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Abstract—Virtual machine (VM) placement has been a very
effective technique in the cloud data center to reduce its network
traffic, bandwidth consumption, data access delay as well as
energy consumption in the data center network. In this paper
we identify and study a new VM placement problem in policy-
driven data centers (PDDCs), wherein policies are established
that require VM traffic to traverse a sequences of middleboxes
(MBs) in order to achieve security and performance guarantee.
Although there has been extensive research of VM placement,
none of them takes into account aforesaid policies. We refer
to the problem as VMP2: virtual-machine placement in policy-
driven data centers. Given a set of hardware-based MBs that
have already been deployed in the PDDC, and a data center
policy that communicating VM pairs must satisfy, VMP2 studies
how to place the VMs on the physical machines (PMs) in the
PDDC in order to minimize the total energy cost of the VM pair
communications. Under ordered policy, wherein all the VM pairs
must traverse the MBs in a specific order, we design a time-
efficient polynomial algorithm and prove its optimality. Under
unordered policy, wherein different VM pairs can traverse the
MBs in different orders, we show that VMP2 is NP-hard thus
there does not exist an efficient and optimal solution. We therefore
design a 2-approximation algorithm to solve it. In both cases, we
compare the algorithms with the state-of-the-art traffic-aware
VM placement that does not consider the data center policies,
and show via extensive simulations that our algorithms constantly
outperform it under different network scenarios. To the best
of our knowledge, our work is the first one that addresses the
energy-efficient VM placement in policy-driven data centers.

Index Terms—Policy-Driven Data Centers, Virtual Machine
Placement, Middleboxes, Energy-Efficiency, Algorithms

I. INTRODUCTION

Policy-Driven Data Centers. Cloud data centers, which con-
sist of hundreds of thousands of physical machines (PMs) that
support a wide range of cloud applications such as search
engines, social media, and video streaming, have become the
dominant computing infrastructure for the IT industry as well
as an integral part of our Internet fabric [3], [26]. In recent
years, middleboxes (MBs) [5] have been introduced into cloud
data centers in order to improve the security and performance
of the cloud applications [24], [14], [15]. MBs, also known
as “network functions (NFs)”, are intermediary network de-
vices that perform functions on network traffic other than
packet forwarding. Popular examples of MBs include firewalls,
intrusion detection systems (IDSs) and intrusion prevention
systems (IPSs), load balancers, and network address translators

(NATs). In particular, data center policies [12], [23], [8], [27]
are established in data centers that demand virtual machine
(VM) traffic to traverse a sequence of MBs in order to provide
security and performance guarantees to the cloud applications.
Fig. 1 shows a simple example of the cloud data center policy,
where VM traffic goes through a firewall, a load balancer, and
a cache proxy in that order so it filters out malicious traffic and
then diverts trusted VM traffic to avoid network congestion,
and finally caches the content to share with other cloud users in
the data center. Given the ever-increasing demands for security
and performance from the diverse cloud user applications, data
center policies have become an inseparable part of the Service
Level Agreement (SLA) of data centers and an important
measurement of their efficiencies. We refer to such cloud data
centers as policy-driven data centers (PDDCs).
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Fig. 1. A Data Center Policy in the PDDC.

Virtual Machine Placement in PDDCs. The current genera-
tion of MBs, being specialized systems that supports specific
network functions, are mainly proprietary and purpose-built
hardware that PDDC operators must deploy and install man-
ually [25]. This not only takes up a significant part of the
data center capital and operational expenditure but it is also
error-prone. Therefore, once the MBs are physically deployed
inside the PDDC, it is not ideal to move them around and to
redeploy them. In contrast, with the ubiquity of virtualization
technologies in cloud data centers for resource provisions
and operating cost reduction, cloud user applications are now
implemented as VMs that can be easily created and deployed
inside PDDCs. Considering that energy consumption is a big
concern in any cloud data centers [26], we study how to
place the VMs inside PDDC to minimize their communication
energy cost while satisfying data center policies given that
hardware-based MBs are already installed inside the PDDC.

