
1

DAO2: Overcoming Overall Storage Overflow in
Intermittently Connected Sensor Networks

Bin Tang, Hung Ngo, Yan Ma, and Basil Alhakami
Computer Science Department, California State University Dominguez Hills

btang@csudh.edu, hung.ngo.tm@gmail.com, hi.yanma@gmail.com, balhakami1@toromail.csudh.edu

Abstract—Many emerging sensor network applications op-
erate in challenging environments wherein the base station is
unavailable. Data generated from such intermittently connected
sensor networks (ICSNs) must be stored inside the network for
some unpredictable time before uploading opportunities become
available. Consequently, sensory data could overflow the limited
storage capacity available in the entire network, making discard-
ing valuable data inevitable. To overcome such overall storage
overflow in ICSNs, we propose and study a new algorithmic
framework called data aggregation for overall storage overflow
(DAO2). Utilizing spatial data correlation that commonly exists
among sensory data, DAO2 employs data aggregation techniques
to reduce the overflow data size while minimizing the total energy
consumption in data aggregation. At the core of our framework
are two new graph theoretical problems that have not been
studied. We refer to them as traveling salesmen placement problem
(TSP2) and quota traveling salesmen placement problem (Q-
TSP2). Different from the well-known multiple traveling salesman
problem (mTSP) and its variants, which mainly focus on the
routing of multiple salesmen initially located at fixed locations,
TSP2 and Q-TSP2 must decide the placement as well as the
routing of the traveling salesmen. We prove that both problems
are NP-hard and design approximation, heuristic, and distributed
algorithms. Our algorithms outperform the state-of-the-art data
aggregation work with base stations by up to 71.8% in energy
consumption.

Keywords – Sensor Networks, Data Aggregation, Approximation
and Distributed Algorithms, Graph Theory

I. INTRODUCTION

Overall Storage Overflow. Sensor networks have been de-
ployed to tackle some of the most fundamental problems fac-
ing human beings, such as disaster warnings, climate change,
and renewable energy. These emerging scientific applications
include underwater or ocean sensor networks [9, 22, 28, 35,
43, 60], wind and solar harvesting [34, 40], seismic sensor
networks [42, 55], and monitoring of volcano eruption and
glacial melting [18, 47]. One common characteristic of these
applications is that they are all deployed in challenging envi-
ronments, such as in remote or inhospitable regions or under
extreme weather, to continuously collect large volumes of data
for a long period of time.

It is usually impossible to deploy high-power, high-storage
data-collecting base stations in those challenging environ-
ments. Consequently, large amounts of generated sensory data
are stored inside the network for some unpredictable period
of time and then collected by periodic visits of data mules
or robots [27, 56, 59], or by low-rate satellite links [44, 57].
We refer to such sensor networks without the base station

as intermittently connected sensor networks (ICSNs). In in-
hospitable environments, ICSNs must operate more resiliently
than traditional sensor networks wherein base stations are
always available.

In this paper, we focus on how to achieve data resilience
in ICSNs. Data resilience refers to the long-term viability and
availability of data despite insufficiencies of (or disruptions
to) the physical infrastructure that stores the data. In ICSNs,
one such disruption is sensor storage overflow. On one side,
sensing a wide range of physical properties in the real world,
above scientific applications generate massive amounts of data,
such as videos or high-resolution images [27]. On the other
side, storage is still a severe resource constraint of sensor
nodes despite the advances in energy-efficient flash storage
[35]. Consequently, the massive sensory data could overflow
the data storage of sensor nodes and cause data loss. Such
storage overflow problem is further exacerbated in ICSNs,
wherein the high-storage base stations are not available to
collect and store the data.

To avoid data loss, our previous works have designed a
suite of techniques to offload overflow data from storage-
depleted sensor nodes to nearby sensor nodes with available
storage [25, 26, 48, 49, 58]. However, if these offloaded data
cannot be collected and uploaded timely by data mules or
satellite links, they could soon overflow the available storage
in the entire network. Unfortunately, any of the existing data
offloading techniques cannot alleviate this. We refer to this
newly identified obstacle in the ICSNs as overall storage
overflow. Below we give a more concrete example.

Motivating Example. Consider a recent application of un-
derwater exploration and monitoring [9, 28], where camera
sensors take pictures of the underwater scenes while an au-
tonomous underwater vehicle (AUV) is dispatched periodically
to collect the pictures from the sensors. Suppose there are
100 underwater camera sensors, 10 of which generate one
640 × 480 JPEG color image per second. Even using the
latest 16 GB parallel NAND flash sensor storage [31], it
takes less than one day to exhaust the storage of all the 100
camera sensors, causing an overall storage overflow. If the
AUV cannot be dispatched timely due to inclement weather,
discarding valuable data becomes inevitable. We thus answer
the following question: How to preserve the large amounts of
data in ICSNs despite the overall storage overflow?

Contributions. To overcome overall storage overflow, we pro-
pose to utilize spatial correlation that commonly exists among

2

sensory data [54] and employ data aggregation techniques
to reduce the overflow data size. The spatial correlation of
sensory data is due to the proximity of sensor nodes detecting
the same event of interest, thus producing data of similar
values. For example, the partial overlapping between scenes
from different cameras could produce similar and redundant
images in the above underwater exploration scenario. We
create a new algorithmic framework called data aggregation
for overall storage overflow (DAO2). At the core of DAO2 are
two fundamental graph-theoretical problems called traveling
salesmen placement problem (TSP2) and quota traveling sales-
men placement problem (Q-TSP2). Unlike the classic multiple
traveling salesman problem (mTSP) and its variants [10, 52],
before finding the routing for each traveling salesman, TSP2

and Q-TSP2 need to decide first how many of them are needed
and where to place them. This makes the problems more
general and more challenging than the classic mTSP. To our
knowledge, both TSP2 and Q-TSP2 are not studied before.

To solve DAO2, we design a suite of energy-efficient opti-
mal, approximation, heuristic, and distributed data aggregation
algorithms with rigorous performance guarantee analyses. One
novelty of our aggregation techniques is two graph structures
uniquely derived from the DAO2 called aggregation network
and minimum q-edge forest, where q is the number of sensor
nodes that aggregate their overflow data (or the number of
cities to visit in the TSP jargon). The minimum q-edge forest
is a set of aggregation trees of total q cycle-less edges. It
generalizes the minimum spanning tree, one of the most
fundamental graph structures, and accurately captures the
information needed for energy-efficient data aggregation.

After being aggregated to the size accommodable by the
network, the overflow data can then be stored in sensor nodes
with available storage using techniques proposed in [25, 26,
49, 58] (see Example 1 in Section II). Note that we do not
consider how to upload data from sensor nodes to the base
station, which has been studied extensively using data mules
or robots [20, 27, 46, 56, 59]. In our conference paper [48], we
solved DAO2-U, a special and uniform case of DAO2 where
all the data nodes have the same overflow data size and the
same correlation coefficient, and all the storage nodes have
the same storage capacity. Our main contributions and paper
organizations are as follows.
1). We identify and formulate a new algorithmic framework

called DAO2 that tackles the overall storage overflow prob-
lem in ICSNs. (Section I and II)

2). We show that DAO2-U is equivalent to TSP2, which
is NP-hard. We design a suite of optimal, approximation,
and heuristic algorithms. In particular, the approximation
algorithm achieves (2 − 1

q) approximation ratio, where q
is the number of aggregators. (Section III)

3). We show that DAO2 is equivalent to Q-TSP2 and again
design a suite of optimal, approximation, and heuristic
algorithms. In particular, the approximation algorithm has
an approximation ratio of log2Q, where Q is the targeted
total data size reduction. (Section IV)

4). We design a suite of distributed data aggregation algo-
rithms for the DAO2 with performance guarantees and time
and message analyses. (Section V)

5). Our algorithms outperform the existing data aggregation
work with the base station by up to 71.8% in energy
consumption. (Section VI)

II. PROBLEM FORMULATION OF DAO2

This section introduces the DAO2 and its network, data
spatial correlation, and energy models. We then formulate the
problem and illustrate it with an example.

Problem Statement of DAO2. Fig. 1 illustrates the DAO2. Some
sensor nodes are close to the events of interest and thus are
constantly generating sensory data and have depleted their
storage. Such sensor nodes with depleted storage spaces while
still generating data are data nodes. The newly generated data
that can no longer be stored at a data node is overflow data.
To avoid data loss, overflow data must be offloaded to sensor
nodes with available storage (referred to as storage nodes).
However, the total size of the overflow data is larger than
the total available storage from the storage nodes, causing
an overall storage overflow. Aggregating the overflow data is
needed before offloading them to storage nodes.

Data nodes Storage nodes

Initiator

Aggregators

Fig. 1. Illustrating DAO2.

In DAO2, one or more
data nodes will be selected
as the initiators, which
start the aggregation pro-
cess by sending their over-
flow data to visit other data
nodes in a multi-hop man-
ner. When a non-initiator
data node receives the data,
it is made aware of the spa-
tial correlation of the data
and becomes an aggregator (refer to Spatial Correlation Data
Model for more details). That is, it aggregates its own overflow
data and then forwards the initiator’s entire overflow data to
another data node. This continues until enough data nodes
become aggregators such that the total size of the overflow
data in the ICSN after aggregation equals to or is slightly
less than the total available storage in the ICSN. The goal of
DAO2 is to minimize the energy consumption in this process
by finding the initiators and aggregators and the routes among
them. Note that when a storage node receives any data, it
relays it in its entirety as the entire data spatial correlation
information is needed for data aggregation.

Network Model. The ICSN is represented as an undirected
connected graph G(V,E), where V = {1, 2, ..., |V |} is the
set of |V | sensor nodes and E is the set of |E| edges. There
are p data nodes, denoted as Vd, where data node i ∈ Vd has
Ri bits of overflow data. The rest |V | − p sensor nodes are
storage nodes, where storage node j ∈ V −Vd has mj bits of
available storage space. Due to the overall storage overflow,∑
i∈Vd

Ri >
∑
j∈V−Vd

mj . Let Q denote the data size that
needs to be reduced via data aggregation; Q =

∑
i∈Vd

Ri −∑
j∈V−Vd

mj .

Spatial Correlation Data Model. Let H(X) denote the entropy
of a discrete random variable X , and H(X|Y) denote the
conditional entropy of X given that random variable Y is

3

known. If data node i receives no side information (i.e.,
overflow data) from other data nodes, its overflow data is
entropy coded as H(i|j1, ..., jp) = Ri bits, jk ∈ Vd ∧ jk 6=
i, 1 ≤ k ≤ p. If data node i receives side information from at
least one other data node, its overflow data is entropy coded
as H(i|j1, ..., jp) = ri ≤ Ri.

We denote ρi = 1− ri/Ri as the correlation coefficient of
data node i, thus Ri · ρi is the amount of data size reduction
at i after aggregation when it receives an initiator’s data. ρi
indicates the data redundancy level at data node i. ρi = 0
means i’s data is entirely different from others and thus cannot
be aggregated; ρi = 1 means i’s data is a duplicate copy
of others’ data and therefore can be obliterated. Note that
given any instance of overall storage overflow, it must be∑
i∈Vd

(Ri · ρi) ≥ Q for a feasible data aggregation; i.e.,
the data aggregation can achieve the targeted data reduction
Q with the given ρi.

The well-known joint entropy-based coding model inspires
our model in [16].1 This model, however, assumes that dif-
ferent sensor nodes not only have the same amount of data
but also have the same level of data correlations. In a real
scenario, usually, the farther away a sensor node is from the
event of interest, the less data it generates; the closer of two
sensor nodes, the higher similarity of their generated data.
With varying data sizes and varying correlation coefficients,
our model is thus more realistic and more general. We make
two assumptions.

Assumption 1: Each data node can be either an initiator,
an aggregator, or none, but not both. An initiator cannot be
an aggregator because the entirety of its data serves as side
information for other data nodes to aggregate. An aggregator
cannot be an initiator since its aggregated data loses the side
information needed for other nodes’ aggregation. �

Assumption 2: Each aggregator i can be visited multiple
times by the same or different initiators (if that is more energy-
efficient). However, its data can only be aggregated once,
reducing the size from Ri to ri. This is because i’s data
reduction is based on its spatial correlation coefficient ρi, not
how often initiators visit it. �

Energy Model. We adopt the first-order radio model [23] for
the battery power consumption of sensor nodes. When node
u sends Ru-bit data to its one-hop neighbor v over distance
lu,v , transmission cost at u is Et(Ru, lu,v) = Eelec × Ru +
εamp×Ru× l2u,v , receiving cost at v is Er(Ru) = Eelec×Ru.
Here, Eelec = 100nJ/bit is the energy consumption per bit on
transmitter and receiver circuits, and εamp = 100pJ/bit/m2

is the energy consumption per bit on transmit amplifier.
Let W = {v1, v2, ..., vn} be a walk, a sequence of n nodes

with (vi, vi+1) ∈ E and v1 6= vn (if all nodes in W are
distinct, W is a path). Let w(Ru, u, v) = Et(Ru, lu,v) +
Er(Ru) = Ru × (2 · Eelec + εamp × l2u,v), and c(Ru,W) =∑n−1
i=1 w(Ru, vi, vi+1) be the aggregation cost on W , the

energy consumption of sending Ru-bit from v1 to vn along

1We are aware of other distributed coding techniques such as Slepian-Wolf
coding [61]. In their model, each node has R bits of data, which can be
reduced to r ≤ R bits when the node receives side information from others.
However, they need a global correlation structure and thus are impractical for
large networks.

