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Abstract—Data caching can significantly improve the efficiency of information access in a wireless ad hoc network by reducing the

access latency and bandwidth usage. However, designing efficient distributed caching algorithms is nontrivial when network nodes

have limited memory. In this article, we consider the cache placement problem of minimizing total data access cost in ad hoc networks

with multiple data items and nodes with limited memory capacity. The above optimization problem is known to be NP-hard. Defining

benefit as the reduction in total access cost, we present a polynomial-time centralized approximation algorithm that provably delivers a

solution whose benefit is at least 1/4 (1/2 for uniform-size data items) of the optimal benefit. The approximation algorithm is amenable

to localized distributed implementation, which is shown via simulations to perform close to the approximation algorithm. Our distributed

algorithm naturally extends to networks with mobile nodes. We simulate our distributed algorithm using a network simulator (ns2) and

demonstrate that it significantly outperforms another existing caching technique (by Yin and Cao [33]) in all important performance

metrics. The performance differential is particularly large in more challenging scenarios such as higher access frequency and smaller

memory.

Index Terms—Caching placement policy, ad hoc networks, algorithm/protocol design and analysis, simulations.
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1 INTRODUCTION

AD hoc networks are multihop wireless networks of
small computing devices with wireless interfaces. The

computing devices could be conventional computers (for
example, PDA, laptop, or PC) or backbone routing plat-
forms or even embedded processors such as sensor nodes.
The problem of optimal placement of caches to reduce
overall cost of accessing data is motivated by the following
two defining characteristics of ad hoc networks. First, the ad
hoc networks are multihop networks without a central base
station. Thus, remote access of information typically occurs
via multihop routing, which can greatly benefit from
caching to reduce access latency. Second, the network is
generally resource constrained in terms of channel band-
width or battery power in the nodes. Caching helps in
reducing communication, which results in savings in
bandwidth, as well as battery energy. The problem of cache
placement is particularly challenging when each network
node has a limited memory to cache data items.

In this paper, our focus is on developing efficient caching
techniques in ad hoc networks with memory limitations.
Research into data storage, access, and dissemination
techniques in ad hoc networks is not new. In particular,
these mechanisms have been investigated in connection
with sensor networking [14], [26], peer-to-peer networks [1],
[18], mesh networks [17], world wide Web [25], and even

more general ad hoc networks [12], [33]. However, the
presented approaches have so far been somewhat “ad hoc”
and empirically based, without any strong analytical
foundation. In contrast, the theory literature abounds in
analytical studies into the optimality properties of caching
and replica allocation problems (see, for example, [3]).
However, distributed implementations of these techniques
and their performances in complex network settings have
not been investigated. It is even unclear whether these
techniques are amenable to efficient distributed implemen-
tations. Our goal in this paper is to develop an approach
that is both analytically tractable with a provable perfor-
mance bound in a centralized setting and is also amenable
to a natural distributed implementation.

In our network model, there are multiple data items;
each data item has a server, and a set of clients that wish to
access the data item at a given frequency. Each node
carefully chooses data items to cache in its limited memory
to minimize the overall access cost. Essentially, in this
article, we develop efficient strategies to select data items to
cache at each node. In particular, we develop two
algorithms—a centralized approximation algorithm, which
delivers a 4-approximation (2-approximation for uniform-
size data items) solution, and a localized distributed
algorithm, which is based on the approximation algorithm
and can handle mobility of nodes and dynamic traffic
conditions. Using simulations, we show that the distributed
algorithm performs very close to the approximation
algorithm. Finally, we show through extensive experiments
on ns2 [10] that our proposed distributed algorithm per-
forms much better than a prior approach over a broad range
of parameter values. Ours is the first work to present a
distributed implementation based on an approximation
algorithm for the general problem of cache placement of
multiple data items under memory constraint.
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The rest of the paper is organized as follows: In Section 2,
we formally define the cache placement problem addressed
in this paper and present an overview of the related work.
In Section 3, we present our designed centralized approx-
imation and distributed algorithms. Section 4 presents
simulation results. We end with concluding remarks in
Section 5.

2 CACHE PLACEMENT PROBLEM

In this section, we formally define the cache placement
problem addressed in our article and discuss related work.

A multihop ad hoc network can be represented as an
undirected graph GðV;EÞ, where the set of vertices V
represents the nodes in the network, and E is the set of
weighted edges in the graph. Two network nodes that can
communicate directly with each other are connected by an
edge in the graph. The edge weight may represent a link
metric such as loss rate, delay, or transmission power. For
the cache placement problem addressed in this article, there
are multiple data items, and each data item is served by its
server (a network node may act as a server for more than
one data items). Each network node has limited memory
and can cache multiple data items subject to its memory
capacity limitation. The objective of our cache placement
problem is to minimize the overall access cost. Below, we
give a formal definition of the cache placement problem
addressed in this article.

Problem formulation. Given a general ad hoc network
graph GðV;EÞ with p data items D1; D2; . . . ; Dp, where a
data item Dj is served by a server Sj, a network node may
act as a server for multiple data items. For clarity of
presentation, we assume uniform-size (occupying unit
memory) data items for now. Our techniques easily
generalize to nonuniform size data items, as discussed later.
Each node i has a memory capacity of mi units. We use aij to
denote the access frequency with which a node i requests
the data item Dj and dil to denote the weighted distance
between two network nodes i and l. The cache placement
problem is to select a set of sets M ¼ fM1;M2; . . . ;Mpg, where
Mj is a set of network nodes that store a copy of Dj, to
minimize the total access cost:

�ðG;MÞ ¼
X
i2V

Xp

j¼1
aij �minl2ðfSjg[MjÞdil;

under the memory capacity constraint that

jfMjji 2 Mjgj 
 mi for all i 2 V;

which means that each network node i appears in at most
mi sets of M. The cache placement problem is known to be
NP-hard [3].

Example 1. Fig. 1 illustrates the above described cache
placement problem in a small ad hoc network. In Fig. 1,
each graph edge has a unit weight. All the nodes have
the same memory capacity of two pages, and the size of
each data item is one memory page. Each of the nodes 1,
2, 3, 4, and 12 have one distinct data item to be served
(as shown in the parenthesis with their node numbers).
Each of the client nodes (9, 10, 11, 13, and 14) accesses

each of the data items D1, D2, and D3 with unit access
frequency. Fig. 1 shows that the nodes 5, 6, 7, and 8 have
cached one or more data items and also shows the cache
contents in those nodes. As indicated by the bold edges,
the clients use the nearest cache node instead of the
server to access a data item. The set of cache nodes of
each data item are M1 ¼ f7; 8g, M2 ¼ f7; 8g, and
M3 ¼ f5; 6g. One can observe that total access cost is
20 units for the given cache placement.

2.1 Related Work

Below, we categorize the prior work by the number of data
items and network topology.

