acceleration 
seismic sensors.  By producing block-by-block measurements 
of strong shaking during an earthquake, which are called 
shake maps, it can help first responders, fire fighters, rescue 
workers to pin down accurately the damage area in block by 
block level. The technical idea of CSN is that a small 
seismometer is hosted in each residential home or office, such 
that when earthquake takes place, the very granular 
measurement can be immediately transmitted to a centralized 
server (a Google cloud server) via Internet for real-time 
analysis. Preliminary results have shown that this system is 
very effective to measure earthquake damage and alert the 
public [1][2][3][4].  
 
This paper explores four aspects that further contribute to 
CSN: 
 
1. The functioning of CSN assumes the existence of the 
communication infrastructure. However, when the Internet is 
torn down during earthquake, the seismic sensors are 
disconnected from Google cloud via the Internet. How to 
preserve the large amount of data it generates during 
earthquake becomes a new challenge.  
 
2. Even if Internet connection still exists, the constant 
transmission of the readings of hundreds of seismic sensor 
back to the Google cloud will inevitably overburden the 
communication infrastructure. Therefore, the inner data 
processing among sensor nodes wirelessly become more 
relevant. 
 
3. The current seismic sensor node does not have wireless 



communication capabilities. Each seismic sensor used in CSN 
is operated by a small Ubuntu-based computer called 
SheevaPlug [7].  There is no well-defined solution to equip the 
current version of the SheevaPlug with wireless capability.  
 
4. Finally, the SheevaPlug is a relatively lower-end seismic 
sensor, with very coarse sampling resolution. 
 
Considering all above, we are exploring the possibility to 
integrate a high-precision, GPS-based, wireless, large-storage 
seismic sensor, called Shakebox, into CSN.  In contrast to 
low-cost sensors used in CSN, the Shakeboxes are equipped 
with the most accurate strong-motion accelerometer defined 
by the ANSS standards. Therefore, Shakeboxes can possibly 
produce more precise measurements than the low-cost sensors 
of CSN. However, around 0.4 GB of data is generated by a 
Shakebox in a single day.  How to process such large amount 
of seismic data becomes a new challenge.  
 
In the past decade, the MapReduce programming model [10] 
has emerged as a popular framework for large data set 
analysis. The key idea of MapReduce is to divide the data into 
chunks, which are processed in parallel. Several open source 
MapReduce frameworks have been developed in the last 
years. In particular, Hadoop [11], the most prevalent 
implementation of MapReduce, has been extensively used by 
companies and research communities on a very large scale. In 
this paper, we adopt Hadoop and MapReduce for the data 
process and show and analyze our experimental results. 
Specifically, we design Map and Reduce functions that suit for 
the application of seismic big data.  
 
The rest of the paper is organized as follows. Section II 
discusses the related work. In Section III, we introduce 
Shakebox seismic sensing platform. Section IV presents 
MapReduce and Hadoop Distributed File System. In Section 
V, we design MapReduce functions for Shakebox seismic data 
analysis. We show our experiment on data collection and data 
analysis in Section VI. We conclude our paper in Section VII 
and discuss some future work. 
 

II. RELATED WORK 
 
With the development of the micro-electro-mechanical 
systems (MEMS) low-cost accelerometers and the 
proliferation of mobile devices such as laptops and 
smartphones, several seismic monitoring networks that utilize 
low-cost and USB-based accelerometers are designed and 
deployed.  We are aware of two projects in this line:  The 
Community Seismic Network (CSN) [1][2][3][4] and the 
Quake-Catcher Network (QCN) [5,6].  
 
The CSN envisions city-wide networks of community-owned 
sensor devices that perform large-scale seismic sensing. It is 
collaboration among geophysicists, civil engineers and 
computer scientists to develop the sensor technologies, 

scalable infrastructure, and algorithmic tools needed to 
reliably perform large-scale seismic sensing. In contrast to 
traditional seismic networks that contain a small number of 
highly accurate sensors, the CSN project focuses on large 
numbers of inexpensive, community-held sensors, such as 
those in personally owned devices like smart phones.  
 