W . We assume a contention-free MAC protocol exists to avoid
overhearing and collision (e.g., [12]).

Problem Formulation of DAO2. The goal of DAO2 is to find
a set of a (1 ≤ a < p) initiators I and corresponding set of a
aggregation walks/paths W = {W1,W2, ...,Wa}, where Wj

(1 ≤ j ≤ a) starts from a distinct initiator Ij ∈ I, s.t. the
total amount of data reduction

∑
i∈A(Ri · ρi) >= Q while

minimizing the total aggregation cost
∑

1≤j≤a c(RIj ,Wj).
Here, A =

⋃a
j=1{Wj−{Ij}−Gj} is all the aggregators being

visited and Gj is the set of storage nodes in Wj . Table I lists
all the notations used in different problems.

TABLE I
SUMMARY OF THE NOTATIONS.

DAO2

G(V,E) The ICSN graph
Vd and p The set and number of data nodes, where Vd ⊂ V
Ri Overflow data size at data node i before aggregation
ri ≤ Ri Overflow data size at data node i after aggregation
ρi Correlation coefficient at data node i, ρi = 1− ri/Ri

mj Storage capacity of a storage node j ∈ V − Vd
Q Q =

∑
i∈Vd

Ri −
∑

j∈V−Vd
mj , total data reduction

I, a Set and number of initiators, 1 ≤ a < p
Ij jth initiator, 1 ≤ j ≤ a
Wj Aggregation walk or path starting with Ij
w(Ru, u, v) Aggregation cost of sending Ru bits from u to v
c(Ru,Wj) Aggregation cost of sending Ru bits along Wj

DAO2-U
R Overflow data size at a data node before aggregation
r, r ≤ R Overflow data size at a data node after aggregation
m Storage capacity of a storage node in V − Vd
q Number of aggregators needed

TSP2 and Q-TSP2

G(V ′, E′) Aggregation network for TSP2 and Q-TSP2

w(u, v) Weight of an edge (u, v) ∈ E′
d(u, v) Length of the shortest path between nodes u, v ∈ V ′
pri Prize available at node i ∈ V ′
modei Traveling mode (cost per traveled distance) at node i
Q Target prize to collect
pcr(Ci, Cj) Prize-cost ratio of two fragments Ci and Cj

B(u, v) Benefit of an edge (u, v) ∈ E′, B(u, v) = pru+prv
w(u,v)

T Total traveling cost in TSP2 and Q-TSP2

EXAMPLE 1: Fig. 2 gives an example of DAO2 in a
grid ICSN of 9 nodes (we use the grid only for illustration
purposes). Nodes B, D, E, G, and I are data nodes, with
RB = RE = 2 and RD = RG = RI = 1. Nodes A, C, F and
H are storage nodes, with mj = 1 for all of them except that
mA = 2. The energy cost on any edge is 1 for one data unit,
ρi = 1/2 at any data node i. Overall storage overflow arises
as there are seven units of overflow data but only five units
of storage spaces, giving Q = 2. The optimal solution, shown
in the blue arrowed line, selects D as the initiator and sets its
aggregation path as D, E, and B, with a total aggregation cost
of 2. After aggregation, the sizes of overflow data at B, E,
D, G, and I are 2, 1, 0, 1, 1, respectively, totaling five units.
Note that two units of data at B now include 1 unit of B’s
own aggregated data and 1 unit of initiator D’s intact data.
Now the five units of overflow data can be stored in the five
storage spaces, solving the overall overflow problem. �

4

A(2)

D(1)
E(2)

C(1)B(2)

F(1)

G(1) H(1) I(1)

Fig. 2. An example for
DAO2. Numbers in the
parentheses are Ri (for
data nodes •) and mj (for
storage nodes ◦).

Data Offloading After Data Ag-
gregation. After aggregation, data
is offloaded from data nodes to
storage nodes with minimum en-
ergy consumption. Our previous
work [26, 49] has shown this can
be modeled as a minimum cost
flow problem [1], which can be
solved optimally and efficiently.
One optimal solution in Fig. 2 is
offloading the two units of data
at B to A, E’s 1 unit data to
C, G’s 1 unit data to H , and I’s
1 unit of data to F , resulting in
an offloading cost of six. In this
paper, we only focus on data aggregation as data offloading
can be achieved optimally, and leave integrating them into a
more unified energy-efficient solution as future work.

III. ALGORITHMIC SOLUTIONS FOR DAO2-U

In this section, we study a special and uniform case of
DAO2, referred to as DAO2-U. In DAO2-U, all the data nodes
have the same overflow data size and correlation coefficient
(i.e., Ri = R, ri = r, and ρi = ρ = 1 − r/R, i ∈ Vd)
and all the storage nodes have the same storage capacity (i.e.,
mj = m, j ∈ V − Vd).

A. Problem Formulation of DAO2-U

We first derive the valid range of p for the occurrence of
both overall storage overflow and feasible aggregation. The
overall storage overflow condition gives p×R > (|V |−p)×m,
thus p > |V |m

m+R . Denote the number of aggregators needed as q.
Since each aggregator reduces its overflow data size by (R−r)
and the total anticipated data size reduction is p×R− (|V | −
p)×m = p× (R+m)− |V | ×m, we have

q = dp× (R+m)− |V | ×m
R− r

e. (1)

Next, we compute the upper bound of p for feasible data
aggregation. As at least one data node needs to be the initiator
to start the aggregation process, there can only be a maximum
of p− 1 aggregators (Assumption 1). We therefore have q =
dp×(R+m)−|V |×m

R−r e ≤ p − 1, which gives p ≤ b |V |m−R+r
m+r c.

The valid range of p for the occurrence of both overall storage
overflow and feasible aggregation is therefore

|V |m
m+R

< p ≤ b|V |m−R+ r

m+ r
c. (2)

Given a valid p value and its corresponding q value, meaning
q data nodes are aggregators and the rest p−q data nodes can
be initiators (Assumption 1), DAO2-U is to determine a set
of a (1 ≤ a ≤ (p − q)) initiators I and a corresponding
set of a aggregation walks: W1, W2, ..., Wa, where Wj

(1 ≤ j ≤ a) starts from a distinct initiator Ij ∈ I, such that
|
⋃a
j=1{Wj − {Ij} − Gj}| = q aggregators are visited while

the total aggregation cost in this process
∑

1≤j≤a c(R,Wj) is
minimized.

EXAMPLE 2: Fig. 3 shows the same ICSN in Fig. 2. For
DAO2-U, lets assume R = m = 1 and ρ = 3/4. Overall
storage overflow exists as there are four units of storage space
while five units of overflow data. The number of aggregators
q = 4 following Equation 1, leaving one data node as the
initiator. One optimal solution is selecting B as the initiator
and setting its aggregation path as B, E, D, G, H , and I , as
shown in the blue arrowed line. It has a total aggregation cost
of 5. After aggregation, the sizes of overflow data at B, E, D,
G, and I are 0, 3/4, 3/4, 3/4, and 7/4, respectively, which is
a total of 4 units and thus can be offloaded to storage nodes
using techniques in [26, 49]. Note that 7/4 units of data at I
now include 3/4 units of I’s own aggregated overflow data
and one unit of initiator B’s overflow data. �

A(1)

D(1)
E(1)

C(1)B(1)

F(1)

G(1) H(1) I(1)

Fig. 3. An example for DAO2-
U. Numbers are Ri (for data
nodes •) and mj (for storage
nodes ◦). The blue arrowed line
shows the aggregation path.

DAO2-U gives rise to a
new graph-theoretical problem,
referred to as traveling salesmen
placement problem (TSP2).
Next, we formulate TSP2, prove
its NP-hardness, and design a
(2− 1

q)-approximation algorithm.
We then prove that the DAO2-U
in an ICSN is equivalent to the
TSP2 in a properly transformed
graph of the ICSN, called
aggregation network. Therefore
the algorithms for TSP2 can be
applied to solve DAO2-U.

B. Traveling Salesmen Placement Problem (TSP2)

1) Problem Formulation and NP-Hardness: Given an undi-
rected weighted graph G′ = (V ′, E′) with |V ′| nodes and |E′|
edges, a cost metric that represents the distance or traveling
time between two adjacent nodes, and that the number of
nodes that must be visited is q. The objective of the TSP2 is
to determine a set of at most |V ′| − q starting nodes, at each
of which a salesman is placed and then starts to visit some
nodes following a walk, such that a) all together q nodes are
visited, and b) total cost of the walks is minimized.

Let w(u, v) denote the weight of edge (u, v) ∈
E′. We assume that triangle inequality holds: for edges
(x, y), (y, z), (z, x) ∈ E′, w(x, y) +w(y, z) ≥ w(z, x). Given
a walk W = {v1, v2, ..., vn}, let c(W) =

∑n−1
i=1 w(vi, vi+1)

denote its cost. The objective of TSP2 is to decide:
• the set of a (1 ≤ a ≤ |V ′| − q) starting nodes I ⊂ V ′, and
• the set of a walks W1,W2, ...,Wa: Wj (1 ≤ j ≤ a) starts
from a distinct node Ij ∈ I, and |

⋃a
j=1{Wj − {Ij}}| = q,

such that total cost
∑

1≤j∈a c(Wj) is minimized.
Theorem 1: The TSP2 is NP-hard.

Proof: Given an undirected graph G′(V ′, E′), its metric com-
pletion Gmc(V ′, Emc) is a complete graph with the same set
of nodes V ′, while for any pair of nodes u, v ∈ V ′, the cost
of (u, v) ∈ Emc is the cost of the shortest path connecting
u and v in G′(V ′, E′). When q = |V ′| − 1, TSP2 in Gmc

becomes how to find a minimum-cost hamiltonian path that
visits each node in Gmc exactly once. This is the “without
fixed endpoints” version of traveling salesman path problem

5

(TSPP) [24], which finds a minimum-cost hamiltonian path
that visits each node in Gmc exactly once. Thus TSPP is a
special case of TSP2. Below we prove TSPP is NP-hard by
reducing the well-known traveling salesman problem (TSP)
[15] to TSPP. Recall that TSP is to find a minimum-cost
Hamiltonian cycle in a complete graph that visits each node
exactly once.

G*G’
C

B
C

B
D

A’ AA

D

st

Fig. 4. Proving TSPP is NP-hard.

As shown in Fig. 4, let
complete graph G′ be an
instance of TSP, and we
construct an instance of
TSPP, G∗, as follows. We
choose an arbitrary node A
in G′ and add a copy of it,
A
′
. We connect A′ to all

other nodes in G′ except A
and assign the same cost on each edge as the corresponding
edge in G′ (i.e., (A

′
, B) has the same cost as (A,B), etc.).

Then we introduce nodes s and t and add edges (s,A) and
(t, A

′
) with any finite edge costs. Finally, as G∗ must be a

complete graph, we add the rest edges (not shown in Fig. 4)
and assign their costs to be infinite. We show that G′ contains
a minimum-cost Hamiltonian cycle if and only if G∗ contains
a minimum-cost Hamiltonian path.

Suppose that G′ contains a minimum-cost Hamiltonian cy-
cle A, C, B, D, A. Then we get a minimum-cost Hamiltonian
path in G∗ when we start from s, follow the cycle back to A

′

instead of A, and finally end in t. Conversely, suppose G∗

contains a minimum-cost Hamiltonian path. This path (with
finite cost) must end in s and t. We transform it to a cycle
in G′ by a) deleting s and t, which results in a path that end
in A and A

′
, and b) removing A

′
. Instead of returning to

A
′
, the resultant path returns to A, forming a minimum-cost

Hamiltonian cycle in G′.
2) Approximation Algorithm for TSP2: We introduce some

definitions before presenting the approximation algorithm.
Definition 1: (Binary Walk (B-Walk), q-Edge Forest) Given

a tree T ⊂ G′ with a maximum-weight edge (u, v) (ties are
broken randomly), T is divided into (u, v) and subtrees Tu
and Tv . The B-walk on T , denoted as WB(T), starts from
u and visits all the nodes in Tu following depth-first-search
(DFS), and then visits v, from which it visits all the nodes in
Tv following DFS and stops when all the nodes are visited.

A forest F of G′ is a subgraph of G′ that is acyclic (and
possibly disconnected). A q-edge forest, denoted as Fq , is a
forest with q edges. �

Fig. 5(a) shows a tree T with w(u, v) = 2 and weights of
other edges being 1, and a B-walk of cost 16. In B-walk, each
edge in Tu is traversed twice, and each edge in Tv is traversed
once or twice. B-walk saves cost traversing a tree since the
maximum-weight (u, v) is traversed only once.