2.1.1 Single Data Item in General Graphs

The general problem of determining optimal cache place-
ments in an arbitrary network topology has similarity to
two problems in graph theory, namely, facility location
problem and the k-median problem. Both the problems
consider only a single facility type (data item) in the
network. In the facility-location problem, setting up a cache
at a node incurs a certain fixed cost, and the goal is to
minimize the sum of total access cost and the setting-up
costs of all caches without any constraint. On the other
hand, the k-median problem minimizes the total access cost
under the number constraint, that is, that at most k nodes
can be selected as caches. Both problems are NP-hard, and a
number of constant-factor approximation algorithms have
been developed for each of the problems [8], [9], [15] under
the assumption of triangular inequality of edge costs.
Without the triangular inequality assumption, either pro-
blem is as hard as approximating the set cover [15], [21] and
thus cannot be approximated better than Oðlog jV jÞ unless
P ¼ NP. Here, jV j is the size of the network. In other
related work, Nuggehalli et al. [22] formulate the caching
problem in ad hoc networks as a special case of the
connected facility location [27].

2.1.2 Single Data Item in Tree Topology

Several papers in the literature circumvent the hardness of
the facility location and k-median problems by assuming
that the network has a tree topology [4], [16], [19], [20], [28].
In particular, Tamir [28] and Vigneron et al. [16] design
optimal dynamic programming polynomial algorithms for
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Fig. 1. Illustrating cache placement problem under memory constraint.



the k-median problem in undirected and directed trees,
respectively. In other works, Krishnan et al. [20] consider
the placement of k “transparent” caches, Kalpakis et al. [19]
consider a cost model involving reads, writes, and storage,
and Bhattacharya et al. [4] present a distributed algorithm
for sensor networks to reduce the total power expended. All
of the above works consider only a single data time in a tree
network topology.1

2.1.3 Multiple Data Items

Hara [12] proposes three algorithms for cache placement of
multiple data items in ad hoc networks. In the first
approach, each node caches the items most frequently
accessed by itself. The second approach eliminates replica-
tions among neighboring nodes introduced by the first
approach. The third approach requires creation of “stable”
groups to gather neighborhood information and determine
caching placements. The first two approaches are largely
localized and, hence, would fare very badly when the
percentage of client nodes in the network is low or when the
access frequencies are uniform. For the third approach, it is
hard to find stable groups in ad hoc networks because of
frequent failures and movements. All the above approaches
assume the knowledge of access frequencies. In extensions
of the above work, in [11] and [13], Hara generalizes the
above approaches for push-based systems and updates,
respectively. In other related works, Xu et al. [31] discuss
placement of “transparent” caches in tree networks.

Our work on cache placement problem is most closely
related to the works by Yin and Cao [33] and Baev and
Rajaraman [3]. Yin and Cao [33] design and evaluate three
simple distributed caching techniques, namely, CacheData,
which caches the passing-by data item, CachePath, which
caches the path to the nearest cache of the passing-by data
item, and HybridCache, which caches the data item if its size
is small enough or, else, caches the path to the data. They
use LRU policy for cache replacement. To the best of our
knowledge, the work by Yin and Cao [33] is the only one
that presents a distributed cache placement algorithm in a
multihop ad hoc network with a memory constraint at each
node. Thus, we use the algorithms in [33] as a comparison
point for our study.

Baev and Rajaraman [3] design a 20.5-approximation
algorithm for the cache placement problem with uniform-
size data items. For the nonuniform-size data items, they
show that there is no polynomial-time approximation
unless P ¼ NP. They circumvent the nonapproximability
by increasing the given node memory capacities by the
size of the largest data item and generalize their
20.5-approximation algorithm. However, their approach
(as noted by themselves) is not amenable to an efficient
distributed implementation.

2.1.4 Our Work

In this article, we circumvent the nonapproximability of the
cache placement problem by choosing to maximize the
benefit (reduction in total access cost) instead of minimizing
the total access cost. In particular, we design a simple

centralized algorithm that delivers a solution whose benefit
is at least 1/4 (1/2 for uniform-size data items) of the
optimal benefit without using any more than the given
memory capacities. To the best of our knowledge, ours and
that by Baev and Rajaraman [3] are the only2 works that
present approximation algorithms for the general place-
ment of cache placement for multiple data items in networks
with memory constraint. However, as noted before, Baev and
Rajaraman’s [3] approach is not amenable to an efficient
distributed implementation, whereas our approximation
algorithm yields a natural distributed implementation that
is localized and shown (using ns2 simulations) to be
efficient even in mobile and dynamic traffic conditions.
Moreover, as stated in Theorem 2, our approximation result
is an improvement over that in [3] when optimal access cost
is at least ð1=40Þth of the total access cost without the caches.
Finally, unlike that in [3], we do not make the assumption of
the cost function satisfying the triangular inequality.

A preliminary version of this article has appeared in
[29]. The main additions in this article (compared to that
in [29]) are

1. the approximation result for nonuniform size data
items (Theorem 3),

2. details on the maintenance of the nearest and
second-nearest cache table entries (Section 3.2),

3. data expiry and cache update models (Section 3.2),
and

4. more extensive simulations.

3 CACHE PLACEMENT ALGORITHMS

In this section, we first present our centralized approxima-
tion algorithm. Then, we design its localized distributed
implementation that performs very closely to the approx-
imation algorithm in our simulations.

3.1 Centralized Greedy Algorithm (CGA)

The designed centralized algorithm is essentially a greedy
approach, and we refer to it as CGA. CGA starts with all
network nodes having all empty memory pages and, then,
iteratively caches data items into memory pages, maximiz-
ing the benefit in a greedy manner at each step. Thus, at each
step, the algorithm picks a data item Dj to cache into an
empty memory page r of a network node such that the
benefit of caching Dj at r is the maximum among all possible
choices of Dj and r at that step. The algorithm terminates
when all memory pages have been cached with data items.

For a formal analysis of CGA, we first define a set of
variables Aijk, where the selection of a variable Aijk indicates
that the kth memory page of node i has been selected for
storage of data item Dj and reformulate the cache placement
problem in terms of selection of Aijk variables. Recall that for
simplicity, we have assumed that each data item is of unit
size and occupies one memory page of a node.

3.1.1 Problem Formulation Using Aijk

Given a network graph GðV;EÞ, where each node i 2 V has
a memory capacity of mi pages and p data items D1; . . . ; Dp
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in the network with the respective servers S1; . . . ; Sp, select
a set � of variables Aijk, where i 2 V , 1 
 j 
 p and
1 
 k 
 mi. If Aijk 2 � and Aij0k 2 �, then j ¼ j0, such that
the total access cost �ðG;�Þ (as defined below) is mini-
mized. Note that the memory constraint is subsumed in the
restriction on � that if Aijk 2 �, then Aij0k 62 � for any j0 6¼ j.
The total access cost �ðG;�Þ for a selected set of variables
can be easily defined as

�ðG;�Þ ¼
Xp

j¼1

X
i2V

aij �minl2ðfSjg[fi0 jAi0jk2�gÞdil:

Note that the set of cache nodes Mj that store a particular
data item Dj can be easily derived from the selected set of
variables �.

3.1.2 Centralized Greedy Algorithm

CGA works by iteratively selecting a variable Aijk that gives
the highest “benefit” at that stage. The benefit of adding a
variable Aijk into an already selected set of variables � is the
reduction in the total access cost if the data item Dj is
cached into the empty kth memory page of the network
node i. The benefit of selecting a variable is formally
defined below.