VM placement research has attracted lots of attention in re-
cent years as it is a very effective technique to reduce network



traffic, bandwidth consumption, user application delay, as well
as energy consumption in cloud data centers [21], [2], [17],
[6], [11], [19]. For example, Meng et al. [21] designed one
of the first traffic-aware VM placement algorithm, wherein
VMs with large communications are assigned to the same
PMs or PMs in close proximity. Alicherry and Lakshman
[2] designed optimal and approximation algorithms that place
VMs to minimize data access latencies while satisfying system
constraints. However, none of above VM placement research
considered data center policies (please refer to [19] for a
complete survey of VM placement in data centers), thus
falling short of achieving performance and security guarantees
brought about by various of MBs deployed inside PDDCs.

While most research on hardware-based MBs focused on
their Software-Defined Networking (SDN) support [23], [8],
[27], [9], it has not been studied how VM placement coordi-
nates with MBs to achieve a secure and performance-optimal
PDDC. We are aware of the actively studied Network Function
Virtualization (NFV) [10], [7], [22] and service function
chaining [27], [18], [20], where the MBs are implemented as
software or VMs running on commodity hardwares. However,
given the ubiquitous existence of hardware-based MBs such
as firewalls and load balancers in the market, we anticipate
that they will persist for a relatively long time therefore our
research is meaningful and timely.

Our Contributions. In particular, we study that given a set
of MBs that have already been deployed in the PDDC and
the data center policy that each communicating VM pair
needs to satisfy, how to place the VMs on the PMs in order
to minimize the total energy cost of the VM pairs while
satisfying the resource constraint of the PMs. We refer to the
problem as vrtual-machine placement in policy-driven data
centers (VMP2). Under ordered policy, wherein all the VM
pairs must traverse the MBs in a specific order, we design
a polynomial and optimal algorithm to solve VMP2. Under
unordered policy, wherein different VM pairs can traverse
the MBs in different orders, we show that VMP2 is NP-
hard thus there does not exist efficient and polynomial VM
placement algorithms. We put forward a 2-approximation
algorithm that achieves total energy cost for all the VM pairs
at most twice of the optimal energy cost. In both cases, we
compare the algorithms with the state-of-the-art traffic-aware
VM placement algorithm [21], as its problem setup is most
comparable to ours. We show via extensive simulations that
our algorithms constantly outperform it under different PDDC
parameters in both ordered and unordered data center policies.
To the extent of our knowledge, this work is the first one that
tackles the VM placement to minimize energy consumption
for VM communications in policy-driven data centers.

II. Problem Formulation of VMP2

System Model. We model a PDDC as an undirected general
graph G(V,E). V = Vp ∪ Vs is the set of PMs Vp and the
set of switches Vs. E is the set of edges; each edge connects
either one switch to another switch or a switch to a PM. We

adopt fat tree topology [1], a popular data center topology
for PDDCs, but our designed algorithms are applicable to any
data center topologies. Fig. 2 shows a PDDC of 16 PMs with
k = 4 where k is the number of ports each switch has.

A set of m hardware-based MBs, denoted as M =
{mb1,mb2, ...,mbm}, are already deployed inside the PDDC,
with mbj being installed at switch sw(j) ∈ Vs. We adopt the
bump-off-the-wire design [12], which takes the dedicated MB
hardware out from the physical data path. It uses a policy-
aware switching layer that leverages the data center network’s
conduciveness for indirection and explicitly redirects traffic to
off-path MBs. Fig. 2 shows that three MBs MB1, MB2 and
MB3 are attached to the switches using this design.

There are l VM pairs P = {(v1, v
′

1), (v2, v
′

2), ..., (vl, v
′

l)},
wherein vi communicates with v

′

i constantly, 1 ≤ i ≤ l. vi and
v

′

i are referred to as the source VM and the destination VM
of this VM pair respectively. The communication frequency of
(vi, v

′

i) is denoted as λi, indicating number of communication
taking place between vi and v

′

i in unit time. WLOG, we
assume λ1 ≥ λ2 ≥ ... ≥ λl (otherwise it can be sorted to
be so). All the VMs need to be created and placed into the
PMs for execution. We refer to the PMs where vi and v

′

i will
be placed as the source PM and destination PM of (vi, v

′

i).
Let Vm = {v1, v

′

1, v2, v
′

2, ..., vl, v
′

l}. Each VM v ∈ Vm
needs one unit amount of resource to execute. Here the
resource refers to an aggregated characterization of all the
hardware resources needed to create and execute VMs (i.e.,
CPU, memory, storage, and bandwidth). The resource capacity
of PM i is denoted as m(i), which is also an aggregated
characterization of its hardware resources. That is, PM i has
m(i) resource slots, each can be used to create and execute
one VM. Table I shows all the notations in this paper.