Lemma 1: c(WB(T)) ≤ (2 − 1
|T |) × c(T). Here c(T) =∑

e∈T w(e) and |T | is the number of edges in T .
Proof: Since (u, v) is the edge in T with maximum weight,
w(u, v) ≥ 1

|T | × c(T). In WB(T), since (u, v) is traversed
exactly once and other edges are traversed at most twice,
c(WB(T)) ≤

(
2 × c(T) − w(u, v)

)
. Therefore c(WB(T)) ≤(

2× c(T)− 1
|T | × c(T)

)
= (2− 1

|T |)× c(T).

v
u

Tv
Tu

1

2 3

4

5

6

7

8

(a) B-Walk. (b) LP-Walk.

Fig. 5. (a) B-walk is u, 6, 7, 6, 8, 6, u, v, 1, 2, 1, 3, 1, v, 4, 5, with
cost of 16. (b) LP-walk is 2, 1, 3, 1, v, 4, 5, 4, v, u, 6, 7, 6, 8, costing
14. � and J– indicate the first and last node in a walk, respectively.
Here, w(u, v) = 2 and weights of other edges are 1.

Approximation Algorithm. Algo. 1 works as follows. Lines 1
and 2 sort all the edges in E′ in the non-descending order of
their weights and initialize an empty edge set Eq . The while
loop in lines 3-9 finds the first q edges in E′ that do not
cause a cycle and store them in Eq . It then obtains a q-edge
forest G′[Eq] (line 10). Each connected component of G′[Eq]
is either linear or a tree. If it is linear, a salesman is placed at
one end of it and then visits the rest nodes exactly once; if it
is a tree, u or v, a salesman is placed at u or v, where (u, v)
is the maximum-weight edge, and then does a B-walk to visit
all the nodes (lines 11-15).

Algorithm 1: Approximation Algorithm for TSP2.
Input: G′(V ′, E′) and number of nodes to visit q;
Output: a walks: W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj);

Notations: Eq: set of q cycleless edges in G′;
G′[Eq]: subgraph of G′ induced by Eq , a q-edge forest;
C(G′[Eq]): set of connected components in G′[Eq];
Cj : the jth connected component in C(G′[Eq]);

1. Let w(e1) ≤ w(e2) ≤ ... ≤ w(e|E|);
2. Eq = φ (empty set), i = j = k = 1;
3. while (k ≤ q)
4. if (ei is a cycleless edge w.r.t. Eq)
5 Eq = Eq ∪ {ei};
6. i++;
7. end if;
8. i++;
9. end while;
10. Let |C(G′[Eq])| = a; /*a connected components*/
11. for (1 ≤ j ≤ a)
12. if (Cj is linear) Place a salesman at one end node

of Cj and visits the rest nodes in Cj once;
13. if (Cj is a tree) Place a salesman at u or v, where

(u, v) is the maximum-weight edge, and do a
B-walk on Cj ;

14. Let the resulted walk (or path) be Wj ;
15. end for;
16. RETURN W1,W2, ...,Wa, and

∑
1≤j∈a c(Wj).

Discussions. Algo. 1 takes O(|E′|log|E′|) and works alike
the well-known Kruskal’s minimum spanning tree (MST)
algorithm [14], except that instead of finding |V ′| − 1 edges
to connect all the nodes in V ′, it finds q ≤ |V ′| − 1 edges to
“connect” some nodes in V ′. Therefore, Algo. 1 generalizes
Kruskal’s algorithm, and MST is a special case of q-edge

6

forest. We show that G′[Eq] is a minimum q-edge forest
defined below.

Definition 2: (Minimum q-Edge Forest) Let c(Fq) =∑
e∈Fq

we denote the cost of a q-edge forest Fq in G′. Let
Fq be the set of all q-edge forests in G′. A q-edge forest Fmq
is minimum iff c(Fmq) ≤ c(Fq),∀Fq ∈ Fq . �

Lemma 2: G′[Eq] is a minimum q-edge forest.
Proof: Let E′ = {e1, e2, ..., e|E|}, with w(e1) ≤ w(e2) ≤
... ≤ w(e|E|). Let Eq = {eg1, e

g
2, ..., e

g
q}, with w(eg1) ≤

w(eg2) ≤ ... ≤ w(egq). By contradiction, assume that an-
other q-edge forest, Oq , is a minimum q-edge forest with
a cost smaller than G′[Eq]. Let Oq = {eo1, eo2, ..., eoq} with
w(eo1) ≤ w(eo2) ≤ ... ≤ w(eoq). Assume that egl ∈ Eq and
eol ∈ Oq , 1 ≤ l ≤ q, are the first pair of edges that differ in
Eq and Oq: e

g
l 6= eol and egi = eoi , ∀ 1 ≤ i ≤ l− 1. According

to Algo. 1, w(egl) ≤ w(eol). Now consider subgraph Oq∪{egl }.
Case 1: Oq ∪{egl } is a forest. Then c(Oq ∪{egl }−{eol }) ≤

c(Oq), contradicting that Oq is a minimum q-edge forest.
Case 2: Oq ∪{egl } is not a forest, i.e., there is a cycle in it.

egl must be in this cycle since there is no cycle in Oq . Besides,
among all the edges in this cycle that is not egl , at least one
is not in Eq; otherwise, there will not be any cycle (as they
all belong to Eq , which is cycleless). Denote this edge as e′.
Let egl be the nth edge in E′ = {e1, e2, ..., e|E′|}, that is,
egl = en, 1 ≤ n ≤ |E′|. We have two subcases:

Case 2.1: e′ ∈ {e1, e2, ..., en−1}. Thus w(e′) ≤ w(en−1) ≤
w(en) = w(egl) ≤ w(eol), contradicting that egl and eol are the
first pair of edges that differ in Eq and Oq .

Case 2.2: e′ ∈ {en+1, en+2, ..., e|E|}. Thus w(e′) ≥
w(en+1) ≥ w(en) = w(egl). c(Oq ∪ {e

g
l } − {e′}) ≤ c(Oq),

contradicting that Oq is a minimum q-edge forest.
Reaching contradiction in all the cases, it concludes that

c(G′[Eq]) ≤ c(Fq),∀Fq ∈ Fq .
Let O be an optimal algorithm of TSP2 with a minimum

cost of O. Next we show c(G′[Eq]) is a lower bound of O.
Lemma 3: c(G′[Eq]) ≤ O.

Proof: Assume that all the edges selected in O induce λ
connected components, denoted as Oj (1 ≤ j ≤ λ). Assume
that there are lj nodes in Oj , and sj (lj > sj ≥ 1) of them
are starting nodes (therefore there are sj walks in Oj visiting
altogether lj − sj nodes). Denote the sj walks in Oj as W o

j

and let c(W o
j) be its cost. We have

∑λ
j=1 c(W

o
j) = O.

Let c(Oj) =
∑
e∈Oj

w(e). Denote any spanning tree of
Oj as T oj , and let c(T oj) =

∑
e∈T o

j
w(e). We have c(T oj) ≤

c(Oj) ≤ c(W o
j). The first inequality is because all the edges

in T oj are in Oj (but not vice versa); the second inequality
is because each edge in Oj is traversed at least once in O.
Therefore

∑λ
j=1 c(T

o
j) ≤

∑λ
j=1 c(W

o
j) = O.

Let q′ =
∑λ
j=1 |T oj |, where |T oj | is the number of edges

in T oj . We have q′ =
∑λ
j=1(lj − 1). Therefore, the subgraph

induced by all T oj (1 ≤ j ≤ λ) is a q′-edge forest. Since all
together q nodes are visited,

∑λ
j=1(lj−sj) = q. Since sj ≥ 1,

we have q ≤
∑λ
j=1(lj − 1) = q′. Therefore, c(G[Eq]) ≤

c(G[Eq′])
Lemma 2
≤

∑λ
j=1 c(T

o
j) ≤ O.

Theorem 2: Algo. 1 is a (2− 1
q)-approximation algorithm.

Proof: In Algo. 1, each of the a connected components Cj
(1 ≤ j ≤ a) is either linear or a tree. Let qj and c(Cj) denote
the number of edges in Cj and the sum of weights of edges
in Cj , respectively. We have q =

∑a
j=1 qj and c(G′[Eq]) =∑a

j=1 c(Cj). Let Wj be a B-walk of Cj .
a∑
j=1

c(Wj)
Lemma 1
≤

a∑
j=1

(
(2− 1

qj
)× c(Cj)

)

<

a∑
j=1

(
(2− 1

q
)× c(Cj)

)
= (2− 1

q
)× c(G′[Eq])

Lemma 3
≤ (2− 1

q
)×O.

Corollary 1: If Cj (1 ≤ j ≤ a) resulted from Algo. 1 are
all linear, Algo. 1 is optimal.

When a B-Walk traverses Tu first and then Tv , each edge
in Tu is traversed twice while each edge in Tv once or twice.
A simple improvement is to traverse, between Tu and Tv , the
one with a smaller cost first. We refer to this special case of
B-Walk as smaller-tree-first-walk (STF-walk). Indeed Fig. 5(a)
shows an STF-walk.

A Heuristic Algorithm. Next, we present a heuristic algorithm.
It differs with Algo. 1 only in line 13; instead of a B-walk
along each tree, it does a longest-path walk defined below.

Definition 3: (Longest-Path Walk (LP-Walk).) Let P =
{v1, v2, ..., vn} be a longest path in tree T . A LP-walk starts
from v1, visiting all the nodes in T following DFS, and ends
at vn, so every edge in P is traversed exactly once. �

In LP-walk, since edges in the longest path are traversed
only once, the cost of a walk can be further reduced. Finding
the longest path in a tree is to find the shortest path among all
pairs of leaf nodes and choose the longest one, which takes
O(|V |3). Fig 5(b) shows an LP-walk costing 14. Because
the maximum-weight edge (u, v) is not necessarily on the
longest path P , we cannot obtain a performance guarantee
for LP-walk. However, we show empirically in Section VI
that it outperforms Algo. 1 by 15%− 30% in terms of energy
consumption under different network parameters.

(a)

1

1 2

2

E

B

G I

D
1

(b)

1

2

E

B

G I

D
1

1

(d)

1

1

E

B

G I

D
1

1

F
1

1

2

E

B

G I

D
1

1

(c)

Fig. 6. (a) Aggregation network G′ of ICSN G in Fig. 3. (b) 4-edge forest
Fq resulted from Algo. 1. (c) B-walk on Fq . (d) Aggregation walk in G with
aggregation cost of 6. The numbers on the edges are their weights.

C. Equivalency Between TSP2 and DAO2-U
Now we transform the original ICSN G(V,E) into an ag-

gregation network G′(V ′, E′), and prove that solving DAO2-U

7

in G is equivalent to solving TSP2 in G′.
Definition 4: (Aggregation Network G′(V ′, E′)) V ′ is the

set of p data nodes in V , V ′ = Vd. For any two data nodes
u, v ∈ V ′, an edge (u, v) ∈ E′ exists if all the shortest paths
between u and v in G do not contain any other data nodes.
For edge (u, v) ∈ E′, its weight w(u, v) is the cost of the
shortest path between u and v in G. �

After applying Algo. 1 on G′(V ′, E′), the resulting starting
nodes in V ′ become the initiators in ICSN graph G(V,E),
and the rest nodes in V ′ become aggregators nodes in G.

EXAMPLE 3: Fig. 6(a) shows the aggregation network G′

of the ICSN graph G in Fig. 2. Fig. 6(b) shows a 4-edge
forest Fq of G′ from Algo. 1. Fig. 6(c) shows the B-walk
on Fq , wherein I is selected as the initiator by Algo. 1, and
the rest of the nodes (i.e., B, D, E, G) become aggregators.
Fig. 6(d) shows the aggregation walk in G by replacing each
edge (u, v) in Fq with a shortest path between u and v in G.
The total aggregation cost following this walk is 6, one more
than the optimal cost shown in Example 2. The B-walk in this
example happens to be an LP-walk. �

Note that the aggregation network G′ is a new graph struc-
ture different from the distance graph in computing Steiner
tree [29]. A distance graph of data nodes in G is a complete
graph Gd with the weight of every edge (u, v) ∈ Gd being
the cost of the shortest path from u to v in G whereas an
aggregation network does not need to be complete. Next, we
prove that solving DAO2-U in G is equivalent to solving TSP2

in G′.
Theorem 3: DAO2-U in the ICSN graph G is equivalent to

TSP2 in aggregation network graph G′.
Proof: It suffices to show that the data, energy consumption,
and topology information used for computing energy-efficient
aggregation in G are all mapped in G′. Below we show that
this is achieved when transforming G to G′.

First, data information is preserved as all the data nodes
in G are now nodes in G′. Second, if all the shortest paths
between a pair of data nodes X and Y do not contain any other
data nodes, then in G′ all those shortest paths are replaced
by an edge (X,Y), whose weight is the cost of any of such
shortest paths. Therefore the energy consumption information
is preserved. Third, if at least one shortest path exists between
data nodes X and Y in G that includes at least another
data node, there is no edge (X,Y) in G′. This mandates
that if X and Y are on the same aggregation walk, they
will visit other intermediate data nodes before visiting each
other. Therefore, the topological requirement of DAO2-U to
“visit most data nodes (aggregators) with least energy cost”
is achieved. Therefore, solving TSP2 in G′ is equivalent to
solving DAO2-U in G.