Definition 1 (benefit of selecting Aijk). Let � denote the set of

variables that have been already selected by the CGA at some

stage. The benefit of a variable Aijk (i 2 V , j 
 p, and

k 
 mi) with respect to � is denoted as �ðAijk;�Þ and is

defined as follows:

�ðAijk;�Þ ¼
Undefined if Aij0k 2 �; j0 6¼ j;
0 if Aijk0 2 �;
�ðG;�Þ  �ðG;� [ fAijkgÞ otherwise;

8<
:

where �ðG;�Þ is as defined before. The first condition of the

above definition stipulates that if the kth memory page of the

node i is not empty (that is, has already been selected to store

another data item j0 due to Aij0k 2 �), then the benefit

�ðAijk;�Þ is undefined. The second condition specifies that the

benefit of a variable Aijk with respect to � is zero if the data

item Dj has already been stored at some other memory page k0

of the node i.

Algorithm 1 CGA.
BEGIN

� ¼ ;;

while (there is a variable Aijk with defined benefit)

Let Aijk be the variable with maximum

�ðAijk;�Þ. � ¼ � [ fAijkg;

end while;

RETURN �;

END.

The total runtime of CGA is Oðp2jV j3mÞ, where jV j is the
size in the network, m is the average number of memory
pages in a node, and p is the total number of data items.
Note that the number of iterations in the above algorithm is
bounded by jV jm, and at each stage, we need to compute at
most pV benefit values where each benefit value computa-
tion may take OðpV Þ time.

Theorem 1. CGA (Algorithm 1) delivers a solution whose total

benefit is at least half of the optimal benefit.

Proof. Let L be the total number of iterations of CGA. Note

that L is equal to the total number of memory pages in the

network. Let �l be the set of variables selected at the end

of the lth iteration, and let �l be the variable added to the

set �l1 in the lth iteration. Let �l be a variable Aijk,

signifying that, in the lth iteration, CGA decided to store

the jth data item in the kth memory page of the i node.

Without loss of generality, we can assume that the

optimal solution also stores data items in all memory

pages. Now, let �l be the variable Aij0k, where j0 is the data

item stored by the optimal solution in the kth memory

page of node i. By the greedy choice of �l, we have

�ð�l;�l1Þ � �ð�l;�l1Þ; 8l 
 L: ð1Þ

Let O be the optimal benefit3 and C be the benefit of the

CGA solution. Note that4

C ¼
XL
l¼1

�ð�l;�l1Þ: ð2Þ

Now, consider a modified network G0, wherein each

node i has a memory capacity of 2mi. We construct a

cache placement solution for G0 by taking a union of data

items selected by CGA and data items selected in an

optimal solution for each node. More formally, for each

variable �l ¼ Aij0k as defined above, create a variable

�0
l ¼ Aij0k0 , where k0 ¼ mi þ k. Obviously, the benefit O0 of

the set of variables f�1; �2; . . . ; �L; �0
1; �

0
2; . . . ; �

0
Lg in G0 is

greater than or equal to the optimal benefit O in G. Now,

to compute O0, we add the variables in the order of

�1; �2; . . . ; �L; �
0
1; �

0
2; . . . ; �

0
L and add up the benefits of

each newly added variable. Let �0l ¼ f�1; �2; . . . ; �Lg [
f�1; �2; . . . ; �lg and recall that �l ¼ f�1; �2; . . . ; �lg. Now,

we have

O 
O0 ¼
XL
l¼1

�ð�l;�l1Þ þ
XL
l¼1

�ð�0
l;�

0
l1Þ

¼C þ
XL
l¼1

�ð�0
l;�

0
l1Þ From ð2Þ


C þ
XL
l¼1

�ð�l;�l1Þ Since �l ¼ �0
l;�l1 � �0l1


 2C From ð1Þ and ð2Þ:

tu

The following theorem follows from the above theorem

and the definition of benefit and shows that our above

result is an improvement of the 20.5-approximation result

in [3] when the optimal access cost is at least ð1=40Þth of the

total access cost without the caches.

Theorem 2. If the access cost without the caches is less than

40 times the optimal access cost using optimal cache
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3. Note that a solution with optimal benefit also has optimal access cost.
4. Note that O 6¼

PL
l¼1 �ð�l;�l1Þ. Also, in spite of (2), the benefit value C

is actually independent of the order in which �l is selected.



placement, then the total access cost of the CGA solution is
less than 20.5 times the optimal access cost.

Proof. Let the total access cost without the caches be W and
the optimal access cost (using optimal cache placement)
be O. Thus, the optimal benefit is W O. Since the
benefit of the CGA solution is at least half of the optimal
benefit, the total access time of the CGA solution is at
most W  ðW OÞ=2, which is at most 20:5O. tu

3.1.3 Nonuniform Size Data Items

To handle nonuniform size data items, at each stage, CGA
selects a data item to cache at a node such that the (data
item, node) pair has the maximum benefit per page at that
stage. CGA continues to cache data items at nodes in the
manner stated above until each node’s memory is exceeded

by the last data item cached. Let S be the solution obtained
at the end of the above process. Now, CGA picks the
better of the following two feasible solutions: ðS1Þ Each
node caches only its last data item. ðS2Þ Each node caches
all the selected data items except the last. For the above
solutions to be feasible, we assume that size of the largest
data item in the system is less than the memory capacity
of any node. Below, we show that the better one of the
above two solutions has a benefit of at least 1/4 of the
optimal benefit.

Theorem 3. For nonuniform size data items, the above-described
modified CGA algorithm delivers a solution whose benefit is at

least 1/4 of the optimal benefit. We assume that the size of the

largest data time is at most the size of any node’s memory
capacity.

Proof. First, note that since the solution S is a union of
solutions S1 and S2, the benefit of either S1 or S2 is at
least half of the benefit of S. We prove the theorem by
showing below that the benefit of S is at least half of the
optimal benefit. The proof below is similar to that of
Theorem 1.

As before, we define variables Aijk signifying that
(part of) the data item Dj was stored in the kth memory
page of node i. However, note that Aijk only corresponds
to a unit memory page, whereas a data item may occupy
more than one memory page. Thus, a cache placement
solution may select one or more variables Aijk with the
same i and j. Moreover, in this context, the benefit
�ðAijk;�Þ is defined as the benefit per unit space of
caching Dj at node i, when the certain data items have
already been cached at nodes (as determined by the
variables in � fAij�g).

Now, let L0 be the total amount of memory used by
the solution S. Note that L0 may be more than the
total number of memory pages in the network. As in
Theorem 1, let �l be the set of variables selected at the
end of lth iteration, and let �l be the variable added to
the set �l1 in the lth iteration. Thus, the solution S is
the set of variables f�1; �2; . . . ; �L0 g. Similarly, let the
optimal solution be f�1; �2; . . . ; �Lg, where �l corre-
sponds to the same node and memory page as �l.
Without loss of generality, we assume that the optimal
solution is “completely” different than S. That is, there
is no data item that is cached by S, as well as the

optimal solution at the same node.5 As in Theorem 1,
by the greedy choice of �l and the above assumption
of completely different solutions, we have

�ð�l;�l1Þ � �ð�l;�l1Þ; 8l 
 L: ð3Þ

Now, consider a modified network G0, wherein each
node i has a memory capacity of 2mi. We construct a
cache placement solution for G0 by taking a union of the
solution S and the optimal solution at each node. More
formally, for each variable �l ¼ Aij0k as defined above,
create a variable �0

l ¼ Aij0k0 , where k0 ¼ m0
i þ k, where m0

i

is the memory used by the solution S at node i.
Obviously, the benefit O0 of the set of variables
f�1; �2; . . . ; �L; �0