The QCN is a distributed computing seismic network that 
links internal (no cost, built-in) or external (low-cost, USB-
based) accelerometers connected to any participating 
computer for earthquake research. It is based on a distributed 
computing platform called Berkeley Open Infrastructure for 
Network Computing (BOINC) [15]. The objective of QCN is 
to dramatically increase the number of seismic observations 
by exploiting recent advances in sensing technologies and 
cyber infrastructure capabilities for automated warning and 
alert for natural disasters. 
 
Shakeboxes have been used in ShakeNet [8], a portable 
wireless sensor network for instrumenting large civil 
structures such as buildings and bridges. The ShakeNet 
software subsystem is built upon Tenet [14], a programmable 
wireless sensing software architecture designed for tiered 
sensor networks.  
 
In contrast to all above Shakebox-related research, we are 
approaching the Shakeboxes from the perspective of big-data 
processing, and design Map and Reduce functions to process 
the seismic data generated by Shakeboxes. 
  
There are a few researches in recent years that focus on big 
sensor data. Lee et al. [9] designed a platform that enables 
sensor data to be taken from collection, through use in models 
to produce useful data products.  They propose a response 
through a sensor data platform “Concinnity”, which can take 
sensor data from collection to final product via a data 
repository and workflow system. They summarize the key 
features of their approach and explore how it enables value to 
be derived from sensor data efficiently.  Liu et al. [12] propose 
an integrated method to address the heterogeneity issue in 
modeling big time series sensor data. They present both linear 
and nonlinear feature extraction techniques, as well as a 
procedure to determine the right extraction method for 
individual time series. Guo et al. [13] observe that model-
based sensor data approximation reduces the amount of data 
for query processing. They propose an innovative index for 
modeled segments in key-value stores, called KVI-index. 
They show their approach outperforms in query response time 
and index updating efficiency both Hadoop-based parallel 
processing of the raw sensor data and multiple alternative 
indexing approaches of model-view data. 
 
In contrast to above big sensor data researches, most of which 
focus on mathematical modeling of big sensor data, we are 
particularly interested in the whole process of real seismic 
sensor data collection, analysis, and visualization.   



III. SHAKEBOX SEISMIC SENSING PLATFORM 
 

Shakexbox is a wireless sensor node equipped with a low-
noise and low-power 24-bit triaxial accelerometer. The use of 
low-noise and low-power 24-bit accelerometer puts ShakeBox 
near the US Geological Survey's 'Class A' device 
specifications for earthquake measuring instruments.  The 
system comes preloaded with sensing software as well as 
deployment tools that enable rapid deployment. Small form 
factor and portable design makes Shakeboxes easy and fast to 
deploy. Shakeboxes have been used in structural health 
applications [8], since aforesaid small form factor and portable 
design help in capturing the structural health of the building, 
bridge, dam or tunnel expeditiously when compared to wired 
monitoring methods. Shakeboxes have their own power 
source, making them independent of the infrastructure. This is 
vital for remote locations or in disaster struck areas. 
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Figure 1. a) Shakebox with weatherproof enclosure with 6-
inch ruler shown for scale. b) Placement of detailed modules 
with 6-inch ruler shown for scale. Source: 
http://nsl.cs.usc.edu/Projects/ShakeNet 
 

The Shakeboxes were manufactured by Refraction 
Technologies (RefTek, http://www.reftek.com/). Figure 1 is a 
modular design paradigm for the ShakeBox. Figure 1 (a) 
shows several visible modules: Power, GPS, Radio, and 
Communication. Figure 1 (b) shows the CPU, Power and A/D 
modules inside the Shakebox. These modules are housed in a 
custom-made weatherproof casing.  
 
The CPU module contains the system processor board (a 
Crossbow iMote2 mote) and the RT617 CPU carrier board 
and controls all system operations. The boards are housed in 
an electro magnetic shield to reduce external effects on the 
analog module.  
 