IV. ALGORITHMIC SOLUTIONS FOR DAO2

In this section, we study the general DAO2 with heteroge-
nous overflow data sizes Ri, the data sizes after aggregation ri,
correlation coefficients ρi, and storage capacities mj . We show
that DAO2 equals another new graph theoretical problem. We
refer to it as the quota traveling salesmen placement problem
(Q-TSP2), which generalizes TSP2 in the previous section.

Below we formulate Q-TSP2, prove its equivalency to DAO2,
and propose approximation and heuristic algorithms.

A. Quota Traveling Salesmen Placement Problem (Q-TSP2)

Problem Formulation. In an undirected weighted graph G′ =
(V ′, E′) with |V ′| nodes (or cities) and |E′| edges, wu,v is
the weight on edge (u, v) ∈ E′ (indicating the distance from
u to v), node i ∈ V ′ has a prize pri to be collected, and
Q is the targeted quota to collect.2 Besides, node i has a
value of modei, which is a salesman’s traveling cost per unit
distance if he is placed and starts traveling at i.3 Given a
walk W = {v1, v2, ..., vn}, the traveling cost on W by a
salesman from node i is c(i,W) = modei ·

∑n−1
j=1 w(vj , vj+1).

The objective of the Q-TSP2 is to determine a) a set of
starting nodes I ⊂ V ′, at Ij ∈ I a salesman is placed,
and b) a walk Wj along which a sequence of nodes he
visits, s.t. total traveling cost T =

∑
1≤j∈|I | c(Ij ,Wj) is

minimized while the total collected prizes
∑
k∈A prk ≥ Q.

Here, A =
⋃|I |
j=1{Wj − {Ij}} are all the nodes the salesmen

visit and exclude their starting nodes. This is to be consistent
with Assumption 1 in DAO2 wherein the initiator’s data cannot
be aggregated; thus, no prize is to be collected at initiators
(however, our solutions can be easily adjusted for the case
that prizes can be collected at starting nodes).

The TSP2 studied in Section III-B is a special case of the
Q-TSP2 with pri = modei = 1 and Q = q. Therefore Q-TSP2

is at least NP-hard. Below we first show that DAO2 in ICSN
graph G is equivalent to Q-TSP2 in the aggregation network
G′ defined in Section III-C. We then design approximation
and heuristic algorithms for Q-TSP2 and illustrate them using
the DAO2 example in Fig. 2.

Theorem 4: DAO2 in the ICSN graph G is equivalent to
Q-TSP2 in aggregation network graph G′.
Proof: As Theorem 3 has shown that any topology-related
information including data and energy costs is preserved in
the transformation, we only need to show the prize-related
information is mapped from G to G′. First, in a DAO2

instance, an aggregator i’s data reduction is Ri · ρi, the prize
pri a salesman collects when he visits i in a Q-TSP2 instance.
Second, in a DAO2 instance, the total size of data reduction in
G is Q =

∑
i∈Vd

Ri −
∑
j∈V−Vd

mj . In a Q-TSP2 instance,
this is indeed the targeted quotaQ for the traveling salesmen to
achieve in G′. Third, the aggregation costs in a DAO2 instance
depend on the sizes of the initiators’ data packets, which
corresponds in a Q-TSP2 instance that salesmen dispatched
from different starting nodes have different modes in terms
of travel costs per unit distance. As any Q-TSP2 instance
corresponds to a DAO2 instance, solving Q-TSP2 in G′ is
equivalent to solving DAO2 in G.

B. Approximation Algorithm for Q-TSP2

Before presenting Algo. 2, we first give a few definitions.
We use d(u, v) to denote the shortest path length between any
two nodes u, v ∈ V ′.

2∑
k∈V ′ prk ≥ Q; otherwise the problem is not feasible.

3For example, different nodes could have different transportation means
available (cars, trains, and air), which incur different costs per unit distance.

8

Definition 5: (Prize of a Fragment and Prize-Cost Ratio
of Two Fragments) The prize of a fragment (i.e., connected
component) Ci in G′, denoted as pr(Ci), is the sum of prizes
on all nodes in Ci; i.e., pr(Ci) =

∑
u∈Ci

pru. Given any
two fragments Ci and Cj in G′, their distance, denoted as
d(Ci, Cj), is the smallest length of all the shortest paths
between Ci and Cj ; i.e., d(Ci, Cj) = min{d(u, v)|u ∈ Ci, v ∈
Cj}. The prize-cost ratio, denoted as pcr(Ci, Cj), is the ratio
of the smaller prize of Ci and Cj to the distance between
them; i.e., pcr(Ci, Cj) =

min(pr(Ci),pr(Cj))
d(Ci,Cj)

. �

The idea of Algo. 2 is to iteratively merge two fragments
with the largest pcr until the total prize of all the fragments
with at least two nodes (i.e., combined fragments) reaches Q.
It starts with n fragments, each is one node, and its ID is
the node’s ID. In each iteration, it combines two fragments
with the largest pcr using the shortest path between them (ties
are broken randomly) and updates the total prize (i.e., quota)
collected so far (lines 3-9). It then takes the smaller ID as the
ID of the new combined fragment and updates its prize as the
sum of the prizes of both fragments and the prizes at the nodes
on the connecting shortest path (lines 10-12). It also finds the
starting node (with the smallest mode value) in the combined
fragment, so its prize is excluded from the collected quota
(lines 13-14). This continues until the combined fragments’
total prize reaches Q. Finally, a traveling salesman is placed
at the starting node in each combined fragment, then visits
all other nodes in the combined fragment to collect prizes
by traversing each edge at most twice, and returns the total
collected prizes and total traveling cost (lines 16-21). The time
complexity of Algo. 2 is O(Q · |V ′|).

Algorithm 2: Approximation Algorithm for Q-TSP2.
Input: G(V ′, E′), pru at node u, targeted quota Q;
Output: total collected prizes quota, total traveling cost T ;
Notations: quota: prizes collected so far, initially zero;
C: the set of all the fragments,
C = {C1, C2, ..., C|V ′|}, initially Ci = {i}, ∀i ∈ V ′;

A: IDs of the resultant combined fragments, initially empty;
1. quota = T = 0, A = φ (empty set);
2. while (quota ≤ Q)

// (Ci∗ , Cj∗) has the maximum pcr
3. (i∗, j∗) = argmax(i,j),where i,j∈A,i 6=jpcr(Ci, Cj);
4. d(u, v) = d(Ci∗ , Cj∗), where u ∈ Ci∗ , v ∈ Cj∗ ;
5. E(u, v) are all edges on the shortest path btw u, v;
6. N(u, v) are all the nodes on the shortest path

between (and excluding) u, v, could be empty;
7. if (|Ci∗ | == 1) quota += pr(Ci∗);
8. if (|Cj∗ | == 1) quota += pr(Cj∗);
9. quota +=

∑
i∈N(u,v) pri;

// Merge into the fragment with smaller ID;
10. a = min{i∗, j∗}, b = max{i∗, j∗};
11. Ca = Ca ∪ Cb ∪ E(u, v), A = A ∪ {a};
12. pr(Ca) += pr(Cb) +

∑
i∈N(u,v) pri;

// Starting node’s prize is not in the collected quota
13. y = argminu∈Ca

modeu;
14. quota −= pry;
15. end while;

// A includes the IDs of the combined fragments
16. for (each element i ∈ A)
17. s = argminu∈Ci

modeu; // starting node in Ci
18. Place a salesman at s, let Wi denote the walk

along which he visits all nodes in Ci by
traversing each edge at most twice;

19. T += c(s,Wi);
20. end for;
21. RETURN quota and T .

(a)

1

1 2
2

E(1)

B(1)

G(0.5) I(0.5)

D(0.5)
1

(b)

E

B

G I

D E

B

G I

D

(c)

Fig. 7. (a) Aggregation network G′ of ICSN G in Fig. 2. The numbers
in the parentheses are the prizes available at data nodes. (b) and (c) are two
possible solutions, with (c) being optimal. Algo. 2 outputs both (b) and (c)
whereas Algo. 3 outputs only (c).

EXAMPLE 4: For the DAO2 example in Fig. 2, the amount
of data reduction at data node i is the prize pri available at
node i in Q-TSP2, and the total amount of data reduction
to achieve is the total prize Q to collect. That is, Q = 2,
prB = prE = 1, and prD = prG = prI = 0.5. Next, we
show how Algo. 2 solves this example. Fig. 7(a) shows its
aggregation network. Fig. 7(b) and (c) show two solutions by
Algo. 2. In Fig. 7(b), G dispatches a salesman to visit D, E
and B, collecting a total prize of 2.5 with a total traveling cost
of 3. Fig. 7(c) indeed gives the optimal solution wherein D
dispatches a salesman to visit E and B, collecting total prizes
of 2 with a total traveling cost of 2. �

When all the nodes have the same prizes and modes, Algo. 2
degenerates to Algo. 1. Algo. 2 is inspired by Awerbuch et al.
[6] that solves a special case of Q-TSP2. In particular, they
considered a quota-driven salesman problem in which a single
traveling salesman collects prizes in different cities to reach a
target quota while minimizing the traveling cost. It proposed
an O(log2R) approximation algorithm where R is the quota.
It is based on an approximation for the k-minimum-spanning-
tree problem (k-MST), finding a tree of the least weight that
spans exactly k vertices on a graph. We thus give the below
theorem without proof.

Theorem 5: When only one traveling salesman is allowed,
Algo. 2 achieves O(log2Q) approximation for Q-TSP2.

C. Heuristic Algorithm for Q-TSP2

Algo. 2 iteratively combines two fragments that yield the
maximum prize-cost ratio until prize quota Q is reached. One
drawback of this approach is that the combined two fragments
could have prizes much larger than the target Q, thus costing
more energy than necessary. For example, the solution in
Fig. 7(b) collects prizes of 2.5, 25% more than target quota
Q = 2, and costs 3, 50% more than the optimal cost of 2

9

obtained in Fig. 7(c). We thus design a prize-collecting scheme
viz. Algo. 3 that takes place on a local and more fine-grained
level than Algo. 2, and shows that it constantly outperforms
Algo. 2. We first give the below definition.

Definition 6: (Benefit of an Edge) The benefit of edge e =
(u, v), denoted as B(e), is the ratio of the sum of the prizes
on its two end nodes to its weight; B(e) = pru+prv

w(e) . �

Algo. 3 below iteratively adds cycleless edges with maxi-
mum benefit into the fragments until Q or a slightly higher
amount of prizes is collected. There are three possible cases
when adding a cycleless edge ei: a) it starts a new combined
fragment (lines 6-9), b) it connects two existing combined
fragments (lines 10-13), or c) ei merges with one existing
combined fragment (lines 14-20). In each case, the starting
node and the collected prizes in the newly combined fragment
are updated accordingly. Next, the traveling salesman is placed
at the node in each combined fragment with the smallest mode
value. Finally, the salesman is dispatched to visit all other
nodes to collect prizes by traversing each edge at most twice,
with the total collected prizes and total cost returned (lines 24-
28). The time complexity of Algo. 3 is O(|E′|log|E′|+Q).

Algorithm 3: Benefit-based Algorithm for Q-TSP2.
Input: G′(V ′, E′), prize pru at node u, targeted quota Q;
Output: total collected prizes quota, total traveling cost T ;
0. Notations:

Epc: set of cycleless edges selected for prize-collecting;
quota: prizes collected so far, initially zero;
sel(u): if node u ∈ V ′ is selected, initially false;
i: indices for edges; j: indices for fragments;
C: the set of all the fragments,
C = {C1, C2, ..., C|V ′|}, initially Ci = {i}, ∀i ∈ V ′;

A: IDs of the resultant combined components;
tsj : the traveling salesman in component Cj , 1 ≤ j ≤ a;

1. B(e1) ≥ B(e2) ≥ ... ≥ B(e|E|); // Sort edges in B
2. i = 1, quota = 0, a = 0, A = Epc = φ (empty set);
3. while (quota ≤ Q) // process ei in decreasing order of B
4. Let ei = (n1, n2);
5. if (ei causes a cycle w.r.t. Epc) continue;

// ei initiates a new fragment
6. if (sel(n1) == sel(n2) == false)
7. sel(n1) = sel(n2) = true;

quota += (prn1 + prn2);
8. if (n1 ≤ n2) A = A ∪ {n1}, Cn1 = {ei};
9. else A = A ∪ {n2}, Cn2

= {ei};
// ei merges two existing combined fragments

10. elseif (sel(n1) == sel(n2) == true)
11. Let Cb and Cc be n1 and n2’s belonged fragments;

// Merge into the fragment with smaller ID
12. if (b ≤ c) A = A− {c}, Cb = Cb ∪ Cc;
13. else A = A− {b}, Cc = Cb ∪ Cc;
14. else // ei merges with a combined fragment
15. if (sel(n1) == false) x = n1;
16. else x = n2; // sel(n2) == false
17. quota += prx, sel(x) = true;
18. Let the fragment ei merges with be Cb;
19. if (x ≤ b) A = A− {b} ∪ {x};
20. end else

21. Epc = Epc ∪ {ei};
22. i++;
23. end while;
24. for (each element i in A)
25. s = argminu∈Ci

modeu; // starting node in Ci
Place a salesman at s, who visits each node

in Ci by traversing each edge at most twice;
Let the resultant walk be Wi;

26 T += c(s,Wi);
27. end for;
28. RETURN quota and T .

EXAMPLE 5: In Fig. 7(a), as B(B,E) ≥ B(D,E) ≥
B(D,G) ≥ B(E, I) ≥ B(G, I), Algo. 3 selects edges (B,E)
and (D,E) and dispatches salesman from D to visit E and
B, which is the optimal solution shown in Fig. 7(c). �

Discussions. Algo. 2 and 3 are mainly designed for one round
of aggregation to achieve the performance approximation ratio.
As such, it is based upon the assumption that after one round
of aggregation and data offloading, the uploading opportunities
will arrive timely to collect the data and empty the storage
spaces of all the sensor nodes. Another round of sensing and
aggregation will then take place. Otherwise, when both newly
generated data and old aggregated data are present in the BSN,
the data correlation model introduced in this paper can no
longer work. The algorithms still work in a dynamic situation
wherein different sensor nodes emerge as data nodes emerge.
As long as the aggregated data can be collected timely by
the uploading opportunities, the aggregation frequency can be
kept up to speed with the arrival frequency of the uploading
opportunities. The data aggregation process, triggered when
the overflow data size is larger than the available storage space
in the BSN, can always occur.

