
Seismic Data Collection with Shakebox and Analysis
Using MapReduce

Bin Tang, Jianchao Han, Mohsen Beheshti, Garrett Poppe, Liv Nguekap, and Rashid Siddiqui
Department of Computer Science

California State University Dominguez Hills
Carson, CA 90747

{btang,jhan,mbeheshti}@csudh.edu, {gpoppe1, lnguekap1, rsiddiqi1}@toromail.csudh.edu

Abstract— In this paper we study a seismic sensing platform using
Shakebox, a low-noise and low-power 24-bit wireless accelerometer
sensor. The advances of wireless sensor offer the potential to monitor
earthquake in California at unprecedented spatial and temporal
scales. We are exploring the possibility of incorporating Shakebox
into California Seismic Network (CSN), a new earthquake
monitoring system based on a dense array of low-cost acceleration
seismic sensors. Compared to the Phidget/Sheevaplug sensors
currently used in CSN, the Shakebox sensors have several
advantages. However, Shakebox sensor collects 4K Bytes of seismic
data per second, giving around 0.4G Bytes of data in a single day.
Therefore how to process such large amount of seismic data becomes
a new challenge. We adopt Hadoop/MapReduce, a popular software
framework for processing vast amounts of data in-parallel on large
clusters of commodity hardware. In this research, the testbed-
generated seismic data generation will be reported, the map and
reduce function design will be presented, the application of
MapReduce on the testbed-generated data will be illustrated, and the
result will be analyzed.

Keywords—seismic data; Shakebox; Hadoop MapReduce

I. INTRODUCTION
Sitting on the tectonic boundary between the Pacific and the
North American Plate, California is the state with second-most
earthquakes in the United States. Large earthquakes are
inevitable in California -- according to the 2007 Working
Group on California Earthquake Probabilities (WGCEP 2007),
the probability of a magnitude 6.7 or larger earthquake
striking the greater Los Angeles area before 2038 is 67%. The
recent 6.0-magnitude South Napa Earthquake, the strongest
earthquake in 20 years, caused over $400 million in damage
and served as a wakeup call of how serious the situation could
be.

Currently California Integrated Seismic Network (CISN,
http://www.cisn.org/) is the statewide system in California for
earthquake monitoring, emergency response, and loss
mitigation. It has deployed around 3000 seismic stations in
California and western Nevada. A seismic station includes a
sensor (short-period, broadband, and strong-motion) to record
the ground motion, a computer to save the data, a GPS for
accurate timing and location, telemetry or radio equipment to
send the data back to a processing center and a power source
to run the station. While these stations provide high fidelity

and reliable data themselves, California still lags in the
number of stations needed to provide high quality of
earthquake information throughout the state. Besides, being
bulky and power-hungry, these stations have been costly to
install and maintain, preventing them from large-scale
deployment. As a result, these sparsely distributed stations
only provide limited coverage and coarse-grain monitoring for
earthquake.

The California Seismic Network (CSN, www.csn.caltech.edu)
is a transformative approach to earthquake detection, science,
and outreach. The CSN is a new earthquake monitoring
system based on a dense array of low-cost acceleration
seismic sensors. By producing block-by-block measurements
of strong shaking during an earthquake, which are called
shake maps, it can help first responders, fire fighters, rescue
workers to pin down accurately the damage area in block by
block level. The technical idea of CSN is that a small
seismometer is hosted in each residential home or office, such
that when earthquake takes place, the very granular
measurement can be immediately transmitted to a centralized
server (a Google cloud server) via Internet for real-time
analysis. Preliminary results have shown that this system is
very effective to measure earthquake damage and alert the
public [1][2][3][4].

This paper explores four aspects that further contribute to
CSN:

1. The functioning of CSN assumes the existence of the
communication infrastructure. However, when the Internet is
torn down during earthquake, the seismic sensors are
disconnected from Google cloud via the Internet. How to
preserve the large amount of data it generates during
earthquake becomes a new challenge.

2. Even if Internet connection still exists, the constant
transmission of the readings of hundreds of seismic sensor
back to the Google cloud will inevitably overburden the
communication infrastructure. Therefore, the inner data
processing among sensor nodes wirelessly become more
relevant.