The iMote2 mote controls the communication to other three 
modules. IMote2 is an advanced sensor network platform and 
consists of a Marvel PXA271A ARM CPU, which is a 32bit 
microcontroller, and a CC2420 radio, an 802.15.4 compliant 
2.4GHz wireless communication radio with up to 256Kbps bit 
data rate. Dynamic scaling of core frequency of the PAX271 
microcontroller from 13MHz to 208MHz provides a varied 
range of options for balancing processing power with energy 
usage. 
 
The Power module provides the power requirements of the 
different components and consists of RT618 FPGA board and 
RT620 power board. RT618 provides communication with 
CPU module, a clock, control of the voltage monitor A/D 
converter, control of analog power supplies and board ID 
EEProms. RT620 provides an input power controller, 
switching supplies at different voltage levels, a 16-bit A/D 
monitor for supply voltages and input currents, and a board ID 
EEProms.  
 
The sensor module consists of three Colibyrs SiFlex 1500 
accelerometers, which are interfaced to the RT614 board in 
the A/D module. The SiFlex1500 operates from a bipolar 
power supply voltage that can range from ± 6V to ± 15V with 
a typical current consumption of 12mA at ± 6V. The linear 
full acceleration range is ± 3g with a corresponding sensitivity 
of 1.2V/g. The sampling rate of the sensor module is 10, 100, 
200, or 1000 samples per second. 
 
The weatherproof casing houses all the modules. Each module 
is electronically shielded to protect against electromagnetic 
disturbance. The lead acid battery used in the Shakebox is 
placed in a separate sealed compartment to isolate it from the 
electronics in case of battery leakage. The box provides serial 
connectors, connector for GPS, LEDs for display and 
feedback and antenna connector for high gain external antenna 
used by iMote2’s radio. It has three screws and a spirit level 
for leveling. The prototype box in Fig. 1 is made up resin 
plastic but the production pieces will be metallic aluminum. 
 
Finally, the Shakebox is equipped with one or two Compact 
Flash Type I or Type II storage media (disks). CF flash 
storage is available up to 16 GB capacity. For example, 4 GB 



is enough storage to hold more than 100 days of three channel, 
100 sample per second data recorded with compression. Files 
are written in FAT32 format allowing high capacity disks to 
be used. 
 

IV. MAPREDUCE AND HADOOP DISTRIBUTED FILE 
SYSTEM (HDFS) 

 
MapReduce is a distributed processing framework that enables 
big data processing. The Hadoop distributed file system 
(HDFS) is a distributed, scalable, and portable file-system 
written in Java for the Hadoop framework. Below we present 
both and show how we adopt them in our seismic data 
analysis. 

A. MapReudce 
 
MapReduce [10] has two main components, a mapper and a 
reducer. A mapper works on each individual input record to 
generate intermediate results, which are grouped together 
based on some key and passed on to the reducers. A reducer 
works on the group of intermediate results associated with the 
same key and generates the final result using a result 
aggregation function. The processing units of the MapReduce 
framework are key-value pairs. 
 
Mapper: The Mapper maps input of key/value pairs to an 
intermediate set of key/value pairs. A single map task 
transforms an input record to an intermediate record. 
Intermediate records can be of a different type than input 
records. Raw numerical data used as an input can be mapped 
to an array or records as the intermediate data. Based on the 
input map configuration and task specifications, mapping can 
result in many output pairs or zero output pairs. Hadoop 
MapReduce framework will create one map task for every 
input task specified by the input format for the job. A job is a 
method in which MapReduce assigns a task to be processed in 
a manner specified by the user created configuration to 
evaluate key/value pairs from input to intermediate records.  
 
Output pairs are collected during job execution. During job 
execution reports can be generated to display application level 
status messages, update counters, or indicate jobs are still 
running. All intermediate values are given an output key and 
grouped by the framework based on the key. A user can 
specify the method of grouping the intermediate values. 
Among the configurations a user can specify the ability to 
compress the intermediate values for storage. Intermediate 
values are passed to the Reducer for final output. In order to 
cut down on the amount of data transferred to the reducer, 
local aggregation of intermediate values can be performed. 
 