TABLE I
NOTATION SUMMARY

Notation Description
Vp The set of physical machines (PMs) in PDDC
Vs The set of switches in PDDC
P The set of l VM communication pairs, (vi, v

′
i)

p(v) The PM where the VM v is placed with VM placement p
M The set of m MBs, mbj
sw(j) The switch where mbj is installed
c(i, j) The energy cost between and PM or switch i and j
cpi The energy cost for (vi, v

′
i) in ordered policy

πi The order at which (vi, v
′
i) visits MBs in unordered policy

cp,π
i

i The energy cost for (vi, v
′
i) in unordered policy

Cp The total energy cost for all with VM placement p

PDDC Policies. For security and performance reasons, each
VM pair must traverse the m MBs mb1, mb2, ..., mbm in the
same or different orders. In some policies, as the function of
one MB can only be performed after another, it requires the
cloud application VM traffic to go through the sequence of
the MBs strictly in a specific order. In our previous example
(Fig. 1), the VM traffic must go through the firewall first, and
then the load balancer and finally the cache proxy for security
and performance reasons. We refer to such policy as ordered



policy and denote it as (mb1,mb2, ...,mbm), signifying that
the VM traffic must traverse mb1, mb2, ..., mbm in that order.

However, as the functions of the consisted MBs are inde-
pendent from each other, some policies do not require the VM
traffic to follow a specific order of the MBs as long as each MB
in the policy is visited thus each MB’s function is performed
on the traffic. We refer to such policy as unordered policy and
denote it as {mb1,mb2, ...,mbm}. For example, there is little
difference to arrange a passive monitor before or after a deep
packet inspector (DPI) from security point of view [16].

In either policies, we refer to the switch where the first
visited MB is located as the ingress switch and the switch
where the last visited MB is located as the egress switch.

Energy Model. Following [21], we measure the power con-
sumption of any VM pair communication inside PDDC by
counting the number of switches it goes through. That is, when
VM traffic traverses inside the PDDC, it consumes the same
amount of energy on different switches including edge, aggre-
gate, and core switches. We are aware of some other energy
models wherein the core switches handle more traffic therefore
consume more energy power than aggregate switches, which
consume more energy power than edge switches [4]. However,
as such observations do not affect the hardness of the problem
and the design and analysis of our algorithms, we do not
consider them in this paper. Let c(i, j) denote the minimum
energy consumption between any PM (or switch) i and j.

Problem Formulation of VMP2. We define a VM placement
function as p : Vm → Vp, signifying that VM v ∈ Vm will be
placed on PM p(v) ∈ Vp. Denote the total energy consumption
of all the l VM pairs with VM placement p as Cp.

Ordered policy. We first consider ordered policy, wherein each
VM pair must traverse mb1, mb2, ..., mbm in that order. In
this case, the ingress switch is sw(1) and the egress switch
is sw(m). Given any VM placement function p, the energy
consumption for VM pair (vi, v

′

i) under ordered policy is then

cpi = λi · c
(
p(vi), sw(1)

)
+

λi ·
m−1∑
j=1

c
(
sw(j), sw(j + 1)

)
+ λi · c

(
sw(m), p(v

′

i)
)
.

(1)

In Equation 1, the first term on the right-hand side is the
energy consumption of the VM pair (vi, v

′

i) when it traverses
from its source PM to the ingress switch, the second term is
its energy consumption traversing the next m−1 MBs, and the
third term is its energy consumption from the egress switch
to the destination PM. We have

Cp =

l∑
i=1

cpi

=

l∑
i=1

λi ·
(
c
(
p(vi), sw(1)

)
+ c
(
sw(m), p(v

′

i)
))

+

l∑
i=1

λi ·
m−1∑
j=1

c
(
sw(j), sw(j + 1)

)
.