3. The current seismic sensor node does not have wireless

communication capabilities. Each seismic sensor used in CSN
is operated by a small Ubuntu-based computer called
SheevaPlug [7]. There is no well-defined solution to equip the
current version of the SheevaPlug with wireless capability.

4. Finally, the SheevaPlug is a relatively lower-end seismic
sensor, with very coarse sampling resolution.

Considering all above, we are exploring the possibility to
integrate a high-precision, GPS-based, wireless, large-storage
seismic sensor, called Shakebox, into CSN. In contrast to
low-cost sensors used in CSN, the Shakeboxes are equipped
with the most accurate strong-motion accelerometer defined
by the ANSS standards. Therefore, Shakeboxes can possibly
produce more precise measurements than the low-cost sensors
of CSN. However, around 0.4 GB of data is generated by a
Shakebox in a single day. How to process such large amount
of seismic data becomes a new challenge.

In the past decade, the MapReduce programming model [10]
has emerged as a popular framework for large data set
analysis. The key idea of MapReduce is to divide the data into
chunks, which are processed in parallel. Several open source
MapReduce frameworks have been developed in the last
years. In particular, Hadoop [11], the most prevalent
implementation of MapReduce, has been extensively used by
companies and research communities on a very large scale. In
this paper, we adopt Hadoop and MapReduce for the data
process and show and analyze our experimental results.
Specifically, we design Map and Reduce functions that suit for
the application of seismic big data.

The rest of the paper is organized as follows. Section II
discusses the related work. In Section III, we introduce
Shakebox seismic sensing platform. Section IV presents
MapReduce and Hadoop Distributed File System. In Section
V, we design MapReduce functions for Shakebox seismic data
analysis. We show our experiment on data collection and data
analysis in Section VI. We conclude our paper in Section VII
and discuss some future work.

II. RELATED WORK

With the development of the micro-electro-mechanical
systems (MEMS) low-cost accelerometers and the
proliferation of mobile devices such as laptops and
smartphones, several seismic monitoring networks that utilize
low-cost and USB-based accelerometers are designed and
deployed. We are aware of two projects in this line: The
Community Seismic Network (CSN) [1][2][3][4] and the
Quake-Catcher Network (QCN) [5,6].

The CSN envisions city-wide networks of community-owned
sensor devices that perform large-scale seismic sensing. It is
collaboration among geophysicists, civil engineers and
computer scientists to develop the sensor technologies,

scalable infrastructure, and algorithmic tools needed to
reliably perform large-scale seismic sensing. In contrast to
traditional seismic networks that contain a small number of
highly accurate sensors, the CSN project focuses on large
numbers of inexpensive, community-held sensors, such as
those in personally owned devices like smart phones.

The QCN is a distributed computing seismic network that
links internal (no cost, built-in) or external (low-cost, USB-
based) accelerometers connected to any participating
computer for earthquake research. It is based on a distributed
computing platform called Berkeley Open Infrastructure for
Network Computing (BOINC) [15]. The objective of QCN is
to dramatically increase the number of seismic observations
by exploiting recent advances in sensing technologies and
cyber infrastructure capabilities for automated warning and
alert for natural disasters.

Shakeboxes have been used in ShakeNet [8], a portable
wireless sensor network for instrumenting large civil
structures such as buildings and bridges. The ShakeNet
software subsystem is built upon Tenet [14], a programmable
wireless sensing software architecture designed for tiered
sensor networks.

In contrast to all above Shakebox-related research, we are
approaching the Shakeboxes from the perspective of big-data
processing, and design Map and Reduce functions to process
the seismic data generated by Shakeboxes.