Reducer: The Reducer performs a series of tasks, configured 
by the user, to reduce the input set of intermediate values to a 
smaller set of values that have a common key. During the 
reduction process the Reducer traverses three different phases: 
shuffle, sort, and reduce. 

Shuffle: During this phase the Reducer identifies all the 
mappers that have data to be exported to the reducer. Upon 
identification of the partitions where the data is stored, 
Reducer fetches the sorted output from the partitions (via 
HTTP if stored on external nodes). 
 
Sort: The framework groups the inputs by keys. The map 
output of intermediate values may contain output pairs with 
the same key. The duplicates are merged at the same time as 
data is being fetched. Sorting configurations can be set to 
include rules that determine grouping of intermediate keys as 
well as assigning different comparison functions. Sorting 
functions can specify secondary sorts to more efficiently 
group data before the next phase. 
 
Reduce: During a round of reduction, the Reducer compares 
key/lists by group and reduces grouped inputs. A number of 
reducing rounds will need to be completed before the entire 
data set is reduced. The output from the reducer is unsorted 
and written to the file system via a path specified by the user. 
The number of reduces and their associated scaling factor can 
be modified through user configuration settings. During the 
reduce phase a user can specify a reporter to report progress 
and application-level status messages, and update counters, or 
indicate overall status. 
 
During the MapReduce process, multiple nodes are processing 
jobs. Each job can be assigned a timeout to end the task in 
case of process or node failure. The job can be reassigned to 
another process after timeout. The process of assigning 
multiple jobs over multiple nodes to be processed can be 
described as batch processing. Batch processing in a 
MapReduce framework allows a user to specify how jobs are 
executed and how results are stored and reduced. Each 
Mapper/Reducer task executes as a child process in a separate 
JVM. A user can specify the maximum virtual memory of a 
child-task. 

B. Hadoop Distributed File System (HDFS) 
 
Hadoop Distributed File System (HDFS) is a Java-based file 
system that provides scalable and reliable data storage that is 
designed to span large clusters of commodity servers. HDFS 
splits files into large blocks (default 64MB or 128MB) and 
distributes the blocks amongst the nodes in the cluster. 
 
Each Java Virtual Machine (JVM) is given its own file system 
on the local machine. The file system includes: output 
directory, work directory, temp directory, and an xml file that 
specifies task localized job configuration. The task file system 
is a subsystem of the job file system. The job file system 
stores files needed for each task. The work directory stores 
files that will need to be shared by multiple tasks for a specific 
job. A jar directory contains the user specified program that 
controls the tasks. The job file system also contains an xml file 
that outlines the configuration for the localized job. 
 
 



 
public void map(LongWritable key, Text value,  Context context)  
     throws IOException, InterruptedException { 
        try{ 
           String myWord = "Quake " + inc + ": "; 
         String line = value.toString(); 
            StringTokenizer tokenizer = new StringTokenizer(line, "\t");         
            word.set(myWord);            
            tokenizer.nextToken(); 
            String x_value = tokenizer.nextToken(); 
            String y_value = tokenizer.nextToken(); 
            String z_value = tokenizer.nextToken(); 
             
  //Checking the X column 
           if(!first_time){ 
            if(count < xRange_array.length){ 
             // X-column  
             new_x = Double.parseDouble(x_value); 
             xRange_array[index] = Math.abs(new_x - old_x); 
             xSum += xRange_array[index]; 
             old_x = new_x; 
              
             // repeat for Y-column  
             // repeat for Z-column  
              
             index++;             
            } 
            else{ 
             if(index >= xRange_array.length){ 
              index = 0; 
             } 
             // X-column 
             xSum -= xRange_array[index]; 
             new_x = Double.parseDouble(x_value); 
             xRange_array[index] = Math.abs(new_x - old_x); 
             xSum += xRange_array[index];   
             old_x = new_x; 
              