(2)
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Fig. 2. A PDDC with 16 PMs, 3 MBs (MB1, MB2, and MB3), and a VM
pair (v1, v

′
1). For ordered-policy (MB1,MB2,MB3), the minimum energy

VM placement for (v1, v
′
1) is shown in solid blue; for unordered-policy

{MB1,MB2,MB3}, its minimum energy VM placement is shown in dashed
red. • and I indicate source VM and destination VM in each case.

Given that all the switches that MBs are installed are fixed,
the second term on the right-hand side of Equation 2 is a
constant. Therefore we only need to find VM placement to
minimize the first term. The objective of VMP2 is to find a
VM placement p to minimize Cp while satisfying the resource
capacity of each PM, |{v ∈ Vm|p(v) = i}| ≤ mi,∀i ∈ Vp.

EXAMPLE 1: Fig. 2 shows that for a VM pair (v1, v
′

1),
under ordered policy (MB1,MB2,MB3), one of its optimal
VM placement is in solid blue: v1 is placed at PM 4 and v

′

1

placed at PM 16; the VM traffic visits MB1, MB2, and MB3

in that order by traversing 9 switches (therefore cost of 9). �

Unordered policy. In unordered policy, each VM pair can
traverse mb1, mb2, ..., mbm in different orders. Therefore
to solve VMP2, it finds not only a VM placement function
but also for each VM pair, a sequence of MBs to visit. We
define a permutation function πi : [1, 2, ...,m]→ [1, 2, ...,m],
signifying that for (vi, v

′

i), the jth MB to visit is mbπi(j).

Denote the power consumption of (vi, v
′

i) given p and πi

as cp,π
i

i . Then

cp,π
i

i = λi · c
(
p(vi), sw

(
πi(1)

))
+

λi ·
m−1∑
j=1

c

(
sw
(
πi(j)

)
, sw

(
πi(j + 1)

))
+

λi · c
(
sw
(
πi(m)

)
, p(v

′

i)

)
.

(3)

The objective of VMP2 in unordered policy case is to minimize
Cp =

∑l
i=1 c

p,πi

i while satisfying the resource capacity of
each PM, that is, |{v ∈ Vm|p(v) = i}| ≤ mi,∀i ∈ Vp.

EXAMPLE 2: Fig. 2 shows for (v1, v
′

1) under unordered
policy {MB1,MB2,MB3}, one of the optimal VM placement
in dashed red: v1 is placed at PM 11 and v

′

1 placed at PM 16;
the VM traffic visits MB2, MB1, and MB3 in that order by
traversing 7 switches (therefore cost of 7). �



III. Algorithms for VMP2

A. Ordered Policy.

For ordered policy, we design an efficient polynomial
algorithm (Algorithm 1) and prove its optimality. Recall
that PM i has m(i) resource slots, each can be used to
create and execute one VM. To place the l VM pairs
{(v1, v

′

1), (v2, v
′

2), ..., (vl, v
′

l)}, Algorithm 1 identifies two dis-
joint sets of l resource slots each that are closest to the ingress
and egress switches, respectively (line 1-24), and create and
execute the source and destination VMs on these two sets of
resource slots (line 25-33).

We refer to these two sets of resource slots as ingress re-
source set (IRS) and egress resource set (ERS). We assign each
of the resource slots in the PDDC a unique ID. Each element
in these two sets include the ID of the resource slot as well
as the cost of its belonged PM to the corresponding ingress
or egress switch. We use IRS[i].id, IRS[i].dist, ERS[i].id,
ERS[i].dist to denote ID and cost of the ith resource slot
in IRS and ERS respectively. We can then represent the
placement of the l VM pairs {(v1, v

′

1), (v2, v
′

2), ..., (vl, v
′

l)}
as p = {(IRS[i].id,ERS[i].id)}, 1 ≤ i ≤ l, where IRS[i].id
stores vi and ERS[i].id stores v

′

i.
Algorithm 1: Optimal Algorithm for Ordered Policy.

Input: A PDDC with ordered policy (mb1,mb2, ...,mbm),
VM pairs P = {(v1, v

′

1), (v2, v
′

2), ..., (vl, v
′

l)}.
Output: A placement p and the total energy cost Cp for P .
Notations:

IRS[i].id, IRS[i].dist, ERS[i].id, ERS[i].dist: ID and
cost of the ith resource slot in IRS and ERS.