There are a few researches in recent years that focus on big
sensor data. Lee et al. [9] designed a platform that enables
sensor data to be taken from collection, through use in models
to produce useful data products. They propose a response
through a sensor data platform “Concinnity”, which can take
sensor data from collection to final product via a data
repository and workflow system. They summarize the key
features of their approach and explore how it enables value to
be derived from sensor data efficiently. Liu et al. [12] propose
an integrated method to address the heterogeneity issue in
modeling big time series sensor data. They present both linear
and nonlinear feature extraction techniques, as well as a
procedure to determine the right extraction method for
individual time series. Guo et al. [13] observe that model-
based sensor data approximation reduces the amount of data
for query processing. They propose an innovative index for
modeled segments in key-value stores, called KVI-index.
They show their approach outperforms in query response time
and index updating efficiency both Hadoop-based parallel
processing of the raw sensor data and multiple alternative
indexing approaches of model-view data.

In contrast to above big sensor data researches, most of which
focus on mathematical modeling of big sensor data, we are
particularly interested in the whole process of real seismic
sensor data collection, analysis, and visualization.

III. SHAKEBOX SEISMIC SENSING PLATFORM

Shakexbox is a wireless sensor node equipped with a low-
noise and low-power 24-bit triaxial accelerometer. The use of
low-noise and low-power 24-bit accelerometer puts ShakeBox
near the US Geological Survey's 'Class A' device
specifications for earthquake measuring instruments. The
system comes preloaded with sensing software as well as
deployment tools that enable rapid deployment. Small form
factor and portable design makes Shakeboxes easy and fast to
deploy. Shakeboxes have been used in structural health
applications [8], since aforesaid small form factor and portable
design help in capturing the structural health of the building,
bridge, dam or tunnel expeditiously when compared to wired
monitoring methods. Shakeboxes have their own power
source, making them independent of the infrastructure. This is
vital for remote locations or in disaster struck areas.

(a)

(b)

Figure 1. a) Shakebox with weatherproof enclosure with 6-
inch ruler shown for scale. b) Placement of detailed modules
with 6-inch ruler shown for scale. Source:
http://nsl.cs.usc.edu/Projects/ShakeNet

The Shakeboxes were manufactured by Refraction
Technologies (RefTek, http://www.reftek.com/). Figure 1 is a
modular design paradigm for the ShakeBox. Figure 1 (a)
shows several visible modules: Power, GPS, Radio, and
Communication. Figure 1 (b) shows the CPU, Power and A/D
modules inside the Shakebox. These modules are housed in a
custom-made weatherproof casing.

The CPU module contains the system processor board (a
Crossbow iMote2 mote) and the RT617 CPU carrier board
and controls all system operations. The boards are housed in
an electro magnetic shield to reduce external effects on the
analog module.

The iMote2 mote controls the communication to other three
modules. IMote2 is an advanced sensor network platform and
consists of a Marvel PXA271A ARM CPU, which is a 32bit
microcontroller, and a CC2420 radio, an 802.15.4 compliant
2.4GHz wireless communication radio with up to 256Kbps bit
data rate. Dynamic scaling of core frequency of the PAX271
microcontroller from 13MHz to 208MHz provides a varied
range of options for balancing processing power with energy
usage.

The Power module provides the power requirements of the
different components and consists of RT618 FPGA board and
RT620 power board. RT618 provides communication with
CPU module, a clock, control of the voltage monitor A/D
converter, control of analog power supplies and board ID
EEProms. RT620 provides an input power controller,
switching supplies at different voltage levels, a 16-bit A/D
monitor for supply voltages and input currents, and a board ID
EEProms.

The sensor module consists of three Colibyrs SiFlex 1500
accelerometers, which are interfaced to the RT614 board in
the A/D module. The SiFlex1500 operates from a bipolar
power supply voltage that can range from ± 6V to ± 15V with
a typical current consumption of 12mA at ± 6V. The linear
full acceleration range is ± 3g with a corresponding sensitivity
of 1.2V/g. The sampling rate of the sensor module is 10, 100,
200, or 1000 samples per second.

The weatherproof casing houses all the modules. Each module
is electronically shielded to protect against electromagnetic
disturbance. The lead acid battery used in the Shakebox is
placed in a separate sealed compartment to isolate it from the
electronics in case of battery leakage. The box provides serial
connectors, connector for GPS, LEDs for display and
feedback and antenna connector for high gain external antenna
used by iMote2’s radio. It has three screws and a spirit level
for leveling. The prototype box in Fig. 1 is made up resin
plastic but the production pieces will be metallic aluminum.