Algo. 1 for TSP2 is a special case of Algo. 2 and 3 for
Q-TSP2. When all nodes have the same prizes, the largest
prize-cost ratio of two fragments in Algo. 2 and the edge with
the largest benefit in Algo. 3 degenerate to the cycless edge
with the smallest weight in Algo. 1, and the resultant q-edge
forest in Algo. 1 is indeed the merged fragments found in
Algo. 2 and Algo. 3.

V. DISTRIBUTED ALGORITHMS

A. Distributed Algorithms for DAO2-U

The distributed algorithm, referred to as Distributed DAO2-
U, consists of three stages. First, it constructs the aggregation
network of the data nodes G′(V ′, E′) from the ICSN G(V,E)
by a modified distributed Bellman-Ford algorithm [39]. Sec-
ond, the data nodes in the aggregation network cooperatively
find the q-edge forest (i.e., a set of aggregation trees) based on
a classic distributed MST algorithm [21, 41]. Third, an initiator
is selected for each aggregation tree in the q-edge forest and
starts the data aggregation process to reduce the overflow data
size. Below we illustrate each stage in detail.

Stage 1: Constructing Aggregation Network. The distributed
Bellman-Ford (DBF) algorithm [39] is a well-known asyn-
chronous technique to compute the shortest paths between
nodes in a network. Each node (data node or storage node)

10

initially only has direct knowledge of its local links and sends
messages about its perceived shortest path lengths (i.e., the
routing table) to all other nodes to its neighbors. When a
neighbor receives the message, if it finds that its cost to a
node is greater than the sum of its cost to the sender and
the sender’s cost to that node, it updates its routing table and
sends it to its neighbors. This takes place iteratively until all
the nodes have the accurate shortest path information to other
nodes in the network. The message size in DBF is O(|V |),
where |V | is the number of nodes in the ICSN.

However, there are two challenges when we apply DBF
to construct aggregation networks. First, it is well known
that the message complexity of asynchronous DBF could be
exponential [7]. This can be overcome by the fact that wireless
communication is generally broadcast. Using broadcast, the
message complexity of DBF is reduced to O(|V |2). Second,
to construct an aggregation network on top of DBF, each data
node needs to find if it has a “direct” link with another data
node in the aggregation network. To do this, the message sent
by any node includes the shortest paths to all other nodes and
has a size of O(|V |2). After receiving this information, a data
node checks its shortest path to each other data node; if there
are no other data nodes on this shortest path, it has an edge
over this data node in the aggregation network, and the cost
of the edge is the cost of the corresponding shortest path.

Stage 2: Constructing q-edge Forest. Next, the p data nodes
cooperate to find a q-edge forest in the aggregation network in
a distributed manner. We propose two algorithms: a baseline
algorithm and a fragment-based algorithm.
Baseline Algorithm. The baseline algorithm works as follows.
At the end of aggregation network construction, each data node
knows the IDs of other data nodes and the shortest paths to
them. The node with the smallest ID is thus selected as the
leader. Then every node sends the weights of all its incident
edges to the leader, following the shortest path between them.
Once the leader receives such information from all the nodes,
it executes Algo. 1 to find the minimum q-edge forest of the
aggregation network. Finally, it broadcasts the result to all
the data nodes of the aggregation network. When each data
node receives it, it checks if it is an end node of any of the
computed edges; if so, it marks these edges as tree edges in
the aggregation trees. As the baseline algorithm is essentially
a centralized algorithm implemented in a distributed manner,
it always finds the minimum q-edge forest in an aggregation
network. Next, we present a purely distributed algorithm.
Fragment-based Algorithm. Our distributed algorithm starts
with each node being a fragment and iteratively merges them
until a forest of q edges is found. Each node has level 0 and the
node ID is the fragment’s ID. In each iteration, two fragments
are combined if they have the same minimum weight outgoing
edge (MWOE). MWOE is an edge of minimum weight with
two endpoints on two fragments. Each fragment repeatedly
performs below two steps viz. finding MWOE and merging
fragments via the MWOE until q edges are found. Initially, all
edges start as basic edges. Once selected in the q-edge forest,
it is called a tree edge. If an edge is determined not to be part
of the MST, it becomes a rejected edge.

Step 1. Finding MWOE. Each level-0 fragment marks its
MWOE as a tree edge and sends a message to the node on
the other side. The edge chosen by both nodes then merges
the two nodes, which becomes a new fragment with level 1.

For each non-level-0 fragment to find its MWOE, its leader,
the end node of the MWOE with a smaller ID, sends an
initiate message to the members of the fragment along the
tree edges. Upon receipt, each node n sends its fragment
ID and level along its basic edges to node n′ on the other
end. Then n′ compares them with its fragment ID and level
and makes the following decisions. (a) If FragmentID(n) =
FragmentID(n′), then n and n′ belong to the same frag-
ment thus they mark the edge as a rejected edge; (b) if
FragmentID(n) != FragmentID(n′) ∧ Level(n) ≤ Level(n′),
then n and n′ belong to different fragments thus n′ sends a
message to n about this outgoing edge; (c) if FragmentID(n)
!= FragmentID(n′) ∧ Level(n) > Level(n′), n′ postpones the
response until Level(n′) ≥ Level(n).

Next, all the leaves in the fragment send their MWOE (if
there is any) along the tree edge back to its parent. For each
non-leaf node, after receiving all the MWOE messages, it
finds the MWOE with minimum weight and sends it to its
parent. This takes place until the leader of the fragment gets
the MWOEs from all its neighbors and identifies the one with
the minimum weight as the MWOE for the entire fragment.
Finally, the leader sends a broadcast message to the entire
fragment about this new MWOE via the tree edges and starts
the fragment merging step described below.
Step 2. Merging fragments via the MWOE. Upon receipt of
the MWOE message, the end node of the MWOE within the
fragment, say n, becomes the new leader. It marks this MWOE
as a tree edge and sends a “request to combine” message to
the other end of the MWOE, say n′. Under two scenarios,
these two fragments will be combined. First, if n′ selects the
same edge as its MWOE and Level(n) = Level(n′), then the
level of the combined fragment increases by one, and the end
node of the MWOE with a smaller ID becomes the leader
of this new fragment (and this ID becomes the ID of this
newly formed fragment). This is called a “merge” operation.
Second, if Level(n) < Level(n′), then FragmentID(n′) and
Level(n′) become the ID and level of the new fragment,
respectively. This is called the “absorb” operation. For all other
scenarios, n′ ignores the “request to combine” message from
n. Finally, the leader in the combined fragment broadcasts a
“new-fragment” message to the entire fragment along the tree
edges. Upon receipt, all the nodes update their parent, children,
and fragment identifier (the ID of the new leader).

After each merging, the leader of the newly formed frag-
ment sends a unicast message to a centralized coordinator
(node with the smallest ID) about the number of edges in
this fragment. Once the number of edges found reaches q, the
coordinator sends a broadcast message to the entire network
to stop the aggregation tree construction process.

The above distributed algorithm is inspired by a classic
distributed MST algorithm (referred to as GHS Algorithm [21,
41]) with the difference that instead of finding an MST of a
network, we only need to find one q-edge forest. While the
resultant single tree in GHS Algorithm must be an MST, the

11

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 26 28 30 32 34 36 38 40 42 44 46 48

N
u
m

b
e
r

o
f
a
g
g
re

g
a
to

rs
 q

Number of data nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(a) Number of aggregators q.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

M
a
x
 n

u
m

 o
f
in

it
ia

to
rs

 p
-q

 26 28 30 32 34 36 38 40 42 44 46 48

Number of data nodes p

ρ=1
ρ=0.7
ρ=0.5
ρ=0.3
ρ=0.1

(b) Max number of initiators p− q.

Fig. 8. Valid range of number of data nodes p by varying ρ (R = m).

resultant q-edge forest of multiple trees is not necessarily a
minimum q-edge forest. This is because an MWOE found in
Distributed DAO2-U is not necessarily one of the q smallest
cycle-less edges. We leave finding a distributed minimum q-
edge forest as future work. To find out how close the resulting
q-edge forest is to the minimum one, Section VI compares it
with the baseline algorithm, as it always finds the minimum
q-edge forest.

Stage 3: Data aggregations. Recall that in data aggregation,
an initiator of each fragment visits all the nodes in the tree
following the longest-path walk defined in Section III-B2.
Thus we select the initiator as one of the two leaf nodes on
this longest path with the smaller ID. To find the initiator of
a tree, we need to run the DBF algorithm to find the shortest
path cost between any two leaf nodes in the tree. Then each
leaf node broadcasts to the entire tree a message, including
its ID and the maximum path cost it has. After receiving all
such messages, the leaf node with the maximum cost (i.e.,
the longest path) and smaller ID knows it is the initiator. It
then transmits its data to visit all the nodes in the tree while
traversing the edges on this longest path once.

Time and Message Complexity. Table II summarizes the time
and message complexity of the three stages of the Distributed
DAO2-U, where its second stage is fragment-based. For data
aggregation, the first number in each field is for broadcast; the
second is for unicast.

TABLE II
TIME AND MESSAGE COMPLEXITIES IN DISTRIBUTED DAO2-U.

Time Complexity Message Complexity

Aggregation Network O(p|E|) O(p|E|)

q-edge Forest O(p · logp) O((p+ |E|) · logp)

Data Aggregation O(|V |), O(|V |2) O(|V |), O(|V |2)

Theorem 6: Distributed DAO2-U finds an optimal aggrega-
tion cost when one initiator is allowed.
Proof: When there is only one initiator, finding a minimum q-
edge forest in data aggregation is equivalent to finding an MST
in the aggregation network. Consequently, Distributed DAO2-
U equals the GHS algorithm. Due to the optimality of finding
MST by the GHS algorithm, the optimality of Distributed
DAO2-U also sustains.

B. Distributed Algorithms for DAO2

The Distributed DAO2 is the distributed implementation
of the two DAO2 algorithms viz. approximation (Algo. 2)
and Benefit-based (Algo. 3) respectively. It consists of three
stages: aggregation network construction, aggregation tree
construction, and data aggregation along the aggregation trees.
The first stage is the same as in the Distributed DAO2-U.
Below we illustrate the second and third stages for Distributed
Approximation and Distributed Benefit, respectively. Initially,
each data node in the aggregation network sends a broadcast
message to the entire network about its prize.

Algo. 2 merges two fragments with a maximum prize-cost
ratio iteratively. In its distributed implementation, the leader
of each fragment computes the prize-cost ratios with all other
fragments and broadcasts the largest value to other fragments.
Then the leaders of the two fragments with the maximum
prize-cost ratio communicate to update the new leader (smaller
ID being the leader) and total collected prizes in the newly
formed fragment. In the process, the leader of each newly
formed fragment reports the collected prizes to the centralized
coordinator. When the total prizes collected reach Q, the
coordinator sends a message to the entire network to stop the
prize-collecting process. We refer to this implementation as
Distributed Approximation.

Algo. 3 iteratively adds cycleless edges with maximum
benefit and therefore is not as amenable as Algo. 2 for dis-
tributed implementation. We thus adopt the baseline distributed
implementation for DAO2-U while considering the prizes. In
particular, a selected leader (node with the smallest ID) gathers
the topological information of the data aggregation network
together with the available prizes at nodes and executes Algo. 3
to find data aggregation trees of the aggregation network.
It then broadcasts this result to all the data nodes, each
of which then knows whether each incident edge belongs
to an aggregation tree. We refer to this implementation as
Distributed Benefit.

We assume that all the sensor nodes have enough energy to
perform the tasks computed by the centralized (i.e., Algo. 1, 2,
and 3) and distributed algorithms (i.e., Distributed DAO2-U,
Distributed Approximation, and Distributed Benefit). However,
when sensor nodes have limited energy, some might deplete
their energy, thus causing network partition in the data ag-
gregation process. Our distributed algorithms can be modified
accordingly to address the network partitions. For example, in
the Distributed DAO2-U, if the energy level of a node on the

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

26 27 28 29 30 31 32 33

T
o

ta
l
A

g
g

re
g

a
ti
o

n
 C

o
s
t

(J
)

p

STF-Walk
B-Walk

(a) Total aggregation cost.