1; �
0
2; . . . ; �

0
Lg in G0 is greater than or equal

to the optimal benefit. Now, to compute O0, we add the
variables in the order of �1; �2; . . . ; �L, �0

1; �
0
2; . . . ; �

0
L, and

add up the benefits of each newly added variable. Let
�0l ¼ f�1; �2; . . . ; �Lg [ f�1; �2; . . . ; �lg and recall that
�l ¼ f�1; �2; . . . ; �lg. Let C be the benefit of solution S.
Now, we have

O 
O0 ¼
XL0

l¼1
�ð�l;�l1Þ þ

XL
l¼1

�ð�0
l;�

0
l1Þ

¼C þ
XL
l¼1

�ð�0
l;�

0
l1Þ


C þ
XL
l¼1

�ð�l;�l1Þ Since �l ¼ �0
l;�l1 � �0l1


 2C From ð1Þ and ð2Þ:

tu

3.2 Distributed Greedy Algorithm (DGA)

In this section, we describe a localized distributed imple-
mentation of CGA. We refer to the designed distributed
implementation as DGA. The advantage of DGA is that it
adapts to dynamic traffic conditions and can be easily
implemented in an operational (possibly, mobile) network
with low communication overheads. Although we cannot
prove any bound on the quality of the solution produced by
DGA, we show through extensive simulations that the
performance (in terms of the quality of the solution delivered)
of the DGA is very close to that of the CGA. The DGA is
composed of two important components—nearest cache
tables and localized caching policy—as described below.

3.2.1 Nearest Cache Tables

For each network node, we maintain the nearest node
(including itself) that has a copy of the data item Dj for
each data item Dj in the network. More specifically, each
node i in the network maintains a nearest cache table,
where an entry in the nearest cache table is of the form
ðDj;NjÞ, where Nj is the closest node that has a copy of
Dj. Note that if i is the server of Dj or has cached Dj,
then Nj is i. In addition, if a node i has cached Dj, then it
also maintains an entry ðDj;N

2
j Þ, where N2

j is the second-

nearest cache, that is, the closest node (other than i itself)
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that has a copy of Dj. The second-nearest cache
information is helpful when node i decides to remove
the cached item Dj. Note that if i is the server of Dj, then
Nj is i. The above information is in addition to any
information (such as routing tables) maintained by the
underlying routing protocol. The nearest cache tables at
network nodes in the network are maintained as follows
in response to cache placement changes:

Addition of a cache. When a node i caches a data item Dj,
N2

j (the second-nearest cache) is set to its current Nj (nearest
cache node), and Nj is updated to i itself. In addition, the
node i broadcasts an AddCache message to all of its
neighbors. The AddCache message contains the tuple
ði;DjÞ signifying the ID of the originating node and the
ID of the newly cached data item. Consider a node l that
receives the AddCache message ði; DjÞ. Let ðDj;NjÞ be the
nearest cache table entry at node l signifying that Nj is the
cache node currently closest to l that has the data item Dj. If
dli < dlNj

,6 then the nearest cache table entry ðDj;NjÞ is
updated to ðDj; iÞ, and the AddCache message is forwarded
by l to all of its neighbors. Otherwise, the node l sends the
AddCache message to the single node Nj (which could be
itself) so that Nj can possibly update information about its
second-nearest cache. The above process maintains the
correctness of the nearest cache entries and second-nearest
cache entries in a static network with bounded commu-
nication delays, because of the following observations:

O1. Consider a node k whose nearest cache table entry
needs to change (to i) in response to the addition of a
cache at node i. Then, every intermediate node on
the shortest path connecting k to i also needs to
change its nearest cache table entry (and hence,
forward the AddCache message).

O2. Consider a cache node k such that its second-nearest
cache node should be changed to i in response to the
addition of a cache at node i. Then, there exists two
distinct neighboring nodes i1 and i2 (not necessarily
different from k or i) on the shortest path from k to i
such that the nearest cache node of i1 is k, and the
nearest cache node of i2 is i.

The first observation ensures the correctness of the
nearest cache entries since any node k that needs to
receive the AddCache message receives it through the
intermediate nodes on the shortest path connecting k to i.
The second observation ensures the correctness of the
second-nearest cache entries, since for any cache node k
whose second-nearest cache entry must change to the
newly added cache i, there exists a node i1 that sends the
AddCache message (received from the forwarding neigh-
boring node i2) to k (i1’s nearest cache node). We now
prove the above two observations.

We prove the first observation O1 by contradiction.
Consider a node k whose nearest cache table entry needs to
change (to i) in response to addition of a cache at node i.
Assume that there is an intermediate node j on the shortest
path P connecting k to i such that j does not need to change
its nearest cache entry. Thus, there is another cache node l

that is nearer to j than i. Then, the cache node l is also closer
to k than i, and thus, k does not need to change its nearest
cache entry due to the addition of cache at node i—which is
a contradiction. The second observation O2 is true because
the nearest cache node of each intermediate node on the
shortest path connecting the cache nodes k and i (such that i
is the second-nearest cache node of k) is either k or i.

Deletion of a cache. To efficiently maintain the nearest
cache tables in response to deletion of a cache, we maintain
a cache list Cj for each data item Dj at its server Sj. The cache
list Cj contains the set of nodes (including Sj) that have
cached Dj. To keep the cache list Cj up to date, the server Sj

is informed whenever the data time Dj is cached at or
removed from a node. Note that the cache list Cj is almost
essential for the server Sj to efficiently update Dj at the
cache nodes. Now, when a node i removes a data item Dj

from its local cache, it updates its nearest cache node ðNjÞ to
its second-nearest cache ðN2

j Þ and deletes the second-nearest
cache entry. In addition, the node i requests Cj from the
server Sj and, then, broadcasts a DeleteCache message
with the information ði;Dj; CjÞ to all of its neighbors.
Consider a node l that receives the DeleteCache message,
and let ðDj;NjÞ be its nearest cache table entry. If Nj ¼ i,
then the node l updates its nearest cache entry using Cj and
forwards the DeleteCache message to all its neighbors.
Otherwise, the node l sends the DeleteCache message to
the node Nj. The above process ensures the correctness of
the nearest cache and the second-nearest cache entries due
to the above two observations (O1 and O2). If the
maintenance of a complete cache list at the server is not
feasible, then we can either broadcast the DeleteCache

message with fSjg as the cache list or not use any
DeleteCache messages at all. In the latter case, when a
data request for the deleted cache is received, the data
request can be redirected to the server.

Integrated cache-routing tables. Nearest caching tables can
be used in conjunction with any underlying routing
protocol to reach the nearest cache node, as long as the
distances to other nodes are maintained by the routing
protocol (or available otherwise). If the underlying routing
protocol maintains routing tables [24], then the nearest
cache tables can be integrated with the routing tables as
follows: For a data item Dj, let Hj be the next node on the
shortest path to Nj, the closest node storing Dj. Now, if we
maintain a cache-routing table having entries of the form
ðDj;Hj;  jÞ, where  j is the distance to Nj, then there is no
need for routing tables. However, note that maintaining
the cache-routing tables instead of the nearest cache tables
and the routing tables does not offer any clear advantage
in terms of the number of message transmissions.