Finally, the Shakebox is equipped with one or two Compact
Flash Type I or Type II storage media (disks). CF flash
storage is available up to 16 GB capacity. For example, 4 GB

is enough storage to hold more than 100 days of three channel,
100 sample per second data recorded with compression. Files
are written in FAT32 format allowing high capacity disks to
be used.

IV. MAPREDUCE AND HADOOP DISTRIBUTED FILE
SYSTEM (HDFS)

MapReduce is a distributed processing framework that enables
big data processing. The Hadoop distributed file system
(HDFS) is a distributed, scalable, and portable file-system
written in Java for the Hadoop framework. Below we present
both and show how we adopt them in our seismic data
analysis.

A. MapReudce

MapReduce [10] has two main components, a mapper and a
reducer. A mapper works on each individual input record to
generate intermediate results, which are grouped together
based on some key and passed on to the reducers. A reducer
works on the group of intermediate results associated with the
same key and generates the final result using a result
aggregation function. The processing units of the MapReduce
framework are key-value pairs.

Mapper: The Mapper maps input of key/value pairs to an
intermediate set of key/value pairs. A single map task
transforms an input record to an intermediate record.
Intermediate records can be of a different type than input
records. Raw numerical data used as an input can be mapped
to an array or records as the intermediate data. Based on the
input map configuration and task specifications, mapping can
result in many output pairs or zero output pairs. Hadoop
MapReduce framework will create one map task for every
input task specified by the input format for the job. A job is a
method in which MapReduce assigns a task to be processed in
a manner specified by the user created configuration to
evaluate key/value pairs from input to intermediate records.

Output pairs are collected during job execution. During job
execution reports can be generated to display application level
status messages, update counters, or indicate jobs are still
running. All intermediate values are given an output key and
grouped by the framework based on the key. A user can
specify the method of grouping the intermediate values.
Among the configurations a user can specify the ability to
compress the intermediate values for storage. Intermediate
values are passed to the Reducer for final output. In order to
cut down on the amount of data transferred to the reducer,
local aggregation of intermediate values can be performed.

Reducer: The Reducer performs a series of tasks, configured
by the user, to reduce the input set of intermediate values to a
smaller set of values that have a common key. During the
reduction process the Reducer traverses three different phases:
shuffle, sort, and reduce.

Shuffle: During this phase the Reducer identifies all the
mappers that have data to be exported to the reducer. Upon
identification of the partitions where the data is stored,
Reducer fetches the sorted output from the partitions (via
HTTP if stored on external nodes).

Sort: The framework groups the inputs by keys. The map
output of intermediate values may contain output pairs with
the same key. The duplicates are merged at the same time as
data is being fetched. Sorting configurations can be set to
include rules that determine grouping of intermediate keys as
well as assigning different comparison functions. Sorting
functions can specify secondary sorts to more efficiently
group data before the next phase.

Reduce: During a round of reduction, the Reducer compares
key/lists by group and reduces grouped inputs. A number of
reducing rounds will need to be completed before the entire
data set is reduced. The output from the reducer is unsorted
and written to the file system via a path specified by the user.
The number of reduces and their associated scaling factor can
be modified through user configuration settings. During the
reduce phase a user can specify a reporter to report progress
and application-level status messages, and update counters, or
indicate overall status.

During the MapReduce process, multiple nodes are processing
jobs. Each job can be assigned a timeout to end the task in
case of process or node failure. The job can be reassigned to
another process after timeout. The process of assigning
multiple jobs over multiple nodes to be processed can be
described as batch processing. Batch processing in a
MapReduce framework allows a user to specify how jobs are
executed and how results are stored and reduced. Each
Mapper/Reducer task executes as a child process in a separate
JVM. A user can specify the maximum virtual memory of a
child-task.

B. Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) is a Java-based file
system that provides scalable and reliable data storage that is
designed to span large clusters of commodity servers. HDFS
splits files into large blocks (default 64MB or 128MB) and
distributes the blocks amongst the nodes in the cluster.