-5 %

0 %

5 %

10 %

15 %

 26 27 28 29 30 31 32 33P
e

rf
o

rm
a

n
c
e

 I
m

p
ro

v
e

m
e

n
t

 P
e

rc
e

n
ta

g
e

p

(b) Performance improvement.

Fig. 9. Performance improvement of STF-Walk over B-Walk.

12

(a) ICSN of 50 nodes. (b) Aggregation network. (c) 32-edge forest. (d) B-Walk (381.2KJ). (e) LP-Walk (290.6KJ).

Fig. 10. Visually comparing B-Walk with LP-Walk with one initiator. Black nodes are data nodes, and white nodes are storage nodes, with
node ID shown inside. Here, ρ = 0.5, p = 33, and q = 32. � and J– indicate the first and last node in a walk, respectively.

(a) ICSN of 50 nodes. (b) Aggregation network. (c) 28-edge forest. (d) B-Walk (cost 255.9J). (e) LP-Walk (cost 203.0J).

Fig. 11. Visually comparing B-Walk with LP-Walk with four initiators. Black nodes are data nodes, and white nodes are storage nodes,
with node ID shown inside. Here, ρ = 0.5, p = 32, and q = 28. � and J– indicate the first and last node in a walk, respectively.

longest path of an aggregation tree is below a pre-specified
threshold, it will notify the local neighborhood so that a new
path can be established for the data aggregation before it is
too late. We leave its detailed implementation as future work.

VI. PERFORMANCE EVALUATION

This section investigates and compares all the data aggrega-
tion algorithms with the state-of-the-art. Table III lists all the
compared algorithms. We write our simulators in Java on a
MacBook Pro with a 2 GHz Dual-Core Intel Core i5 processor
and 8 GB RAM. 50 or 100 sensors are uniformly distributed
in a region of 1000m × 1000m or 2000m × 2000m. The
transmission ranges of sensor nodes are 250m. The correlation
coefficient ρ is given as a fixed constant - How to estimate
it has been studied by existing literature [54]. Each data
point is averaged over ten runs, and the error bars indicate
95% confidence interval wherever applicable. Below we first
evaluate the centralized algorithms for DAO2-U and DAO2 in
Section VI-A and VI-B respectively, and then their distributed
implementation in Section VI-C.

TABLE III
SUMMARY OF ALL ALGORITHMS.

DAO2-U DAO2 Existing Work

Centralized B-Walk (Algo. 1),
STF- & LP-Walk

Approx. (Algo. 2)
Benefit (Algo. 3) S-Tree

Distributed Fragment,
Baseline

Dist. Approx.
Dist. Benefit Dist. S-Tree

A. Algorithms for DAO2-U

We first consider 50 nodes in a 1000m × 1000m region.
Unless otherwise mentioned, R = m = 512MB.

Valid Range of p. Fig. 8 shows the valid range of number of
data nodes p for different correlation coefficient ρ. Fig. 8(a)
shows for each valid p value its corresponding value of the
number of aggregators q. When ρ = 0.1, the valid range of
p is a single value of 26, with its corresponding q as 20.
When increasing ρ, the valid range of p expands, from 26 −
29 for ρ = 0.3, to 26 − 33 for ρ = 0.5, to 26 − 37 for
ρ = 0.7, to 26 − 49 for ρ = 1. This is because strong data
correlation leads to more data being aggregated, thus allowing
more data nodes under overall storage overflow. It also shows
that for each ρ, q increases when increasing p. More data
nodes mean more overflow data and less available storage.
Therefore more aggregators are needed to achieve enough data
size reduction. Finally, it shows that for the same p, q decreases
when increasing ρ. This is implied by Equation 1, which can
be rewritten as: q = dp×(1+m/R)−|V |×m/R

ρ e. Fig. 8(b) shows
the maximum number of allowable initiators p − q for each
valid p value. There are two cases in which one initiator is
allowed: ρ = 0.5 and p = 33, and ρ = 1 and p = 49, while
multiple initiators are allowed for other cases.

Performance Improvement of STF-Walk Over B-Walk. We first
study the performance improvement of STF-Walk over B-Walk
by setting ρ = 0.5, a representative correlation coefficient, and
varying p from 26 to 33. Fig. 9(a) shows that when p ≤ 28,
both STF-Walk and B-Walk yield the same total aggregation
costs. This is because when the number of data nodes p
is small, the number of aggregators q is small, causing the

13

 0

 100

 200

 300

 400

 500

 600

 700

 25 30 35 40 45 50

Number of Data Nodes p

ρ=1, B-Walk
ρ=1, LP-Walk

ρ=0.7, B-Walk
ρ=0.7, LP-Walk

ρ=0.3, B-Walk
ρ=0.3, LP-Walk

(a) Total aggregation cost (KJ).

0 %

5 %

10 %

15 %

20 %

 25 30 35 40 45 50

Number of Data Nodes p

ρ=1
ρ=0.7
ρ=0.3

(b) Performance improvement.

Fig. 12. Comparing B-Walk with LP-Walk by varying p and ρ.

connected components of the resultant q-edge forests to be all
linear. In linear topologies, aggregation occurs by traversing
from one end of the linear topology to the other, resulting in
the same performances for STF- and B-Walk. However, when
p gets larger, STF-Walk performs better than B-Walk, because
STF-Walk always traverses the smaller subtree twice while B-
Walk could traverse the bigger subtree twice. Fig. 9(b) shows
that the performance improvement of STF-Walk over B-Walk
is around 5%−10%. Therefore, for the rest of the simulations,
we adopt STF-Walk instead of B-Walk but still refer to it as
B-Walk.

Comparing B-Walk with LP-Walk Visually. Before comprehen-
sively comparing B-Walk and LP-Walk, we first compare them
visually to gain some insights.
Single Initiator Case. We consider ρ = 0.5 and p = 33,
which has 32 aggregators and one initiator. Fig. 10(a) and
(b) show such an ICSN and its corresponding aggregation
network, respectively. Fig. 10(c) shows the corresponding 32-
edge forest. Fig. 10(d) and (e) show the aggregation walks
from B-Walk and LP-Walk, respectively. B-Walk visits 32
edges twice, resulting in a total aggregation cost of 381.2
kilojoules (KJ), while LP-Walk only visits 12 edges twice,
with a total cost of 290.6KJ, a 23.8% of improvement upon
B-Walk.
Multiple Initiators Case. We consider ρ = 0.5 and p = 32,
which has 28 aggregators and allows at most four initiators,
as shown in Fig. 11. It shows that B-Walk traverses 19 edges
twice, resulting in a total aggregation cost of 255.9J, while LP-
Walk traverses nine edges twice, with a total aggregation cost
of 203.0J, a 20.7% improvement. Compared to Fig. 10, when
more initiators exist, the performance difference between B-
Walk and LP-Walk could get smaller. In particular, Fig. 11(d)
and (e) show that they find the same aggregation walks for two
smaller trees on the right. With more initiators allowed, the
resultant q-edge forest consists of more trees of small sizes,
each with a “short” longest path. By traversing edges on such
short longest paths once, LP-Walk does not save as much as it
traverses a big tree with a much longer longest path. Finally,
compared to the single initiator case, both B-Walk and LP-
Walk incur less energy, as more initiators are utilized to find
cost-effective aggregation walks.

Comparing B-Walk with LP-Walk by Varying p and ρ. Next,
we compare the aggregation costs in B-Walk and LP-Walk in
the range of p ∈ [26, 49] with varied ρ. Fig. 12(a) shows that

 0

 100

 200

 300

 400

 500

1 2 3 4 5

R/m

p=26,B-Walk
p=26,LP-Walk
p=30,B-Walk

p=30,LP-Walk

(a) Total aggregation cost (KJ).

0 %

5 %

10 %

15 %

20 %

25 %

 1 1.5 2 2.5 3 3.5 4 4.5 5

R/m

p=26
p=30

(b) Performance improvement.

Fig. 13. Comparing B-Walk with LP-Walk by varying R/m.

for each ρ, with the increase of p, the total aggregation costs
of both B-Walk and LP-Walk increase. However, LP-Walk
constantly performs better than B-Walk. It also shows that
for the same p, with the increase of ρ, the aggregation costs
for both B-Walk and LP-Walk decrease. This is because more
correlation means fewer aggregators are visited, thus incurring
fewer aggregation costs.

Fig. 12(b) shows the performance improvement percentage
of LP-Walk over B-Walk is generally 10%−20%. Combining
the 5%−10% performance improvement of STF-Walk over B-
Walk, the performance improvement of LP-Walk over B-Walk
is around 15% − 30%. Furthermore, we observe the smaller
the ρ, the larger the performance improvement percentage is.
For example, when p = 26 (the only valid value for ρ = 0.1),
the performance improvement percentage for ρ = 0.1 is 14%
while zero for ρ = 0.3, 0.5, 0.7, 1.0. When ρ = 0.5, in its valid
p range (26− 33), it almost always has a larger performance
improvement percentage than ρ = 0.7, 1. When less data
correlation exists, more aggregators are visited, making larger
sizes of the resultant q-edge forest and its constituent trees.
LP-Walk can thus save more aggregation costs than traversing
smaller trees by traversing the longest paths of larger trees
once. Given any ρ, when increasing p, the number of allowed
initiators p − q decreases (Fig. 8(b)). As such, performance
improvement of LP-Walk upon B-Walk increases, as shown
in Fig. 12(b).

Comparing B-Walk with LP-Walk by Varying R/m. We com-
pare B-Walk with LP-Walk on different R/m. When increas-
ing R/m, the overall storage overflow situation gets more
challenging since there is relatively more overflow data than
available storage spaces. We choose ρ = 0.5 and vary R/m
from 1 to 5, under which the common valid range of p
is [26, 30]. Therefore we pick p = 26 and p = 30 for
comparison. Fig. 13(a) shows again that LP-Walk yields less
total aggregation cost under different R/m. Fig. 13(b) further
shows that the performance improvement percentage of LP-
Walk upon B-Walk generally increases when increasing R/m.
This shows LP-Walk performs even better in more challenging
overall storage overflow scenarios. When increasing R/m, the
resulting q-edge forests get larger. This favors LP-Walk, which
travels a large number of edges only once.

14

B. Algorithms for DAO2

State-of-the-art Data Aggregation Techniques. Existing works
of data aggregation in sensor networks mainly use tree-
based routing structures that connect the base station and
sensor nodes [2, 13, 30, 32, 36, 51]. Data at sensor nodes are
transmitted back to the base station along the tree while being
aggregated. As existing works consider a single aggregation
tree that spans the base station and sensor nodes while there
is no base station in DAO2, to make a fair comparison,
we construct one aggregation tree by modifying Algo. 2. In
particular, it merges two fragments with the largest prize-cost
ratio until the largest fragment collects enough quota of Q.
This largest fragment serves as the data aggregation tree for
existing work. Then, the node with the smallest prize in this
tree is selected as the base station (i.e., the initiator), from
which its overflow data is transmitted to visit all the data nodes
in the tree to aggregate their overflow data.

We refer to the above single-tree data aggregation paradigm
by existing works as S-Tree, the approximation algorithm
Algo. 2 as Approximation, and the heuristic algorithm Algo. 3
as Benefit. We randomly generate 100 sensor nodes (50 data
nodes and 50 storage nodes) in a 2000m × 2000m field with
a transmission range being 250m. As we study the general
case of DAO2, we set Ri as a random number in [512MB,
1024MB] and mj a random number in [256MB, 512MB].
To make the data aggregation feasible (i.e., there is enough
data size reduction after aggregation), instead of randomly
setting the correlation coefficient ρi and then checking its
feasibility, we assume all the data nodes have the same
correlation coefficient (i.e., ρi = ρ). We define the threshold
correlation coefficient as the minimum feasible correlation
coefficient of all the data nodes and denote it as ρth. That
is, ρth =

∑
i∈Vd

Ri−
∑

j∈V−Vd
mj∑

i∈Vd
Ri

. We then increment ρ for all
the data nodes from ρth to 1 in 0.1 stepwise.

Fig. 14(a) shows that Benefit outperforms Approximation,
which outperforms S-Tree in the entire range of ρ. The total
aggregation costs of all three algorithms decrease with the
increase of ρ. This is because when ρ is small, more aggrega-
tors are needed; thus they are more likely to form a few large
fragments. Visiting all the aggregators in these large fragments
from a few initiators is more costly than visiting more smaller
fragments. This shows that the more spatial correlation of the
data, the more cost-efficient our data aggregation techniques
are. Approximation performs more like S-Tree when ρ is small

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 a

g
g

re
g

at
io

n
 c

os
t

(K
J)

Correlation coefficient ρ

Approximation
Benefit
S-Tree

(a) Total aggregation cost (KJ).

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 0.5 0.6 0.7 0.8 0.9 1T
ot

al
 d

at
a

si
ze

 r
ed

u
ct

io
n

 (
M

B
)

Correlation coefficient ρ

Approximation
Benefit
S-Tree

(b) Total data size reduction.

Fig. 14. Comparing three DAO2 algorithms.