             // repeat for Y-column              
             // repeat for Z-column   
              
             index++; 
            } 
              
            if(((xSum / xRange_array.length) >= xThreshold) &&  

((ySum / yRange_array.length) >= yThreshold) &&  
((zSum / zRange_array.length) >= zThreshold)){ 

             context.write(word, one); 
             quake_happening = true; 
            } 
            else if(quake_happening = true){ 
             inc++; 
             quake_happening = false; 
            } 
            count++; 
           }else{ 
            old_x = Double.parseDouble(x_value); 
            old_y = Double.parseDouble(y_value);  
            old_z = Double.parseDouble(z_value);  
            first_time = false; 
           } 
           }catch(NoSuchElementException nsee ){ 
             
           }catch(NumberFormatException nfe){} 
             
       } 
    }  
            
   
 

Figure 2. Map Function. 
 
 



 
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { 
     private int inc = 1; 
     private String quake = "Quake "; 
       public void reduce(Text key, Iterable<IntWritable> values, Context context)  
         throws IOException, InterruptedException { 
           int sum = 0; 
           for (IntWritable val : values) { 
               sum += val.get(); 
           } 
           if(sum >= 20 ){ 
            
            key.set(quake + inc + ":"); 
            context.write(key, new IntWritable(sum)); 
            inc++; 
           } 
       } 
    } 
 

Figure 3. Reduce Function. 
 
The user submits jobs through a client interface. The interface 
also allows the user to track progress, access reports and logs, 
and retrieve cluster status information. A job submission 
should include: checking the input and output specifications of 
the job, computing key/values for the job, set up requisite 
accounting information for the distributed cache of the job, 
copying the job's jar and configuration files to the file system, 
and submitting the job and monitoring it's status. 
 
Job control can be used to chain MapReduce jobs to 
accomplish complex tasks that cannot be done by a single job. 
This can be accomplished by using the output of one job as the 
input of another job. If real time data needs to be processed 
this method can be used to process and buffer data. 
 
HDFS is a cluster of nodes that is used as a framework for 
storing data. A NameNode manages the file system meta-data. 
The DataNodes store the actual data. The client interface 
contacts the NameNode for file meta-data or file modifications 
and performs the actual file I/O directly with the DataNodes. 
 
The NameNode and DataNodes have built in web servers to 
easily interact with each other. The NameNode stores 
modifications to the file system as a log appended to the 
native file system. During NameNode start up, it reads the 
HDFS state from an image file and applies edits from the log 
file. The new HDFS state is saved to the image file and starts 
normal operation. 
 
HDFS data is not always uniformly distributed across nodes. 
To help eliminate data loss failure to one of the nodes, the 
system replicates blocks of data across all of the nodes. This 
process also helps to balance the distribution of data. 
Placement or grouping of blocks of data can be done to 
increase processing or increase the efficiency of MapReduce. 
The NameNode can control clusters of thousands of 
DataNodes each with its own functionality to perform specific 
jobs. 
 

V. MAPREDUCE FUNCTIONS FOR SHAKEBOX DATA 
ANALYSIS 

 
The earthquake data is produced through experiment with the 
Shakebox. REF TEK 130S is used as input for the MapReduce 
program. The data in the file is formatted into four tab-
delimited columns, each containing data of the type "double". 
 
Figure 2 and Figure 3 show the Map and Reduce functions 
that we designed, respectively. When the program is launched, 
the map function reads the input file line by line. It then maps 
each data item from the line based on the algorithm provided. 
In our case, the algorithm takes, for each column, the first 
value and subtracts it from the next. The absolute value of the 
result is saved to an array of doubles. As the array is 
progressively filled up, the data contained in the array is 
summed and then divided by the number of elements in the 
array to find the average value. 
 
If the result of this operation is less than a threshold value we 
hardcoded, then the program understands that nothing is 
happening. If the result of this operation is greater than the 
threshold value, then the program understands that an event is 
happening. The event in this case is the first wave of an 
earthquake. Therefore, the program generates an output pair 
such as ("Quake 1:", 1) to indicate that 1 tremor has been 
recorded for the first wave of the earthquake. If a second 
tremor occurs for the first wave, then another key/value pair 
("Quake 1:", 1) is recorded. And so on. 
 