Each Java Virtual Machine (JVM) is given its own file system
on the local machine. The file system includes: output
directory, work directory, temp directory, and an xml file that
specifies task localized job configuration. The task file system
is a subsystem of the job file system. The job file system
stores files needed for each task. The work directory stores
files that will need to be shared by multiple tasks for a specific
job. A jar directory contains the user specified program that
controls the tasks. The job file system also contains an xml file
that outlines the configuration for the localized job.

public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 try{
 String myWord = "Quake " + inc + ": ";
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line, "\t");
 word.set(myWord);
 tokenizer.nextToken();
 String x_value = tokenizer.nextToken();
 String y_value = tokenizer.nextToken();
 String z_value = tokenizer.nextToken();

 //Checking the X column
 if(!first_time){
 if(count < xRange_array.length){
 // X-column
 new_x = Double.parseDouble(x_value);
 xRange_array[index] = Math.abs(new_x - old_x);
 xSum += xRange_array[index];
 old_x = new_x;

 // repeat for Y-column
 // repeat for Z-column

 index++;
 }
 else{
 if(index >= xRange_array.length){
 index = 0;
 }
 // X-column
 xSum -= xRange_array[index];
 new_x = Double.parseDouble(x_value);
 xRange_array[index] = Math.abs(new_x - old_x);
 xSum += xRange_array[index];
 old_x = new_x;

 // repeat for Y-column
 // repeat for Z-column

 index++;
 }

 if(((xSum / xRange_array.length) >= xThreshold) &&

((ySum / yRange_array.length) >= yThreshold) &&
((zSum / zRange_array.length) >= zThreshold)){

 context.write(word, one);
 quake_happening = true;
 }
 else if(quake_happening = true){
 inc++;
 quake_happening = false;
 }
 count++;
 }else{
 old_x = Double.parseDouble(x_value);
 old_y = Double.parseDouble(y_value);
 old_z = Double.parseDouble(z_value);
 first_time = false;
 }
 }catch(NoSuchElementException nsee){

 }catch(NumberFormatException nfe){}

 }
 }

Figure 2. Map Function.

public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
 private int inc = 1;
 private String quake = "Quake ";
 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 if(sum >= 20){

 key.set(quake + inc + ":");
 context.write(key, new IntWritable(sum));
 inc++;
 }
 }
 }

Figure 3. Reduce Function.

The user submits jobs through a client interface. The interface
also allows the user to track progress, access reports and logs,
and retrieve cluster status information. A job submission
should include: checking the input and output specifications of
the job, computing key/values for the job, set up requisite
accounting information for the distributed cache of the job,
copying the job's jar and configuration files to the file system,
and submitting the job and monitoring it's status.

Job control can be used to chain MapReduce jobs to
accomplish complex tasks that cannot be done by a single job.
This can be accomplished by using the output of one job as the
input of another job. If real time data needs to be processed
this method can be used to process and buffer data.

HDFS is a cluster of nodes that is used as a framework for
storing data. A NameNode manages the file system meta-data.
The DataNodes store the actual data. The client interface
contacts the NameNode for file meta-data or file modifications
and performs the actual file I/O directly with the DataNodes.

The NameNode and DataNodes have built in web servers to
easily interact with each other. The NameNode stores
modifications to the file system as a log appended to the
native file system. During NameNode start up, it reads the
HDFS state from an image file and applies edits from the log
file. The new HDFS state is saved to the image file and starts
normal operation.

HDFS data is not always uniformly distributed across nodes.
To help eliminate data loss failure to one of the nodes, the
system replicates blocks of data across all of the nodes. This
process also helps to balance the distribution of data.
Placement or grouping of blocks of data can be done to
increase processing or increase the efficiency of MapReduce.
The NameNode can control clusters of thousands of
DataNodes each with its own functionality to perform specific
jobs.

V. MAPREDUCE FUNCTIONS FOR SHAKEBOX DATA
ANALYSIS

The earthquake data is produced through experiment with the
Shakebox. REF TEK 130S is used as input for the MapReduce
program. The data in the file is formatted into four tab-
delimited columns, each containing data of the type "double".