TABLE IV
INVESTIGATING NUMBER OF INITIATORS a AND NUMBER OF

AGGREGATORS q W.R.T. CORRELATION COEFFICIENT ρ.

ρ Approximation Benefit S-Tree

0.5 a 1.5 6.7 1
q 41.4 40.1 41.5

0.6 a 2.8 10.5 1
q 34.3 32.3 35.7

0.7 a 4.5 11.2 1
q 29.1 27.4 32.5

0.8 a 5.9 11.3 1
q 24.5 23.8 30.5

0.9 a 6.6 10.2 1
q 21.7 21.2 30

1 a 7.1 9.6 1
q 19.6 19.2 30

and more like Benefit when ρ is large. This is because the
larger ρ, the larger prizes available at each node. Therefore,
the fragment-merging process in Approximation results in one
or a few large fragments when ρ is small (like S-Tree) and a
single edge is merged in a fragment each time as Benefit does
when ρ gets large. Benefit outperforms S-Tree between 31.6%
to 71.8% in the entire range of ρ.

Fig. 14(b) shows the total size reduction achieved in all
three algorithms (while the average required overflow data
size Q is 15,904 MB). It shows that both Approximation and
Benefit reduce around 16,000 MB data size for the entire range
of ρ, around 3% of more reduction than required. A close
look shows that Approximation aggregates more data than
Benefit at ρ = 0.6 and 0.7, sustaining our initial conjecture
that Approximation could yield more prizes (i.e., aggregates
more data) than Benefit. In contrast, S-Tree always looks for
a single aggregation tree to visit all the aggregators. With
the increase of ρ, as fewer aggregators are needed, S-Tree
thus needs more nodes to connect the targeted aggregators,
dramatically increasing the total size of data reduction.

Table IV shows the number of initiators a and the number
of aggregators q for the three algorithms. With the increase
of ρ, q decreases for all three algorithms – as each data node
can aggregate more data, it needs less number of data nodes
to be aggregators. However, S-Tree has more aggregators than
Approximation and Benefit at each fixed ρ value, showing
that it is less cost-efficient than the other two. We also
observe that with the increase of ρ, the number of initiators a
increases for both Approximation and Benefit. This is because
the fewer aggregators in the sensor field, the more distance
among them thus the smaller chance that they are merged
into fragments, resulting in more fragments. As each fragment
has one initiator, the number of initiators increases with the
increase of ρ. Note that S-Tree has only one initiator as it
always finds one aggregation tree.

Fig. 15 visually shows the resultant aggregation trees from
a typical run of the three algorithms. Benefit has 13 small
trees, whereas Approximation has four and S-Tree has one.
This demonstrates the more granular effort of Benefit in data
aggregation, wherein each initiator only visits its local data
nodes for aggregation. In contrast, in Approximation and S-
Tree, initiators could travel long distances for aggregation, thus

15

costing more energy.

C. Distributed Algorithms

Finally, we evaluate the performances of our designed
distributed algorithms for DAO2-U and DAO2-U, respectively.
100 nodes are randomly placed in a 2000m× 2000m region.
The transmission range is 250m.

1) Distributed Algorithms for DAO2-U: We set m = R =
512MB and compare two distributed algorithms viz. Baseline
and Fragment-based. Overhead messages of different sizes are
used in all three stages of our distributed algorithms. In Stage
1: Aggregation network construction, the overhead message
used in distributed Bellman-Ford is 20 B, and the overhead
message used for constructing the aggregation network is 1000
B, as the message includes the shortest paths to all other
nodes. There are two distributed algorithms viz. Baseline and
Fragment-based in Stage 2: Constructing q-edge Forest. In
Baseline, the size of the message selecting a leader is 20 B,
and the size of the leader’s message informing the computed
results is 1000B. In Fragment-based, the overhead messages
finding MWOE and merging fragments are 20 B. In Stage 3:
Data aggregation, the message finding the initiator of the LP-
Walk is 20 B. As the overflow data packet size of 512 MB is
very large, in our simulations, it is fragmented into 1000 data
packets, each of 512 KB.

We adopt a typical correlation coefficient value ρ = 0.6,
find the valid range of the number of data nodes p using
Equation 2, which is [51, 71], and vary p in this range. Table V
shows the corresponding number of initiators a found in both
Baseline and Fragment and the number of aggregators q. With
the increase of the number of data nodes p, the number of
initiators needed for energy-efficient data aggregation in both
algorithms increases first and then decreases. When increasing
p initially, with the increased overflow data, more aggregators
need to be visited to achieve the required data reduction.
With the increasing number of aggregators, more connected
fragments are formed. As each tree needs one initiator, this
results in an increased number of initiators in the initial stage
of increasing p. However, with the further increase of p, the
number of aggregators increases to the extent that the different
trees they belong to begin to merge, resulting in fewer trees
and initiators.

Table VI shows the breakup of the energy cost in both Base-
line and Fragment. Among the three stages in the distributed
algorithms, the first two stages, viz. constructing aggregation
network and finding q-edge forest, cost the smallest portion

(a) (b) (c)

Fig. 15. Aggregation trees in (a) Approximation, (b) Benefit, and (c) S-Tree.

TABLE V
THE NUMBER OF INITIATORS a AND THE NUMBER OF

AGGREGATORS q W.R.T. THE NUMBER OF DATA NODES p.

p 55 60 65 70 71
q 17 34 50 67 70

a
Baseline 11.3 13.2 9.5 2.5 1
Fragment 14.8 18.9 14.3 2.8 1

of energy, in the order of a few or tens of Joules, while the
third stage, viz. data aggregation costs the most of the energy,
in the order of Kilojoules. This shows that in data-intensive
ICSNs, most energy is spent on the payload of data aggrega-
tion instead of on the overhead cost in aggregation network
construction and finding q-edge forest. This demonstrates the
energy efficiency of our data preservation system.

2) Distributed Algorithms for DAO2: We set Ri as a
random number in [512MB, 1024MB] and mj as a random
number in [256MB, 512MB]. We consider the distributed
algorithms of Approximation (Algo. 2), Benefit (Algo. 3),
and S-Tree. Recall that S-Tree combines fragments with the
largest prize-cost ratio iteratively like Approximation, except
that it won’t stop until the largest fragment collects enough
quota of Q. Therefore, S-Tree’s distributed implementation
follows the implementation of Approximation proposed in
Section V-B, except that the coordinator records the prizes
collected by each fragment. When the largest prize of any
fragment reaches Q, it sends a message to the entire network
to stop the prize-collecting. Finally, the node with the smallest
prize in this fragment is selected as the base station. From this,
the overflow data is transmitted to visit all the data nodes in the
tree to aggregate their overflow data by traversing each edge
at most twice. Fig. 16(a) shows the distributed S-Tree incurs
much more energy cost than distributed Approximation and
Benefit. This can be explained by Fig. 16(b), which shows
that distributed S-Tree collects more prizes than necessary.
Again, as S-Tree only allows a single data aggregation tree,
its aggregation cost is much higher than that of the other two
distributed algorithms.

VII. RELATED WORK

Below we review the prior work in the theory and sensor
networking communities, respectively.

A. Multiple and Quota Traveling Salesmen Problems

TSP2 is different from well-known multiple traveling sales-
men problem (mTSP) [10] and vehicle routing problem (VRP)

TABLE VI
ENERGY CONSUMPTION OF DISTRIBUTED ALGORITHMS FOR

DAO2-U. STAGE 1: AGGREGATION NETWORK CONSTRUCTION.
STAGE 2: FINDING q-EDGE FOREST. STAGE 3: DATA

AGGREGATION.

p 55 60 65 71
Stage 1 (J) 55.26 51.42 53.23 55.4

Stage 2 Baseline (J) 2.85 3 3.24 3.42
Fragment (J) 0.81 1.74 2.85 4.55

Stage 3 Baseline (KJ) 77.79 228.62 684.42 1682.95
Fragment (KJ) 134.25 300.82 696.48 1674.81

16

[52]. mTSP determines a set of routes for multiple salesmen
who all start from and return to a single city (or a set of cities),
such that all the cities are visited exactly once and the total
cost of visiting all the cities is minimized. VRP generalizes
mTSP by adding more constraints, such as time windows for
pickup and delivery, and that vehicles have capacities. In both
mTSP and VRP, a prescribed set of cities (or customers) must
be visited, and each traveling route must start and end at the
prefixed (same or different) depots. However, TSP2 requires
all together q cities to be visited, while a salesman can end at
a node different from his starting node. As such, TSP2 needs
to decide how many salesmen are required, where to place
them, and how to find each route.

Q-TSP2 is different from the prize-collecting TSP (or
TSP/vehicle routing with profit) [4, 8, 19]. In prize-collecting
TSP, each vertex has a prize (or profit) to be collected and a
penalty if not visited; the goal of the traveling salesman is to
minimize his travel costs and penalties while visiting enough
cities to collect a prescribed amount of prize money. The
complementary problem of maximizing the collected profit
with the budgeted traveling cost is orienteering problem [53].
As our work is to aggregate and reduce the size of sensory
data by some specified amount while minimizing the energy
cost incurred, it bears more resemblance to the prize-collecting
TSP. Below we review its related literature.

Bienstock [11] decided on a subset of vertices such that
the length of the tour plus the sum of penalties associated
with vertices not in the tour is as small as possible and
proposed a 2.5 approximation algorithm based on linear pro-
gramming relaxation. Archer et al. [3] further improved the
approximation ratio to 2−ε using Lagrangian relaxation. Tang
and Wang [50] proposed a local search-based heuristic for a
related capacitated prize-collecting TSP. Dell’Amico et al. [17]
developed a lagrangian heuristic and obtained an upper bound
in the form of a feasible solution.

If no penalty is considered, prize-collecting TSP becomes
a quota-TSP problem [5, 6]. Awerbush [6] proposed an
O(log2R) approximation algorithm where R is the quota to
collect. It is based on an approximation for the k-minimum-
spanning-tree problem (k-MST), finding a tree of the least
weight that spans exactly k vertices on a graph. Ausiello et
al. [5] studied the online version of the problem.

However, the above prize-collecting or quota TSP research
assumes only one traveling salesman. If multiple traveling
salesmen are allowed, the prize-collecting mTSP has been

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 55 60 65 70

T
ot

al
 E

n
er

g
y

co
st

 (
K

J)

Number of Data Nodes p

Approximation
Benefit
S-Tree

(a) Total aggregation cost (KJ).

 14000

 16000

 18000

 20000

 22000

 24000

 55 60 65 70T
ot

al
 D

at
a

S
iz

e
R

ed
u

ct
io

n
 (

M
B

)

Number of Data Nodes p

Approximation
Benefit
S-Tree

(b) Total data size reduction.

Fig. 16. Distributed algorithm performance comparison for DAO2.

studied under the name of multi-vehicle routing with profit,
to which Chapter 9 in [19] gave a comprehensive survey
of the current work. All of them, however, only focus on
routing while fixing the number of vehicles and the starting
and ending depots of the vehicles. DAO2 significantly differs
from existing research for two reasons. First, not only does
DAO2 needs to decide the number of salesmen but also to
determine the starting and ending node of each salesman;
that is, it studies both placements and routing of traveling
salesmen in the same problem space. Our work is the first one
to study multiple TSP prize-collecting problems considering
both placement and routing, wherein the number of salesmen,
the starting and ending node of each salesman, and the route
of each salesman must all be decided simultaneously. Second,
none of the existing TSP or mTSP problems consider that
traveling salesmen, when dispatched from different nodes,
could have different traveling modes and incur a different
cost per unit distance traveled, which uniquely arises and are
identified in DAO2. How the cost-and-time tradeoff among
various transportation means (e.g., cars, railways, and air)
impacts the solutions to various TSP problems remains largely
unexplored.

B. Data Aggregation in Sensor Networks

In the sensor network community, extensive research fo-
cuses on disconnection-tolerant operations without the base
station. Some system research was conducted to design co-
operative distributed storage systems and to improve the uti-
lization of the network’s data storage capacity [37, 38]. Other
research instead took an algorithmic approach by focusing on
the optimality of the solutions [25, 49, 58]. However, all the
above works assumed that enough storage space is available to
store the overflow data, thus not addressing the overall storage
overflow problem.

There is a vast amount of literature on data aggregation
in sensor networks [2, 13, 30, 32, 36, 51]. Tree-based routing
structures were often proposed to either maximize network
lifetime (the time until the first node depletes its energy) [36],
minimize total energy consumption or communication cost
[30, 32], or reduce the delay of data gathering [2]. Recently,
Chen et al. [13] considered the duty-cycle sensor networks and
designed two distributed data aggregation algorithms where
an aggregation tree and a conflict-free schedule are generated
simultaneously to achieve low aggregation latency. Some other
works were based on non-tree routing structures, using mobile
base stations to collect aggregated data to maximize the
network lifetime [45, 51]. However, data aggregation in DAO2

significantly differs from existing data aggregation techniques
in both goals and techniques. First, existing data aggregation
reduces the number of transmissions by combining data from
different sensors en route to the base station to save energy.
However, the goal of data aggregation in DAO2 is to aggregate
the overflow data so that they can fit into storage available,
thus preventing data loss caused by overall storage overflow in
the ICSN. Second, the underlying routing structures in most
of the existing data aggregation techniques are trees rooted at
the base station covering all sensor nodes. In DAO2, however,

17

since the base station is unavailable, those routing structures
are no longer suitable. Instead, DAO2 introduces a minimum
q-edge forest, a routing structure that serves as the building
block of our techniques.