0. i = 1, j = 1, k = 1, Cp = 0,
IRS = φ (empty set), ERS = φ, p = φ;

1. Assign all resource slots in the PDDC unique IDs;
2. Sort them in ascending order of their costs to

ingress switch sw(1) (and egress switch sw(m)), store
first 2l resource slots and costs in array A (and B);

3. while (k ≤ l)
4. while (A[i].id ∈ IRS) i+ +;
5. while (B[j].id ∈ ERS) j + +;
6. if (A[i].id == B[j].id )
7. while (A[i+ 1].id ∈ IRS) i+ +;
8. while (B[j + 1].id ∈ ERS) j + +;
9. if (A[i+ 1].dist ≤ B[j + 1].dist)
10. IRS[k].id = A[i+ 1].id,

IRS[k].dist = A[i+ 1].dist;
11. ERS[k].id = B[j].id,ERS[k].dist = B[j].dist;
12. i = i+ 2; j + +;
13. else
14. IRS[k].id = A[i].id, IRS[k].dist = A[i].dist;
15. ERS[k].id = B[j + 1].id,

ERS[k].dist = B[j + 1].dist;
16. i = i+ +; j = j + 2;
17. end if;
18. else
19. IRS[k].id = A[i].id, IRS[k].dist = A[i].dist;
20. ERS[k].id = B[j].id,ERS[k].dist = B[j].dist;

V	IRS 
V	ERS V1’	 V2’	 Vr’	 Vl’	

(a) Greedy 

(b) Optimal, 
Case 1 

(c) Optimal, 
Case 2 

V1	 V2	 Vr	 Vl	

V	IRS 
V	ERS V1’	 V2’	 Vr’	

V1	 V2	 Vs	 Vr	

V	IRS 
V	ERS V1’	 V2’	 Vt’	 Vr’	

V1	 V2	 Vs	 Vr	

1	 2	 r	 u	 v	 l	

Fig. 3. Optimal Proof for Algorithm 1.

21. i+ +; j + +;
22. end if;
23. k + +;
24. end while;
25. Sort all VM pairs {(vi, v

′

i)}, 1 ≤ i ≤ l, in descending
order of their communication frequencies λi. WLOG,
assume λ1 ≥ λ2 ≥ ... ≥ λl;

26. a =
∑m−1
j=1 c

(
sw(j), sw(j + 1)

)
;

27. for (1 ≤ i ≤ l)
28. Place vi at resource slot IRS[i].id;
29. Place v

′

i at resource slot ERS[i].id;
30. p = p ∪ {(IRS[i].id,ERS[i].id)};
31. cpi = λi ∗ (IRS[i].dist+ a+ ERS[i].dist); // Eqn. 1
32. Cp = Cp + cpi ;
33. end for;
34. RETURN p and Cp.

Time Complexity of Algorithm 1. Sorting all the resource
slots takes O(|Vp|·m̄·lg(|Vp|·m̄)), where |Vp| is the number of
PMs and m̄ is the average resource capacity of PMs. Finding
the sets of IRS and ERS takes l rounds, each could take O(l).
Sorting all the VM pairs takes O(l · lgl) and calculating Cp

takes O(l). Therefore, the total complexity of Algorithm 1 is
O(|Vp| · m̄ · lg(|Vp| · m̄) + l2).

Theorem 1: Algorithm 1 is optimal and finds the VM
placement minimizing total energy cost for all the VM pairs.
Proof: In Algorithm 1, the pair of resource slots allocated to
(vi, v

′

i) is IRS[i].id and ERS[i].id, wherein IRS[i].id stores vi
and ERS[i].id stores vi′, as shown in Fig. 3 (a). Now, by way
of contradiction, assume that Algorithm 1 is not optimal and
there exists an optimal algorithm called Optimal. There must
exist an instance of the VMP2 problem such that the VM
placements resulted from Greedy and Optimal are different.
Let’s assume that r, 1 ≤ r ≤ l, is the smallest index at
which the pair of resource slots store different pair of VMs in
Algorithm 1 and Optimal. There are two cases.