Figure 2 and Figure 3 show the Map and Reduce functions
that we designed, respectively. When the program is launched,
the map function reads the input file line by line. It then maps
each data item from the line based on the algorithm provided.
In our case, the algorithm takes, for each column, the first
value and subtracts it from the next. The absolute value of the
result is saved to an array of doubles. As the array is
progressively filled up, the data contained in the array is
summed and then divided by the number of elements in the
array to find the average value.

If the result of this operation is less than a threshold value we
hardcoded, then the program understands that nothing is
happening. If the result of this operation is greater than the
threshold value, then the program understands that an event is
happening. The event in this case is the first wave of an
earthquake. Therefore, the program generates an output pair
such as ("Quake 1:", 1) to indicate that 1 tremor has been
recorded for the first wave of the earthquake. If a second
tremor occurs for the first wave, then another key/value pair
("Quake 1:", 1) is recorded. And so on.

The array represents a range over which the average of the
differences between consecutive values has to be greater than
the threshold value in order for us to consider that an
earthquake is happening. We chose a threshold of 0.5 and an
array of 100 elements for our range. When the end of the array
is reached, the oldest value, which is located at index 0, is
removed, and the next value from the input file is loaded at
that index. Therefore, as the mapping programs goes through
the file, we always have 100 values that are being considered
to determine whether or not an earthquake is happening.

If the average of the difference of those 100 elements falls
below the threshold value after being higher than that for a
while, then we consider that the first wave of an earthquake
that was happening has stopped. At this moment, we start
looking for the next wave. Repeat this process until we reach
the end of the file.

At this point, the data mapped into the context of the
MapReduce program is shuffled and sorted. During this
process, all the data belonging to "Quake 1", which indicates
the first wave of the earthquake, is put into a key/value pair.
The word "Quake 1" is used as the key, and every other item
that was coupled with the key "Quake 1:" in the output of the
map function is put into a list. That list is identified as the
value. The same process is repeated for "Quake 2:", "Quake
3:", and so on, if they exist.

Then, each key/value pair is sent to the reduce function. This
function identifies each key and iterates over the list of value
to sum them up. The total for each key is saved to the output
file. And by repeating this process for each key and its
associated values, we obtain a file that shows how many
waves of earthquake occurred, and for each wave the total
number of tremors.

VI. EXPERIMENT

A. Artificial Seismic Data Generation from Shakeboxes
We connected the Shakebox to a PC and collected data for 10
minutes. The sample rate of the Shakebox is set as 200
samples per second (the maximum sampling rate is 1000
samples per second). During data collection, we jumped on
the ground several times to create a few artificial earthquakes
(otherwise, the data always stays the same, which does not
help in our MapReduce analysis later on). Figure 4 is the data
collection GUI, showing all the steps taken to collect data
from Shakeboxes:

1) Connect data cable to com port on shakebox and usb port
on pc.

2) Turn on shakebox with magnetic switch.
3) Click imoteconsoleshuai.Exe and it will show

usbxxxx under selected imote 2, which means
shakebox is detected and ready.

4) Run ./usbloaderhost.Exe –p
shakebox.Bin.Out in cygwin command line and it
will start programming the shakebox.

5) On imoteconsole, select the imote2 device
(usbxxxx) --> click view buffer in window -->
click connect --> press enter in BluSH prompt.

6) Type ls to see all commands supported.
7) Type startcollection 200 120000 to collect raw

ADC data at 200hz for 10min, data will be saved in file
ad-data-raw.

8) Use stopcollection to stop data collection.

Figure 4. Data Collection GUI.

The raw data stored in ad-data-raw looks like below.

00000ecb 4ca5d00e 22d4c500 05c4d204 0509bb08
00000ecb 4de5d00e 22d5e200 05c4c404 0509dc08
00000ecb 4f25d00e 22d50c00 05c51004 0509dc08
00000ecb 5065d00e 22d4e700 05c55f04 050a0008

Each line of the raw data contains five 32-bit words (in
hexadecimal) in following order: date, time, acceleration in
channel 1 (X axis), acceleration in channel 2 (Y axis),
acceleration in channel 3 (Z axis). Since we collected data for
10 minutes, with 200 data collected per second, it therefore
collected 10*60*200=120,000 number of data (that is, there are
20,000 lines in the ad-data-raw text file). The total size of
the data is 480K Bytes. Within one day, it collects 69.12 Mbyte
of data. With maximum sampling rate of 1000, it could
generate 0.4G Bytes of data in a single day.