ICSNs differ from delay-tolerant sensor networks (DTSN)
[33]. In DTSNs, mobile nodes are intermittently connected due
to their mobility and low density, and data is opportunistically
forwarded to destination nodes. In ICSNs, however, all the
static sensors are connected while disconnected from the base
station, and data is uploaded to the base station only when
uploading opportunities such as data mules become available.

VIII. Conclusion and Future Work
We introduced an algorithmic framework called DAO2,

which tackles the overall storage overflow problem in emerg-
ing sensor network applications. Our work has two theoretical
significance. First, in studying DAO2, we uncovered two new
graph-theoretic problems viz. TSP2 and Q-TSP2. In sharp
contrast to classic TSP and its variants that mainly focus
on the routing of salesmen, TSP2 and Q-TSP2 find both
the placement and the routing of the traveling salesmen. We
designed a suite of energy-efficient optimal, approximation,
heuristic, and distributed data aggregation algorithms to solve
these two problems. Second, the two building blocks of our
framework viz. aggregation network and minimum q-edge
forest are two novel graph structures not formally identified
and studied in any existing research. The minimum q-edge
forest generalizes the minimum spanning tree, one of the
most fundamental graph data structures. As such, one of
our approximation algorithms (Algo. 1) generalizes the well-
known Kruskal’s MST algorithm. Of these theoretical roots,
the techniques proposed in this paper could be applied to any
applications wherein data correlation and resource constraints
coexist, including Internet of Things applications, data centers,
and big data analytics.

One limitation of our work is that the data nodes and their
overflow data are known beforehand. In a real-time scenario
wherein data nodes emerge dynamically, the extDAO2 can
still be solved by periodically executing our algorithms when-
ever new data nodes arise. Second, when sensor nodes have a
limited amount of energy, some could deplete their energy,
causing network partition in the data aggregation process.
In the future, we will design more fault-tolerant distributed
data aggregation algorithms to tackle such problems. Different
spatial correlation models (lossy or lossless) could lead to
different aggregation mechanisms. Our model is lossy in that
aggregator does not have enough information to inform other
data nodes to aggregate. In the future, we will consider a
lossless aggregation wherein a sensor node can be both an
initiator and aggregator and design new techniques to solve
the overall storage overflow problem. Finally, we treat data
aggregation and offloading as two separate stages to solve each
problem nicely. Although both stages are solved optimally or
with approximation, their combined solution is not necessarily
optimal or achieves the same approximation for the data
aggregation and offloading problem. We will integrate these
two stages to achieve an energy-efficient solution for the
overall storage overflow problem.

ACKNOWLEDGMENT

This work was supported in part by NSF Grants CNS-
1419952 and CNS-2131309.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] B. Alinia, M. Hajiesmaili, and A. Khonsari. On the construction of
maximum-quality aggregation trees in deadline-constrained wsns. In
Proc. of INFOCOM, 2015.

[3] A. Archer, M. H. Bateni, M. T. Hajiaghayi, and H. Karloff. Improved
approximation algorithms for prize-collecting steiner tree and tsp. In
IEEE FOCS, 2009.

[4] C. Archetti, M. G. Speranza, and D. Vigo. Vehicle routing problems
with profits. Vehicle Routing: Problems, Methods, and Applications,
Second Edition, page 273–297, 2014.

[5] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for
the on-line quota traveling salesman problem. Information Processing
Letters, 92:89–94, 2004.

[6] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation
guarantees for minimum-weight k-trees and prize-collecting salesmen.
SIAM J. Comput., 28(1):254–262, February 1999.

[7] B. Awerbuch, A. Bar-Noy, and M. Gopal. Approximate distributed
bellman-ford algorithms. IEEE Transactions on Communications,
42:2515–2517, 1994.

[8] E. Balas. The prize collecting traveling salesman problem. Networks,
19(6):621–636, 1989.

[9] S. Basagni, L. Boloni, P. Gjanci, C. Petrioli, C. A. Phillips, and
D. Turgut. Maximizing the value of sensed information in underwater
wireless sensor networks via an autonomous underwater vehicle. In
Proc. of INFOCOM, 2014.

[10] T. Bektas. The multiple traveling salesman problem: an overview of
formulations and solution procedures. Elsevier Omega, 34:209–219,
2006.

[11] D. Bienstock, M. X. Goemans, and D. Simchi-Levi D. Williamson. A
note on the prize collecting traveling salesman problem. Mathematical
Programming, 59:413–420, 1993.

[12] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. Contention-
free mac protocols for wireless sensor networks. In Proc. of DISC,
2004.

[13] Q. Chen, H. Gao, Z. Cai, L. Cheng, and J. Li. Distributed low-latency
data aggregation for duty-cycle wireless sensor networks. IEEE/ACM
Transactions on Networking, 26(5):2347–2360, 2018.

[14] T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2009.

[16] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer.
Network correlated data gathering with explicit communication: Np-
completeness and algorithms. IEEE/ACM Transactions on Networking,
14:41–54, 2006.

[17] M. Dell’Amico, F. Maffioli, and A Sciomachen. A lagrangian heuristic
for the prize collecting travelling salesman problem. Annals of Opera-
tions Research, 81:289–306, 1998.

[18] S. Edwards, T. Murray, T. O’Farrell, I. C. Rutt, P. Loskot, I. Martin,
N. Selmes, R. Aspey, T. James, S. L. Bevan, and T. Baugé. A High-
Resolution Sensor Network for Monitoring Glacier Dynamics. IEEE
SENSORS JOURNAL, 14(11):3926–3931, 2013.

[19] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems
with profits. Transportation Science, 39(2):188 – 205, 2005.

[20] M. Di Francesco, S. K. Das, and G. Anastasi. Data collection in wireless
sensor networks with mobile elements: A survey. ACM Trans. Sen.
Netw., 8(1):7:1–7:31, 2011.

[21] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst.,
5(1):66–77, 1983.

[22] R. Ghaffarivardavagh, S. S. Afzal, O. Rodriguez, and F. Adib. Ultra-
wideband underwater backscatter via piezoelectric metamaterials. In
Proc. of the ACM SIGCOMM, 2020.

[23] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In
Proc. of HICSS, 2000.

[24] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are
more difficult than cycles. Operations Research Letters, 10:291 – 295,
1991.

18

[25] X. Hou, Z. Sumpter, L. Burson, X. Xue, and B. Tang. Maximizing data
preservation in intermittently connected sensor networks. In Proc. of
MASS, 2012.

[26] S. Hsu, Y. Yu, and B. Tang. dre2: Achieving data resilience in wireless
sensor networks: A quadratic programming approach. In Proc. of IEEE
MASS, 2020.

[27] H. Huang, A. V. Savkin, M. Ding, and C. Huang. Mobile robots in
wireless sensor networks: A survey on tasks. Computer Networks,
148:1–19, 2019.

[28] J. Jang and F. Adib. Underwater backscatter networking. In Proc. of
the ACM SIGCOMM, 2019.

[29] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner
trees. Acta Informatica, 15:141 – 145, 1981.

[30] T. Kuo and M. Tsai. On the construction of data aggregation tree with
minimum energy cost in wireless sensor networks: Np-completeness and
approximation algorithms. In Proc. of INFOCOM, 2012.

[31] H. Li, D. Liang, L. Xie, G. Zhang, and K. Ramamritham. Flash-
optimized temporal indexing for time-series data storage on sensor
platforms. ACM Trans. Sen. Netw., 10(4):62:1–62:30, 2014.

[32] J. Li, A. Deshpande, and S. Khuller. On computing compression trees
for data collection in wireless sensor networks. In Proc. of INFOCOM,
2010.

[33] Y. Li and R. Bartos. A survey of protocols for intermittently connected
delay-tolerant wireless sensor networks. Journal of Network and
Computer Applications, 41:411–423, 2014.

[34] W. Liang, X. Ren, X. Jia, and X. Xu. Monitoring quality maximization
through fair rate allocation in harvesting sensor networks. IEEE
Transactions on Parallel and Distributed Systems, 24(9):1827–1840,
2013.

[35] L. Liu, R. Wang, D. Guo, and X. Fan. Message dissemination for
throughput optimization in storage-limited opportunistic underwater
sensor networks. In Proc. of SECON, 2016.

[36] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for the
shortest path aggregation tree in wireless sensor networks. In Proc. of
INFOCOM, 2011.

[37] L. Luo, Q. Cao, C. Huang, L. Wang, T. Abdelzaher, and J. Stankovic.
Design, implementation, and evaluation of enviromic: A storage-centric
audio sensor network. ACM Transactions on Sensor Networks, 5(3):1–
35, 2009.

[38] L. Luo, C. Huang, T. Abdelzaher, and J. Stankovic. Envirostore:
A cooperative storage system for disconnected operation in sensor
networks. In Proc. of INFOCOM, 2007.

[39] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[40] D. Mosse and G. Gadola. Controlling wind harvesting with wireless

sensor networks. In Proc. of IGCC, 2012.
[41] D. Peleg and V. Rubinovich. A near-tight lower bound on the time

complexity of distributed minimum-weight spanning tree construction.
SIAM J. Comput., 30(5):1427–1442, 2000.

[42] D. E. Phillips, M. Moazzami, G. Xing, and J. M. Lees. A sensor network
for real-time volcano tomography: System design and deployment. In
Proc. of IEEE ICCCN 2017.

[43] M. Rahmati and D. Pompili. Uwsvc: Scalable video coding transmission
for in-network underwater imagery analysis. In Proc. of IEEE MASS
2019.

[44] F. Shahzad. Satellite monitoring of wireless sensor networks. Procedia
Computer Science, 21:479 – 484, 2013.

[45] Y. Shi and Y.T. Hou. Theoretical results on base station movement
problem for sensor network. In Proc. of INFOCOM, 2008.

[46] R. Sugihara and R. K. Gupta. Path planning of data mules in sensor
networks. ACM Trans. Sen. Netw., 8(1):1:1–1:27, 2011.

[47] Rui Tan, Guoliang Xin, Jinzhu Chen, Wen-Zhan Song, and Renjie
Huang. Fusion-based volcanic earthquake detection and timing in
wireless sensor networks. ACM Transaction on Sensor Networks (ACM
TOSN), 9, 2013.

[48] B. Tang. dao2: Overcoming overall storage overflow in intermittently
connected sensor networks. In Proc. of IEEE INFOCOM 2018, 2018.

[49] B. Tang, N. Jaggi, H. Wu, and R. Kurkal. Energy efficient data redis-
tribution in sensor networks. ACM Transactions on Sensor Networks,
9(2):11:1–11:28, May 2013.

[50] L. Tang and X. Wang. An iterated local search heuristic for the
capacitated prize-collecting travelling salesman problem. Journal of the
Operational Research Society, 59:590–599, 2008.

[51] S. Tang, J. Yuan, X. Li, Y. Liu, G. Chen, M. Gu, J. Zhao, and G. Dai.
Dawn: Energy efficient data aggregation in wsn with mobile sinks. In
Proc. of IWQoS, 2010.

[52] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics, 2001.

[53] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. Orienteering
problem: A survey of recent variants, solution approaches and applica-
tions. European Journal of Operational Research, 255(2):315 – 332,
2016.

[54] L. A. Villas, A. Boukerche, H. de Oliveira, R. B. de Araujo, and A. A.F.
Loureiro. A spatial correlation aware algorithm to perform efficient data
collection in wireless sensor networks. Ad Hoc Networks, 12:69–85,
2014.

[55] B. Weiss, , H.L. Truong, W. Schott, A. Munari, C. Lombriser, U. Hun-
keler, and P. Chevillat. A power-efficient wireless sensor network for
continuously monitoring seismic vibrations. In Proc. of SECON, 2011.

[56] A. Wichmann, T. Korkmaz, and A. S. Tosun. Robot control strategies for
task allocation with connectivity constraints in wireless sensor and robot
networks. IEEE Transactions on Mobile Computing, 17(6):1429–1441,
2018.

[57] S. Xie, G. X. Lee, K. S. Low, and E. Gunawan. Wireless sensor network
for satellite applications: A survey and case study. Unmanned Systems,
02(03):261 – 277, 2013.

[58] X. Xue, X. Hou, B. Tang, and R. Bagai. Data preservation in
intermittently connected sensor networks with data priorities. In Proc.
of SECON, 2013.

[59] H. Yedidsion, A. Banik, P. Carmi, M. J. Katz, and M. Segal. Efficient
data retrieval in faulty sensor networks using a mobile mule. In Proc.
of WiOpt 2017.

[60] H. Zheng and J. Wu. Data collection and event detection in the deep
sea with delay minimization. In Proc. of SECON, 2015.

[61] J. Zheng and P. Wang C. Li. Distributed data aggregation using
slepianwolf coding in cluster-based wireless sensor networks. IEEE
Transactions on Vehicular Technology, 59:2564 – 2574, 2010.