3.2.2 Mobile Networks

To handle mobility of nodes, we could maintain the
integrated cache-routing tables in a similar vein as routing
tables [24] are maintained in mobile ad hoc networks.
Alternatively, we could have the servers periodically
broadcast the latest cache lists. In our simulations, we
adopted the latter strategy, since it precludes the need to
broadcast AddCache and DeleteCache messages to some
extent.
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3.2.3 Localized Caching Policy

The caching policy of DGA is given as follows: Each node
computes the benefit of data items based on its “local
traffic” observed for a sufficiently long time. The local traffic
of a node i includes its own local data requests, nonlocal
data requests to data items cached at i, and the traffic that
the node i is forwarding to other nodes in the network.

Local benefit. We refer to the benefit computed based on
the node’s local traffic as the local benefit. For each data item
Dj not cached at node i, the node i calculates the local
benefit gained by caching the item Dj, whereas for each
data item Dj cached at node i, the node i computes the local
benefit lost by removing the item. In particular, the local
benefit Bij of caching (or removing) Dj at node i is the
reduction (or increase) in access cost given by

Bij ¼ tij j;

where tij is the access frequency observed by node i for the
item Dj in its local traffic, and  j is the distance from i to Nj

or N2
j —the nearest node other than i that has the copy of the

data item Dj. Using the nearest cache tables, each node can
compute the local benefits of data items in a localized
manner using only local information. Since the traffic
changes dynamically (due to new cache placements), each
node needs to continually recompute local benefits based
on most recently observed local traffic.

Caching policy. A node decides to cache the most beneficial
(in terms of local benefit per unit size of data item) data items
that can fit in its local memory. When the local cache memory
of a node is full, the following cache replacement policy is
used. Let jDj denote the size of a data item (or a set of data
items) D. If the local benefit of a newly available data item Dj

is higher than the total local benefit of some set D of cached
data items, where jDj > jDjj, then the set D is replaced by Dj.
Since, adding or replacing a cache entails communication
overhead (due to AddCache or DeleteCache messages),
we employ the concept of benefit threshold. In particular, a
data item is newly cached only if its local benefit is higher
than the benefit threshold, and a data item replaces a set of
cached data items only if the difference in their local benefits
is greater than the benefit threshold.

3.2.4 Distributed Greedy Algorithm (DGA)

The above components of the nearest cache table and the
cache replacement policy are combined to yield our DGA
for cache placement problem. In addition, the server uses
the cache list to periodically update the caches in response
to changes to the data at the server. The departure of DGA
from CGA is primarily in its inability to gather information
about all traffic (access frequencies). In addition, the
inaccuracies and staleness of the nearest cache table entries
(due to message losses or arbitrary communication delays)
may result in approximate local benefit values. Finally, in
DGA, the placement of caches happens simultaneously at
all nodes in a distributed manner, which is in contrast to the
sequential manner in which the caches are selected by the
CGA. However, DGA is able to cope with dynamically
changing access frequencies and cache placements. As
noted before, any changes in cache placements trigger
updates in the nearest cache table, which in turn affect the

local benefit values. Below is a summarized description of
the DGA.

Algorithm 2 DGA.

Setting

A network graph GðV;EÞ with p data items. Each

node i has a memory capacity of mi pages. Let  
be the benefit threshold.

Program of Node i

BEGIN

When a data item Dj passes by

if local memory has available space and ðBij >  Þ
then cache Dj

else if there is a set D of cached data items such

that (local benefit of D < Bij  ) and
ðjDj � jDjjÞ, then replace D with Dj

When a data item Dj is added to a local cache

Notify the server of Dj

Broadcast an AddCache message with ði;DjÞ
When a data item Dj is deleted from a local cache

Get the cache list Cj from the server of Dj

Broadcast a DeleteCache message with

ði; Dj; CjÞ
On receiving an AddCache message ði0; DjÞ

if i0 is nearer than the current nearest cache for Dj

then update the nearest cache table entry and broadcast

the AddCache message to neighbors

else send the message to the nearest cache of i

On receiving a DeleteCache message ði0; Dj; CjÞ
if i0 is the current nearest cache for Dj

then update the nearest case of Dj using Cj, and
broadcast the DeleteCache message

else send the message to the nearest cache of i

For mobile networks, instead of AddCache and

DeleteCache messages, for each data item, its server

periodically broadcasts (to the entire network) the latest

cache list.

END.

3.2.5 Performance Analysis

Note that the performance guarantee of CGA (that is, proof
of Theorem 1) holds even if the CGA were to consider the
memory pages in some arbitrary order and select the most
beneficial caches for each one of them. Now, based on the
above observation, if we assume that the local benefit is
reflective of the accurate benefit (that is, if the local traffic
seen by a node i is the only traffic that is affected by caching
a data item at node i), then DGA also yields a solution
whose benefit is 1/4 of the optimal benefit. Our simulation
results in Section 4.1 show that DGA and CGA indeed
perform very closely.

3.2.6 Data Expiry and Cache Updates

We incorporate the concepts of data expiry and cache
updates in our overall framework as follows: For data
expiry, we use the concept of Time to Live (TTL) [33], which
is the time until the given copy of the data item is
considered valid/fresh. The data item or its copy is
considered expired at the end of the TTL time value. We
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consider two data expiry models, namely, TTL per request
and TTL per item. In the TTL-per-request data expiry model
[33], the server responds to any data item request with the
requested data item and an appropriately generated TTL
value. Thus, each copy of the data item in the network is
associated with an independent TTL value. In the TTL-per-
item data expiry model, the server associates a TTL value
with each data item (rather than each request), and all
requests for the same data item are associated with the
same TTL (until the data item expires). Thus, in the TTL-
per-item data expiry model, all the fresh copies of a data
item in the network are associated with the same TTL
value. On the expiration of the data item, the server
generates a new TTL value for the data item.

For updating the cached data items, we consider two
mechanisms. For the case of the TTL-per-request data expiry
model, we use the cache deletion update model, where each
cache node independently deletes its copy of the expired
data item. Such deletions are handled in a similar way as
describe before, that is, by broadcasting a DeleteCache

request. In the case of TTL-per-item data expiry model, all
the copies of a particular data item expire simultaneously.
Thus, we use the server multicast cache update model,
wherein the server multicasts the fresh copy of the data
item to all the cache nodes on expiration of the data item
(at the server). If the cache list is not maintained at the
server, then the above update is implemented using a
network-wide broadcast.

4 PERFORMANCE EVALUATION

We demonstrate through simulations the performance of
our designed cache placement algorithms over randomly
generated network topologies. We first compare the relative
quality of the solutions returned by CGA and its distributed
algorithm DGA. Then, we turn our attention to application-
level performance in complex network settings and
evaluate our designed DGA with respect to a naive
distributed algorithm and the HybridCache algorithm [33]
using the ns2 simulator [10].

4.1 CGA versus DGA

In this section, we evaluate the relative performance of CGA
and DGA by comparing the benefits of the solutions
delivered.