The array represents a range over which the average of the 
differences between consecutive values has to be greater than 
the threshold value in order for us to consider that an 
earthquake is happening. We chose a threshold of 0.5 and an 
array of 100 elements for our range. When the end of the array 
is reached, the oldest value, which is located at index 0, is 
removed, and the next value from the input file is loaded at 
that index. Therefore, as the mapping programs goes through 
the file, we always have 100 values that are being considered 
to determine whether or not an earthquake is happening.



 
If the average of the difference of those 100 elements falls 
below the threshold value after being higher than that for a 
while, then we consider that the first wave of an earthquake 
that was happening has stopped. At this moment, we start 
looking for the next wave. Repeat this process until we reach 
the end of the file. 
 
At this point, the data mapped into the context of the 
MapReduce program is shuffled and sorted. During this 
process, all the data belonging to "Quake 1", which indicates 
the first wave of the earthquake, is put into a key/value pair. 
The word "Quake 1" is used as the key, and every other item 
that was coupled with the key "Quake 1:" in the output of the 
map function is put into a list. That list is identified as the 
value. The same process is repeated for "Quake 2:", "Quake 
3:", and so on, if they exist. 
 
Then, each key/value pair is sent to the reduce function. This 
function identifies each key and iterates over the list of value 
to sum them up. The total for each key is saved to the output 
file. And by repeating this process for each key and its 
associated values, we obtain a file that shows how many 
waves of earthquake occurred, and for each wave the total 
number of tremors. 
 

VI. EXPERIMENT 

A. Artificial Seismic Data Generation from Shakeboxes  
We connected the Shakebox to a PC and collected data for 10 
minutes. The sample rate of the Shakebox is set as 200 
samples per second (the maximum sampling rate is 1000 
samples per second). During data collection, we jumped on 
the ground several times to create a few artificial earthquakes 
(otherwise, the data always stays the same, which does not 
help in our MapReduce analysis later on). Figure 4 is the data 
collection GUI, showing all the steps taken to collect data 
from Shakeboxes: 
 

1) Connect data cable to com port on shakebox and usb port 
on pc. 

2) Turn on shakebox with magnetic switch. 
3) Click imoteconsoleshuai.Exe and it will show 

usbxxxx under selected imote 2, which means 
shakebox is detected and ready. 

4) Run ./usbloaderhost.Exe –p 
shakebox.Bin.Out in cygwin command line and it 
will start programming the shakebox.  

5) On imoteconsole, select the imote2 device 
(usbxxxx) --> click view buffer in window --> 
click connect  --> press enter in BluSH prompt. 

6) Type ls to see all commands supported. 
7) Type startcollection 200 120000 to collect raw 

ADC data at 200hz for 10min, data will be saved in file 
ad-data-raw. 

8) Use stopcollection to stop data collection. 
 
 

 
 

 
Figure 4. Data Collection GUI. 

 
The raw data stored in ad-data-raw looks like below. 
 
00000ecb  4ca5d00e 22d4c500 05c4d204 0509bb08 
00000ecb  4de5d00e 22d5e200 05c4c404 0509dc08 
00000ecb  4f25d00e 22d50c00 05c51004 0509dc08 
00000ecb  5065d00e  22d4e700  05c55f04 050a0008 

 

Each line of the raw data contains five 32-bit words (in 
hexadecimal) in following order: date, time, acceleration in 
channel 1 (X axis), acceleration in channel 2 (Y axis), 
acceleration in channel 3 (Z axis).  Since we collected data for 
10 minutes, with 200 data collected per second, it therefore 
collected 10*60*200=120,000 number of data (that is, there are 
20,000 lines in the ad-data-raw text file). The total size of 
the data is 480K Bytes. Within one day, it collects 69.12 Mbyte 
of data. With maximum sampling rate of 1000, it could 
generate 0.4G Bytes of data in a  single day. 

Above raw data can be converted to seismic data as follows. In 
each line, the first data is the combined data and time, the 
second, third, and fourth items are the acceleration data in X, 
Y, and Z axis, respecively.  