Above raw data can be converted to seismic data as follows. In
each line, the first data is the combined data and time, the
second, third, and fourth items are the acceleration data in X,
Y, and Z axis, respecively.

946.3065908203125 3.672951192799
0.608369062626 0.531226649424

946.3115908203125 3.673409770054
0.608346534372 0.531279744576

946.3165908203125 3.6730654348520004
0.6084688306079999 0.531279744576

946.3215908203125 3.6730059002610003
0.608595954327 0.5313376665599999

946.3265908203125 3.6731716316900003
0.608576644395 0.5314132869279999

The unit of above seismic data is g, the standard value of
gravitational acceleration at sea level on Earth.1

B. Data Analysis Using MapReduce

In our data analysis, we have adopted 4 machines, each
machine has Xeon processors, 2 TB disc storage, and 12 GB
RAM. As raw data is received from the sensor nodes, it is
saved to the HDFS. The data can be stored in the temp
directory until processed. A job is created to process the data
using the MapReduce functions. The output data is saved in a
directory intended to be the input of a java visualization chart
program. The program uses the data set start and finish points
to output a graph depicting the changes in movement for the
X,Y, and Z planes. The graphs can be saved for future analysis
or analyzed in real time. The final graph file system will not
include idle time data, which in turn will reduce the state
space and search space for future analysis. Future programs to
implement in the MapReduce environment can include
mapping the comparison of the three graphs and reducing the
data to anomalous events for future research.

Figure 5 shows that the initial mapping tasks are created as
jobs and assigned to individual nodes for processing. The
NameNode keeps track of each job and follows the user
configuration of the mapping function to assign file location
and control settings.

Figure 5. Initial Mapping Output

After all mapping tasks have been executed as jobs, the status
of those results is displayed, as shown in Figure 6. It also

If calibrated correctly, the acceleration numbers should be around 0g.
We are currently calibrating Shakeboxes. 1

specifies some configuration settings as well as some logged
statistics including resource calculations.

Figure 6. Final Mapping Output

Figure 7 shows that as jobs are completed from the mapping
functions, the reduce functions process the intermediate values
and the meta-data associated with the completed tasks are
processed by the NameNode. The NameNode keeps track of
how much data is written and where it is located and what the
data represents. During this process all completed jobs are
logged for analysis.

Figure 7. Reduce Output

Figure 8 shows that the output data from the MapReduce
process contains specific data sets that were sought from our
MapReduce program. The output is specific sections of the
input data that meet our minimum requirements for identifying
an earthquake. Data that was recorded when no earthquakes
were occurring is omitted from the results. This reduces the
amount of data that needs to be stored.

Figure 8. Reduce Output

Finally, Figure 9 shows a visualization of a specific seismic
data set from one Shakebox output, which is processed by our
MapReduce functions on the larger data set. Figure 9 (a) (b)
and (c) show the Shakebox movement along X-, Y-, and Z-
axis respectively. The X plane graph is the movement along
the X-axis of the shakebox (if you view it from above); the Y
plane graph represents the movement along the Y-axis as you
look at the box from above; the Z plane graph represents the
movement of the shake box when it is lifted up and down.

VII. CONCLUSION AND FUTURE WORK
In this paper we studied a seismic sensing platform using
Shakebox, a low-noise and low-power 24-bit wireless
accelerometer sensor. To process large amount of seismic
data from this platform, we adopted Hadoop/MapReduce. We
designed map and reduce functions on the testbed data and
analyzed the result. As ongoing effort and future work, we are
working on the following two directions. Currently, the
Shakeboxes are invoked from command line and only collect
data for a specified amount of time. We are configuring
Shakeboxes such that it can constantly collect data. This is
critical to catch real earthquake occurrences. Second, we are
planning to incorporate real earthquake models into our
Haddop/Mapreduce analysis, to better evaluate its efficacy.