For the purposes of implementing a centralized strategy,
we use our own simulator for implementation and compar-
ison of our designed algorithms. In our simulator, DGA is
implemented as a dynamically evolving process wherein,
initially, all the memory pages are free, and the nearest cache
table entries point to the corresponding servers. This
initialization of the nearest cache table entries results in
traffic being directed to servers, which triggers caching of
data items at nodes, which in turn causes changes in the
nearest cache tables and further changes in cache place-
ments. The process continues until convergence. To provide
a semblance of an asynchronous distributed protocol, our
simulation model updates routing and the nearest cache
table entries in an arbitrary order across nodes.

Simulation parameters. In our cache placement problem,
the relevant parameters are

1. number of nodes in the network,
2. transmission radius Tr (two nodes can directly

transmit with each other if and only if they are
within Tr distance from each other),

3. number of data items,
4. number of clients accessing each data item, and
5. memory capacity on each node.

The first two parameters are related to network topology,
the next two parameters are application dependent, and the
last parameter is the problem constraint (property of the
nodes). Here, we assume each data item to be of unit size
(one memory page). Below, we present a set of plots
wherein we vary some of the above parameters while
keeping the others constant.

4.1.1 Varying Number of Data Items and Memory

Capacity

Fig. 2a plots the access costs for CGA and DGA against the
number of data items in the network for different local
memory capacities. Here, the network size is 500 nodes in a
30 � 30 area.7 We use a transmission radius ðTrÞ of five units.
The memory capacity in each node is expressed as the
percentage of the number of data items in the network. We
vary the number of data items from 500 to 1,000 and the
memory capacity of each node from 1 percent to 5 percent of
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7. Since the complexity of CGA is a high-order polynomial, the runtime
is quite slow. Thus, we have not been able to evaluate the performance on
very large networks.

Fig. 2. Performance comparison of CGA and DGA. (a) Varying number of data items and memory capacity. (b) Varying number of nodes and

transmission radius ðTrÞ. (c) Varying client percentage. Unless being varied—the number of nodes is 500, transmission radius is 5, number of data

items is 1,000, number of clients (for each data item) is 250, and each node can store 20 data items in its memory.



the number of data items. The number of clients accessing
each data items is fixed at 50 percent of the number of nodes
in the network.

We observe that the access cost increases with the
number of data items as expected. Also, as expected, we see
that CGA performs slightly better since it exploits global
information, but DGA performs quite close to CGA. The
performance difference between the algorithms decreases
with increasing memory capacity, since, with increasing
memory capacity, both the algorithms must converge to the
same solution (access cost zero) as all client nodes will
eventually be able to cache all the data items they wish to
access. Although this degenerate situation is not reached,
the trend is indeed observed.

4.1.2 Varying Network Size and Transmission Radius

In the next plot (Fig. 2b), we fix the number of data items in
the network to 1,000 and the memory capacity of each node
to 2 percent of data items. As before, 50 percent of the
network nodes act as clients for each of the data item. In this
plot, we vary the network size from 100 nodes to 500 nodes
and transmission radius ðTrÞ from 3 to 8. Essentially, Fig. 2b
shows the access cost as a function of network size and
transmission radius for the two algorithms. Once again, as
expected, CGA slightly outperforms DGA, but DGA
performs very close to that of CGA.

4.1.3 Varying Client Percentage

We also investigated the effect of the number of clients on
the access cost. See Fig. 2c. We note a similar behavior. The
performances are more similar as the independent
parameter is varied toward the degenerate case. Here, the
degenerate case represents a single client, where both
algorithms must perform similarly.

4.2 DGA versus HybridCache

In this section, we compare DGA with the HybridCache
approach proposed in [33] by simulating both approaches in
ns2 [10] (version 2.27). The ns2 simulator contains models
for common ad hoc network routing protocols, IEEE
Standard 802.11 MAC layer protocol, and two-ray ground
reflection propagation models [6]. Due to the lack of
scalability of the ns2 simulator, we use a smaller network
size (compared to Section 4.1) and other appropriate
parameter values. The DSDV routing protocol [24] is used
to provide routing services. For comparison, we also
implemented a Naive approach, wherein each node caches
any passing-by data item if there is a free memory space and
uses the LRU (least recently used) policy for replacement of
caches. We start with presenting the simulation setup and
then present the simulation results in Section 4.2.1. In all
plots, each data point represents an average of 5 to 10 runs.
In some plots, we show error bars indicating the 95 percent
confidence interval; for sake to clarity, we show confidence
intervals in only those graphs that are relevant to our claims.

4.2.1 Simulation Setup

In this section, we briefly discuss the network set up, client
query model, data access pattern model, and performance
metrics used for our simulations.

Network setup. We simulated our algorithms on a network
of randomly placed 100 nodes in an area8 of 2; 000� 500 m2.
Note that the nominal radio range for two directly commu-
nicating nodes in the ns2 simulator is about 250 meters. We
assume that the wireless bandwidth is 2 megabits per second.
Other network parameters (such as propagation delay, etc.)
are the same as the ns2 default. When a node relays a message,
we introduce a random delay between 0.001-0.01 second to
reduce collisions. There is no other routing delay except
queueing delays that occur naturally at the network interface.
In our simulations, we assume 1,000 data items of varying
sizes, two randomly placed serversS0 andS1, whereS0 stores
the data items with even IDs, andS1 stores the data items with
odd IDs. We choose the size of a data item randomly between
100 and 1,500 bytes.9

Client query model. In our simulations, each network node
is a client node. Each client node in the network sends out a
single stream of read-only queries. Each query is essentially
a request for a data item. In our DGA scheme, the query is
forwarded to the nearest cache (based on the nearest cache
table entry). In the Naive scheme, the query is forwarded to
the server unless the data item is available locally; if the
query encounters a node with the requested data item
cached, then the query is answered by the encountered node
itself. The time interval between two consecutive queries is
known as the query generate time and follows exponential
distribution with mean value Tquery, which we vary from 3 to
40 seconds We do not consider values of Tquery less than
3 seconds, since they result in a query success ratio of much
less than 80 percent for Naive and HybridCache ap-
proaches. Here, the query success ratio is defined as the
percentage of the queries that receive the requested data
item within the query success timeout period. In our
simulations, we use a query success timeout of 40 seconds.

The above client query model is similar to the model
used in previous studies [7], [33]. However, query genera-
tion process differs slightly from the one used in [33] in how
the queries are generated. In [33], if the query response is
not received within the query success timeout period, then
the same query is sent repeatedly until it succeeds, whereas
on the success of a query, a new query is generated (as in
our model) after some random interval.10 Our querying
model is better suited (due to the exact periodicity of
querying) for comparative performance evaluation of
various caching strategies, whereas the querying model in
[33] depicts a more realistic model of a typical application
(due to repeated querying until success).

Data access models. For our simulations, we use the
following patterns for modeling data access frequencies
at nodes:

1. Spatial pattern. In this pattern of data access, the data
access frequencies at a node depends on its geo-
graphic location in the network area such that nodes
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mechanism in the 2.27 version of ns2 that we used.

10. In the original simulation code of HybridCache [33], the time interval
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(which follows an exponential distribution with mean value Tquery).



that are closely located have similar data access
frequencies.11 More specifically, we start with laying
the given 1,000 data items uniformly over the network
area in a gridlike manner resulting in a virtual
coordinate for each data item. Then, each network
node accesses the 1,000 data items in a Zipf-like
distribution [5], [34], with the access frequencies of the
data items ordered by the distance of the data item’s
virtual coordinates from the network node. More
specifically, the probability of accessing (which can be
mapped to access frequency) the jthð1 
 j 
 1; 000Þ
closest data item is represented by Pj ¼ 1

j&
P1;000

h¼1 1=h
&
,

where 0 
 & 
 1. Here, we have assumed the number
of data items to be 1,000. When & ¼ 1, the above

distribution follows the strict Zipf distribution,

whereas for & ¼ 0, it follows the uniform distribution.