Case 1: only one of the resource slots, IRS[r].id or
ERS[r].id, stores different VMs. For example, both algorithms
stores v

′

r at ERS[i].id while Algorithm 1 stores vr and Optimal
stores vs at IRS[i].id, as shown in Fig. 3 (b). Since r is the
smallest index wherein algorithms differ, it must be s > r and



λr ≥ λs. In Optimal, vr must be stored in a later resource slot,
say IRS[u].id, with u > r and IRS[u].dist ≥ IRS[r].dist.

Now by swapping vs and vr in Optimal, that is, by moving
vr from IRS[u].id to IRS[r].id and vs from IRS[r].id to
IRS[u].id, the amount of energy cost reduced for (vr, v

′

r)
is λr · (IRS[u].dist-IRS[r].dist), and the amount of energy
cost increased for (vs, v

′

s) is λs · (IRS[u].dist-IRS[r].dist).
Therefore, it reduces (λr−λs) · (IRS[u].dist-IRS[r].dist) ≥ 0
amount of energy cost for these two VM pairs while other VM
pairs are not affected. This contradicts that Optimal achieves
the minimum energy cost for all the VM pairs. The other case
wherein Algorithm 1 and Optimal store vr at IRS[r].id while
store different VMs at ERS[r].id can be dealt with similarly.

Case 2: both resource slots IRS[r].id and ERS[r].id store
different VMs for both algorithms. As shown in Fig. 3 (c), in
Optimal, it stores vs at IRS[r].id and v

′

t at ERS[r].id, with
s, t > r, and vr is stored at IRS[u].id and v

′

r at ERS[v].id,
with u, v > r. Since s, t > r, λr > λs, λt. Since u, v > r,
IRS[u].dist ≥ IRS[r].dist and ERS[v].dist > ERS[r].dist.

Now by swapping vs with vr and v
′

t with v
′

r, the amount of
energy cost reduced for (vr, v

′

r) minus the amount of energy
cost increased for (vs, v

′

s) and (vt, v
′

t) is

λr · (IRS[u].dist− IRS[r].dist)

+ λr · (ERS[v].dist− ERS[r].dist)

− λs · (IRS[u].dist− IRS[r].dist)

− λt · (ERS[v].dist− ERS[r].dist)

= (λr − λs) · (IRS[u].dist− IRS[r].dist)

+ (λr − λt) · (ERS[v].dist− ERS[r].dist)

≥ 0.

(4)

This contradicts again that Optimal is optimal, which gives
that Algorithm 1 is optimal.

B. Unordered Policy.

For unordered-policy, we show that even for one pair of
VMs, VMP2 is NP-hard. We then propose an algorithm that
achieves energy cost at most twice of the optimal.

Theorem 2: Even when there is only one pair of VMs to
be placed in the PDDC (i.e., l = 1), VMP2 is NP-hard.
Proof: We show that VMP2 with l = 1 is equivalent to
traveling salesman path problem (TSPP) [13], which is NP-
hard. Given a complete undirected graph K = (VK , EK),
with edge costs c : EK → R+ and that these edge costs
satisfy triangle inequality c(u, v) ≤ c(u, v) + c(v, w) for all
u, v, w ∈ VK , and a pair of vertices s, t ∈ VK , TSPP is to
find a cheapest path that starts at s, visits each vertex exactly
once, and ends at t. When s = t, TSPP becomes well-known
traveling salesman problem (TSP), which is to find a cheapest
Hamiltonian cycle that starts at s, visits each vertex exactly
once, and returns to s.

To show that VMP2 with l = 1 is equivalent to TSPP,
we transform any instance of the PDDC graph G(V =
Vp ∪ Vs, E) to a complete graph K = (VK , EK). Here,
VK = {pm1, pm2, sw(1), sw(2), ...sw(m)} includes an arbi-
trary pair of PMs pm1 and pm2 and m switches with MBs.

The weight of edge (u, v) ∈ EK is c(u, v), the minimum
energy consumption between u and v in original PDDC graph
G(V,E). VMP2 with l = 1 in G is then TSPP in K with
s = pm1 and t = pm2, by running on all |Vp| · (|Vp| + 1)/2
PM pairs (pm1, pm2). Among these pairs, |Vp| pairs have
pm1 = pm2, at which it becomes TSP.