 
946.3065908203125  3.672951192799 
0.608369062626 0.531226649424  
 
946.3115908203125  3.673409770054 
0.608346534372 0.531279744576  
 
946.3165908203125  3.6730654348520004 
0.6084688306079999 0.531279744576  
 
946.3215908203125  3.6730059002610003 
0.608595954327 0.5313376665599999  
 



946.3265908203125  3.6731716316900003 
0.608576644395 0.5314132869279999  

 

The unit of above seismic data is g, the standard value of 
gravitational acceleration at sea level on Earth.1  

B. Data Analysis Using MapReduce 
 
In our data analysis, we have adopted 4 machines, each 
machine has Xeon processors, 2 TB disc storage, and 12 GB 
RAM. As raw data is received from the sensor nodes, it is 
saved to the HDFS. The data can be stored in the temp 
directory until processed. A job is created to process the data 
using the MapReduce functions. The output data is saved in a 
directory intended to be the input of a java visualization chart 
program. The program uses the data set start and finish points 
to output a graph depicting the changes in movement for the 
X,Y, and Z planes. The graphs can be saved for future analysis 
or analyzed in real time. The final graph file system will not 
include idle time data, which in turn will reduce the state 
space and search space for future analysis. Future programs to 
implement in the MapReduce environment can include 
mapping the comparison of the three graphs and reducing the 
data to anomalous events for future research. 
 
Figure 5 shows that the initial mapping tasks are created as 
jobs and assigned to individual nodes for processing. The 
NameNode keeps track of each job and follows the user 
configuration of the mapping function to assign file location 
and control settings.          
 
 

 
 

 
Figure 5. Initial Mapping Output 

 
After all mapping tasks have been executed as jobs, the status 
of those results is displayed, as shown in Figure 6. It also 

                                                             
If calibrated correctly, the acceleration numbers should be around 0g. 
We are currently calibrating Shakeboxes. 1  

specifies some configuration settings as well as some logged 
statistics including resource calculations. 
 

 
 

 
Figure 6. Final Mapping Output 

 
 
Figure 7 shows that as jobs are completed from the mapping 
functions, the reduce functions process the intermediate values 
and the meta-data associated with the completed tasks are 
processed by the NameNode. The NameNode keeps track of 
how much data is written and where it is located and what the 
data represents. During this process all completed jobs are 
logged for analysis. 
 

 
 

 
Figure 7. Reduce Output 

 
 
Figure 8 shows that the output data from the MapReduce 
process contains specific data sets that were sought from our 
MapReduce program. The output is specific sections of the 
input data that meet our minimum requirements for identifying 
an earthquake. Data that was recorded when no earthquakes 
were occurring is omitted from the results. This reduces the 
amount of data that needs to be stored. 



 
 
 

Figure 8. Reduce Output 
 

 
Finally, Figure 9 shows a visualization of a specific seismic 
data set from one Shakebox output, which is processed by our 
MapReduce functions on the larger data set.  Figure 9 (a) (b) 
and (c) show the Shakebox movement along X-, Y-, and Z- 
axis respectively. The X plane graph is the movement along 
the X-axis of the shakebox (if you view it from above); the Y 
plane graph represents the movement along the Y-axis as you 
look at the box from above; the Z plane graph represents the 
movement of the shake box when it is lifted up and down. 

VII. CONCLUSION AND FUTURE WORK 
In this paper we studied a seismic sensing platform using 
Shakebox, a low-noise and low-power 24-bit wireless 
accelerometer sensor.  To process large amount of seismic 
data from this platform, we adopted Hadoop/MapReduce. We 
designed map and reduce functions on the testbed data and 
analyzed the result. As ongoing effort and future work, we are 
working on the following two directions. Currently, the 
Shakeboxes are invoked from command line and only collect 
data for a specified amount of time. We are configuring 
Shakeboxes such that it can constantly collect data. This is 
critical to catch real earthquake occurrences.  Second, we are 
planning to incorporate real earthquake models into our 
Haddop/Mapreduce analysis, to better evaluate its efficacy. 
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Figure 9. Shakebox Movement. 
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