As in [33], we choose & to be 0.8 based on real Web

trace studies [5].
2. Random pattern. In this pattern of data access, each

node uniformly accesses a predefined set of 200 data
items chosen randomly from the given 1,000 data
items.

Performance metrics. We measure three performance

metrics for comparing various caching strategies, namely,

average query delay, total number of messages, and query

success ratio. Query delay is defined as the time elapsed

between query request and query response, and the

average query delay is the average of query delays over

all queries. Total number of messages includes all message

transmissions between neighboring nodes, including mes-

sages due to queries, maintenance of the nearest cache

tables and cache lists, and periodic broadcast of cache lists

in mobile networks. Messages to implement routing

protocol are not counted, as they are the same in all

three approaches compared. Query success ratio has been

defined before. Each data point in our simulation results

is an average of over five different random network

topologies, and to achieve stability in performance

metrics, each of our experiments is run for a sufficiently

long time (20,000 seconds for our experiments).
DGA parameter values. We now present a brief

discussion on the choice of values of the benefit threshold

and local traffic window size for DGA. For static
networks, we compute local benefits based on the most
recent 1,000 queries. Since, the data access frequencies
remains static in our experiment setting, computing local
benefits based on as large a number of queries as
possible is a good idea. However, we observed that the
most recent 1,000 queries are sufficient to derive a
complete knowledge of local traffic. For mobile networks
with spatial data access pattern, the access frequencies at
a client node change with the node’s location. Thus, we
compute local benefits using only 50 recent queries.

Also, we chose a benefit threshold value of 0.008 when
the cache size is default at 75 Kbytes (capable of storing
100 average-sized data items), based on the typical benefit
value of the 100th most beneficial data item at a node. We
use a similar methodology for choosing benefit threshold
values for other values of cache sizes. In general, the
chosen benefit threshold value should be higher than the
communication overhead that incurred (in terms of
maintenance of the nearest cache tables and the cache list)
due to caching of a data item.

4.2.2 Simulation Results

We now present simulation results comparing the three
caching strategies, namely, Naive Approach, HybridCache
approach in [33], and our DGA, under the random and
spatial data access patterns (as defined above) and study
the effect of various parameter values on the performance
metrics.

Varying mean query generate time. In Fig. 3, we vary the
mean query generate time Tquery in the spatial data access
pattern while keeping the cache size as a constant and all
network nodes as client nodes. We choose the cache size to
be big enough to fit about 100 average-sized data items (that
is, 75 Kbytes). We observe that our DGA outperforms the
other two approaches in terms of all three performance
metrics of query average delay, query success ratio, and
total number of messages. In comparison with HybridCache
strategy, our DGA has an average query delay of less than
half for all parameter values (corroborated by confidence
intervals of 95 percent), always has better query success
ratio and lower message overhead. For the mean query
generate time of 3 seconds, the average query delay in all
approaches is high, but our DGA outperforms HybridCache
by more than a factor of 10. Also, for very low mean query
generate times, our DGA has a significantly better query
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pattern used in [33].

Fig. 3. Varying mean query generate time on spatial data access pattern. (a) Average query delay. (b) Query success ratio. (c) Total number of

messages.



success ratio. Fig. 4 depicts similar observations for the

random access data patterns, except that for a mean query

generate time of 5 seconds, we have a slightly worse average

query delay than that of HybridCache (but a significantly

better query success ratio).
Varying cache memory size. In Fig. 5, we vary the local

cache size of each node in the spatial data access pattern

while keeping the mean query generate time Tquery
constant at 10 seconds We vary the local cache size from

15 Kbytes (capable of storing 20 data items of average

size) to 50 Kbytes. We observe in Fig. 5 that our DGA

outperforms the HybridCache approach consistently for

all cache sizes and in terms of all three performance

metrics. The difference in the average query delay is

much more significant for lower cache size—which

suggests that our DGA is very judicious in the choice of

data items to cache. Note that HybridCache performs

even worse than the Naive Approach when each node’s
memory is 15 Kbytes.

Mobile networks. Until now, we have restricted our
discussion and simulations to ad hoc networks with static
nodes. Now, we present the performance comparison of
various caching strategies for mobile ad hoc networks,
wherein the mobile nodes move based on the “random
waypoint” movement model [6]. In the random waypoint
movement model, initially, nodes are placed randomly in
the area. Each node selects a random destination and
moves toward the destination with a speed selected
randomly from (0 m/s, vmax m=s). After the node reaches
its destination, it pauses for a period of time (chosen to be
300 seconds in our simulations, as in [33]) and repeats the
movement pattern. In our simulations, the server broad-
casting the cache lists every 100 seconds; this time interval
is sufficient for notifying the nodes in a timely manner
without incurring too much overhead.
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Fig. 4. Varying mean of query generate time on random data access pattern. (a) Average query delay. (b) Query success ratio. (c) Total number of

messages.

Fig. 5. Varying cache size on spatial data access pattern. Here, Tquery ¼ 10 seconds. (a) Average query delay. (b) Query success ratio.

(c) Total number of messages.

Fig. 6. Varying mean query generate time in spatial data access pattern with vmax ¼ 10 m=s. (a) Average query delay. (b) Query success ratio.

(c) Total number of messages.



In Fig. 6, we compare various cache placement
algorithms under the spatial data access pattern for
varying mean query generate time while keeping other
parameters constant (vmax ¼ 10 m=s and local cache
size ¼ 75 Kbytes). We observe that all our schemes perform
similarly in terms of query delay, but DGA outperforms
the other schemes by a significant margin in terms of
query success ratio (again, corroborated by confidence
intervals). Note that a significantly better query success
ratio is much more desirable than a slightly better average
query delay. In Fig. 7, we compare various schemes under
the spatial data access pattern for varying vmax value while
keeping other parameters constant (Tquery ¼ 10 seconds and
local cache size ¼ 75 Kbytes). In terms of query delay,
DGA outperforms other schemes for low mobilities but
has a slightly worse query delay for higher mobilities.
However, more importantly, DGA has a significantly better
query success ratio than all schemes for all mobilities. As
noted before, a much better query success ratio is more
desirable than slightly better query delay. We have the
following explanation for the unusual (nonmonotonic)
pattern of the graphs in Fig. 7, which is the only figure
in this article where we have varied mobilities. First, Naive
and Hybrid schemes display similar patterns—the query
success ratio initially decreases with increase in mobility
(as expected) and, then, stabilizes. The initial decrease in
query delay is largely due to the effect of decrease in
query success ratio (due to loss of longer delay queries).
The later increase in query delay with an increase in
mobility is as expected, when the query success ratio
remains largely unchanged. In contrast, we notice that the

DGA scheme has a relatively unchanged query delay and
query success ratio, suggesting that higher mobility does
not deteriorate much the performance of DGA due to the
presence of the nearest cache table structure.