Algorithm for Unordered Policy. With above preparation, we
propose Algorithm 2 below.
Algorithm 2: Approximation Algorithm for Unordered Policy.
Step 0. For arbitrary pair of PMs pm1, pm2 ∈ Vp, construct
above defined complete graph K.
Step 1. Find a minimum spanning tree MST of K.
Step 2. Find a walk W from pm1 to pm2 on MST by visiting
all vertices using each edge at most twice, and calculate the
cost of this walk. If pm1 = pm2, it is indeed to find a
Hamiltonian cycle from pm1 to pm1 on MST by visiting all
vertices using each edge exactly twice.
Step 3. Repeat Step 0 to 2 for all |Vp| · (|Vp|+ 1)/2 pairs of
PMs (pm1, pm2), find all such walks/cycles and their costs.
Step 4. Sort all the walks and cycles obtained in Step 3 in the
ascending order of their costs, and order the corresponding PM
pairs accordingly. Note each PM pair could have two different
PMs or one PM paired with itself.
Step 5. Sort all VM pairs {(vi, v

′

i)}, 1 ≤ i ≤ l in descending
order of their communication frequencies λi. WLOG, assume
λ1 ≥ λ2 ≥ ... ≥ λl;
Step 6. Place each VM pair in the sorted PM pairs while
satisfying their resource capacities.

Time Complexity of Algorithm 2. Step 0 takes O(m3) as
finding the all-pair shortest-paths between all the m switches
with MBs takes O(m3). Step 1 takes O(m2lgm) for a com-
plete graph of m + 2 or m + 1 nodes. Step 2 takes O(m2).
Therefore the running time of Algorithm 2 is (|Vp| · (|Vp| +
1)/2 ·m3) = O(|Vp|2 ·m3).

Theorem 3: Algorithm 2 is a 2-approximation algorithm.
That is, Algorithm 2 achieves total energy cost of all the VM
pairs that is at most two times of the optimal cost.
Proof: Let W ∗ denote the optimal walk from pm1 to pm2 on a
given K. The cost of the MST computed in Step 1 is a lower
bound on the cost of the optimal walk, c(MST) ≤ c(W ∗).
Since the walk W found in Step 2 visits all vertices using
each edge of the MST at most twice, c(W ) ≤ 2 · c(MST).
Therefore we have c(W ) ≤ 2 · c(W ∗).

Traffic-Aware VM Placement [21]. Meng et al. [21] proposed
a traffic-aware VM placement algorithm by optimizing the
placement of VMs on host machines. They observed that
traffic patterns among VMs can be coupled with the com-
munication distance between them to minimize the energy
consumption of the VM communications. That is, VMs with
large amount of traffic should be assigned to the same PMs
or PMs in close proximity. We refer to this algorithm as
TrafficAware. In ordered-policy, TrafficAware considers all
the VM pairs in their descending order of communication
frequencies, and places each VM pair to the PM that is
closest to the ingress switch until all the VM pairs are placed.



In unordered-policy, it works as Algorithm 2 while only
considering the case of pm1 = pm2, as TrafficAware always
places each VM pair in the same PM if possible. In Section IV,
we compare our algorithms with TrafficAware in both ordered-
and unordered-policy, and show that our algorithms constantly
outperform TrafficAware.

(a) Varying l, number of VM pairs. m = 3, rc = 40.

(b) Varying m, number of MBs. l = 1000, rc = 40.

(c) Varying rc, resource capacity of PMs. l = 1000, m = 3.

Fig. 4. Performance comparison in ordered-policy.

IV. PERFORMANCE EVALUATION

Simulation Setup. We investigate the performances of our
policy-aware VM placement algorithms. We refer to Algorithm
1 in ordered-policy as Optimal and the Algorithm 2 in
unordered-policy as Approximation. We consider a PDDC of
k = 8 fat-tree topology with 128 PMs. There are m = 1, 3, 5
MBs that are randomly placed on different switches in the
PDDC. We vary the number of VM pairs l from 500, 1000,
1500, to 2000. The communication frequency of each VM
pair is a random number in [1, 1000]. In all the simulation
plots, each data point is an average of 20 runs, with error bars
indicating 95% confidence interval.