ACKNOWLEDGMENT

We would like to thank Dr. Monica Kohler for providing
the Shakeboxes and many helpful suggetions. We would like to
thank the Caltech Community Seismic Network team for many
opportunities of participation and discussion. This work was
supported in part by the NSF Grant CNS-1116849.

(a) X Plane

(b) Y Plane

(c) Z Plane

Figure 9. Shakebox Movement.

REFERENCES
[1] Matthew Faulkner, Robert Clayton, Thomas Heaton, K. Mani

Chandy, Monica Kohler, Julian Bunn, Richard Guy, Annie Liu,
Michael Olson, MingHei Cheng, and Andreas Krause,
“Community Sense and Response Systems: Your Phone as
Quake Detector,” Communications of the ACM, vol. 57, no. 7,
pp. 66–75, 2914.

[2] R. W. Clayton, T. Heaton, M. Chandy, A. Krause, M. Kohler, J.
Bunn, R. Guy, M. Olson, M. Faulkner, M. Cheng, L. Strand, R.
Chandy, D. Obenshain, A. Liu, and M. Aivazis, “Community
Seismic Network,” Annals of Geophysics, vol. 54, no. 6, 2012.

[3] Michael Olson, Annie Liu, K. Mani Chandy and Matthew
Faulkner, “Rapid Detection of Rare Geospatial Events,” 5th
ACM international conference on Distributed event-based
system, 2011.

[4] M Faulkner, M Olson, R Chandy, J Krause, KM Chandy, “The
next big one: Detecting earthquakes and other rare events from
community-based sensors,”10th International Conference on
Information Processing in Sensor Networks (IPSN), 2011.

[5] Cochran, E.S., Lawrence, J.F., Kaiser, A., Fry, B., Chung, A.,
Christensen, C., “Comparison between low-cost and traditional
MEMS accelerometers: a case study from the M7.1 Darfield,
New Zealand, aftershock deployment,” Annals of Geophysics,
54 (6), 728-737.

[6] Cochran E., Lawrence J., Christensen C., Chung A., A novel
strong-motion seismic network for community participation in
earthquake monitoring, IEEE Inst & Meas, 12, 6, 8-15, 2009.

[7] https://www.globalscaletechnologies.com/t-sheevaplugs.aspx
[8] Nilesh Mishra, Shuai Hao, Monica Kohler, Ramesh Govindan,

and Robert Nigbor (2010) ShakeNet: A Tiered Wireless

Accelerometer Network for Rapid Deployment in Civil
Structures.
http://nsl.cs.usc.edu/Papers/?action=download&upname=Mishra
10a.pdf

[9] Chun-Hsiang Lee, David Birch, Chao Wu, Dilshan Silva,
Orestis Tsinalis, Yang Li, Shulin Yan, Moustafa Ghanem, Yike
Guo, “Building a Generic Platform for Big Sensor Data
Application”, IEEE International Conference on Big Data, 2013.

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” 6th conference on Symposium on
Opearting Systems Design & Implementation , pp. 137–150,
2004.

[11] “The Apache Hadoop Framework,” http://hadoop.apache.org,
2013.

[12] Bin Liu, Haifeng Chen, Abhishek Sharma, Guofei Jiang, and
Hui Xiong, “Modeling Heterogeneous Time Series Dynamics
to Profile Big Sensor Data in Complex Physical Systems”, IEEE
International Conference on Big Data, 2013.

[13] Tian Guo, Thanasis G. Papaioannou and Karl Aberer, “Model-
View Sensor Data Management in the Cloud”, IEEE
International Conference on Big Data, 2013.

[14] Jeongyeup Paek, Ben Greenstein, Omprakash Gnawali, Ki-
Young Jang, August Joki, Marcos Vieira, John Hicks, Deborah
Estrin, Ramesh Govindan, and Eddie Kohler, “The Tenet
Architecture for Tiered Sensor Networks”, ACM Transactions
on Sensor Networks (TOSN), 6(4), 2010.

[15] http://boinc.berkeley.edu/
	