Varying client percentage. In all previous experiments in
this section, we have assumed that each network node is a
client node. In Fig. 8, we vary the percentage of client
nodes in the static network for the spatial data access
pattern while keeping Tquery ¼ 10 seconds and cache size as
75 Kbytes. We can see that DGA outperforms HybridCache
for all client percentage values. The performance difference
is seen to be very less at a very low percentage of client
nodes because of minimal traffic. Fig. 9 shows similar trend
and results for mobile networks with mobility
ðvmax ¼ 10 m=sÞ.

Incorporating data expiry and cache updates. In all of our
previous experiments, we have not considered data
expiration or cache updates. We now incorporate data
expiry and cache updates into our simulations. We run our
simulations for a total runtime of 200,000 seconds and
generate TTL values as current time plus a random number
in [10,000, 20,000]. We use both data expiry models,
namely, TTL per request and TTL per item. As mentioned
before, for the TTL-per-request data expiry model, we use
the cache deletion update mechanism, whereas for the TTL-
per-time model, we use the server multicast update
mechanism. For all the three caching algorithms (Naive,
Hybrid, and DGA), a data item request destined to a node
with expired data item is redirected to the server, and the
TTL value of a cached expired data item is updated using
the TTL values of a passing by fresh copy of the data item.
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Fig. 7. Varying vmax in spatial data access pattern. Here, Tquery ¼ 10 seconds. (a) Average query delay. (b) Query success ratio. (c) Total number of

messages.

Fig. 8. Varying client percentage on spatial data access pattern in static networks. Here, Tquery ¼ 10 seconds. (a) Average query delay.

(b) Query success ratio. (c) Total number of messages.



Figs. 10 and 11 show the comparison of the three caching
techniques for TTL-per-item and TTL-per-request data
expiry models, respectively. In Fig. 10, we see that our
DGA technique outperforms HybridCache and Naive
Caching in all three performance metrics; the relative
performance is similar to that in Fig. 3. However, for the
case of TTL-per-request data expiry model (Fig. 11), our
DGA has a lower query success ratio (95 percent) due to an
increase in the number of DeleteCache messages; our
DGA still outperforms the other two techniques in terms of
average query delay by a significant margin. Figs. 12 and 13
show the comparison of the DGA and HybridCache in
mobile networks with vmax ¼ 10 m=s for TTL-per-item and
TTL-per-request data expiry models, respectively. The total
runtime for these experiments is 100,000 seconds, at which
the average query delay and the query success ratio values
had stabilized. In this very general setting of mobility, data

expiration, and cache updates, we continue to see that our
DGA technique outperforms HybridCache in terms of
average query delay and query success ratio.

Comparison with random caching/nearest cache table. To
demonstrate that the better performance of DGA is not only
due to the presence of the nearest cache table but also due to
the way the caches are placed, we compare our DGA scheme
with a Random Caching scheme aided with the nearest cache
table. In the Random Caching scheme, we cache/place data
items randomly in each node’s cache memory and appro-
priately initialize the nearest cache table. The placement of
caches and the initialization of the nearest cache tables is
done in a centralized way without any communication
overhead, which only favors the Random Caching scheme.
In Fig. 14, we compare the DGA, HybridCache, and Random
Caching schemes in highly mobile networks (that is, with
vmax ¼ 10 m=s). We observe that due to high mobility, all
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Fig. 10. Varying mean query generate time on spatial data access pattern with cache update in static networks. Here, the data expiry model is

TTL-per-item, and the cache update model is server multicast. (a) Average query delay. (b) Query success ratio. (c) Total number of messages.

Fig. 11. Varying mean query generate time on spatial data access pattern with cache update in static networks. Here, the data expiry model is

TTL-per-request, and the cache update model is cache deletion. (a) Average query delay. (b) Query success ratio. (c) Total number of messages.

Fig. 9. Varying client percentage on spatial data access pattern for mobile networks with vmax ¼ 10 m=s. Here, Tquery ¼ 10 seconds. (a) Average query

delay. (b) Query success ratio. (c) Total number of messages.



three different schemes have similar average query delays.
However, DGA has significantly better query success ratio
than the other schemes. These results demonstrate that the
superior performance of our DGA scheme is not just due to
the nearest cache table structure.

Summary of simulation results. Our simulation results can
be summarized as follows: Both the HybridCache and DGA
approaches outperform the Naive approach in terms of all
three performance metrics, namely, average query delay,
query success ratio, and total number of messages. Our
designed DGA almost always outperforms the Hybrid
approach in terms of all performance metrics for a wide
range of parameters of mean query generate time, local cache
size, and mobility speed. In particular, for frequent queries or
smaller cache size, the DGA approach has a significantly
better average query delay and query success ratio. For very
high mobility speeds, sometimes, the DGA approach has a

slight worse average query delay than Hybrid but with
significantly better query success ratio, which is certainly the
more desirable performance metric. We show that the success
of DGA comes not only from maintenance of the nearest
cache tables but also from the near-optimal placement of
caches. The optimized placement of caches not only reduces
query delay but also message transmissions, which in turn
leads to less congestion and, hence, fewer lost messages due
to collisions or buffer overflows at the network interfaces.
This, in turn, provides a better success ratio. This
“snowballing” effect is very apparent in challenging cases
such as frequent queries and small cache sizes.

5 CONCLUSIONS

We have developed a paradigm of data caching techniques
to support effective data access in ad hoc networks. In
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Fig. 13. Varying mean query generate time on spatial data access pattern with cache update in mobile networks with vmax ¼ 10 m=s. Here, the data

expiry model is TTL-per-request, and the cache update model is cache deletion. (a) Average query delay. (b) Query success ratio. (c) Total number

of messages.

Fig. 14. Varying mean query generate time on spatial data access pattern by comparing Random Caching, HybridCache and DGA, with

vmax ¼ 10 m=s. (a) Average query delay. (b) Query success ratio. (c) Total number of messages.

Fig. 12. Varying mean query generate time on spatial data access pattern with cache update in mobile networks with vmax ¼ 10 m=s. Here, the data

expiry model is TTL-per-item, and the cache update model is server multicast. (a) Average query delay. (b) Query success ratio. (c) Total number of

messages.



particular, we have considered the memory capacity

constraint of the network nodes and developed efficient

algorithms to determine near-optimal cache placements to

maximize reduction in overall access cost. Reduction in

access cost leads to communication cost savings and, hence,

better bandwidth usage and energy savings. Our later

simulation experience with ns2 also shows that better

bandwidth usage also in turn leads to less message losses

and, thus, better query success ratio.
The novel contribution in our work is the development

of a 4-approximation centralized algorithm, which is

naturally amenable to a localized distributed implementa-

tion. The distributed implementation uses only local

knowledge of traffic. However, our simulations over a

wide range of network and application parameters show

that the performance of the two algorithms is quite close.

We note that ours is the first work that presents a

distributed implementation based on an approximation

algorithm for the problem of cache placement of multiple

data items under memory constraint.
We further compare our distributed algorithm with a

competitive algorithm (HybridCache) presented in the

literature that has a similar goal. This comparison uses the

ns2 simulator with a complete wireless networking protocol

stack including dynamic routing. We consider a broad

range of application parameters and both stationary and

mobile networks. These evaluations show that our algo-

rithm significantly outperforms HybridCache, particularly

in more challenging scenarios, such as higher query

frequency and smaller memory.
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