We design two more algorithms for further comparison. For
ordered-policy, we design an algorithm that randomly places
all the VMs in the PMs and refer to it as Random; for
unordered-policy, we design a greedy algorithm called Greedy

that works as follows. For each VM pair (vi, v
′

i), the Greedy
places vi at a PM that is closest (in terms of energy cost) to
one of the MBs among all the PMs with available resources,
then from this MB it visits an unvisited MB that is closest,
so on and so forth until all the MBs are visited; and finally
places v

′

i at a PM that is closest to the last visited MB.

Ordered Policy. First we vary the number of VM pairs l
from 500, 1000, 1500, to 2000 while setting the number of
MBs m as 3 and resource capacity of each PM rc as 40.
Fig. 4 (a) shows that for each algorithm, the total energy
cost of all the VM pairs increases with the increase of l.
This is obvious as more VMs communication consumes more
energy. Besides, in all the cases, Optimal performs better than
Random, which performs better than TrafficAware. Optimal is
the only one among the three that is policy-aware, therefore
performs the best. The reason that even Random performs
better than TrafficAware is as follows. As TrafficAware assigns
VM pairs into the same PM or PMs in proximity, the VM
traffic visits all the MBs and then must return to where it
starts. In contrast, as the MBs are randomly placed as well as
the VMs in Random algorithm, VM traffic does not always
return therefore saving energies.

Fig. 4 (b) varies m from 1 to 3 to 5, while keeping l as 1000
and rc as 40. We observe that with increase of number of MBs,
the energy cost of each algorithm increases as each VM pair
traverses more MBs. Again we observe that Optimal performs
better than Random, which performs better than TrafficAware.
Finally, Fig. 4 (c) varies rc from 20, 40, 60, to 80 while
keeping l as 1000 and m as 3. We observe that Optimal
performs the best. We also observe that increasing rc reduces
the total energy costs for Optimal and TrafficAware. As both
algorithms attempt to place VMs to the PMs close to the MBs,
increasing resource capacities of PMs can thus place more
VMs closer to the MBs, therefore saving energies for these
two algorithms. Note this is not the case for the Random.

Unordered Policy. Fig. 5 shows the performance comparison
under unordered-policy. It shows that both Approximation and
Greedy outperform TrafficAware in all different scenarios,
as both are policy-aware for VM placement while Traffi-
cAware is not. Approximation performs better than Greedy,
which indirectly demonstrates the energy-efficiency of its 2-
approximation. Finally, we observe that both Approximation
and TrafficAware yield less energy cost for VM pairs com-
pared to ordered-policy (this is more evident for large l and
large m). This is because unlike in ordered policy wherein
each VM must traverse the MBs in a specific order, in
unordered policy, VM pairs can choose the order of the MBs
to traverse in order to reduce their energy cost.

V. CONCLUSIONS AND FUTURE WORK.

In this paper we have studied VMP2, a new virtual machine
placement problem in PDDCs. PDDCs have become important
infrastructures for cloud computing as the MB-based policies
provide the cloud user applications with security and per-
formance guarantees. The key observation underlying VMP2



(a) Varying l, number of VM pairs. m = 3, rc = 40.

(b) Varying m, number of MBs. l = 1000, rc = 40.

(c) Varying rc, resource capacity of PMs. l = 1000, m = 3.

Fig. 5. Performance comparison in unordered-policy.

is that current MBs are most hardware-based, therefore can
not be moved around easily once deployed; in contrast, VMs
are much easier and convenient for placement. We therefore
uncover a new algorithmic problem that places VMs inside
PDDC while respecting the existing MBs and policies, with the
objective to minimize the total energy consumption of the VM
applications. We solved VMP2 by designing optimal and ap-
proximation algorithms under ordered- and unordered-policy,
respectively. As the future work, we would like to study if
the optimality and approximability of our algorithms still hold
when different VMs require different amount of resources. We
will also study in network function virtualization, when both
MBs and VMs can be placed easily inside PDDCs, how to
design a holistic and synergistic MB and VM placement to
achieve ultimate energy-efficiency in PDDCs.
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