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Abstract—By replicating virtual machines (VMs) and placing
replica copies into data centers, not only does it distribute the
requests to virtual machines into different physical machines,
thus reducing server load, but also it achieves fault tolerance
in risks of server failures by placing multiple copies of a VM
on different servers. This paper studies the virtual machine
replication problem (VMR) in data centers, with the goal of
minimizing the total power consumption in this process. To
guarantee that each VM is available in the event of server
failure, it replicates R copies of each VM and place them into
different physical machines (PMs) in the data centers, where
R depends upon the server failure probability. We show that
VMR is equivalent to the minimum cost flow problem, which
can be solved efficiently and optimally. We further reduce the
power consumption in the data center by consolidating PMs that
store VM replicas and turning off inactive ones. In addition,
we design two time-efficient heuristic algorithms to solve VMR.
Via extensive simulations and analysis, we compare the VM
replication algorithms under different data center scenarios, and
show that our consolidation algorithm could further consolidate
50 PMs upon the VM replication algorithm in a data center of
1028 PMs.
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I. Background and Motivation

Data centers consist of tens of thousands of server machines
that support a large number of Internet services such as
social networks, video streaming, and search engines [17].
Recently more and more data centers utilize server virtual-
ization technologies for resource sharing as well as operating
cost reduction. Virtualization technologies such as VMware,
Xen and Microsoft Virtual Servers consolidate applications
previously running on multiple physical servers into a single
physical server by enabling multiple OS environments on the
same physical machine. By doing so, some of the servers can
be turned off and power consumption of data centers can be
dramatically reduced. In particular, the hardware resources of
a PM such as CPU cycles, memory, and bandwidth are divided
into several smaller isolated computing units, known as virtual
machines, which can be rented to tenants in a pay-as-you-go
manner (e.g., Amazon EC2 and Microsoft Azure).

Failures are quite common in current data centers [8], [12].
There are various server, link, switch, rack failures due to
hardware, software, and power outage problems, as well as
human errors. As the size of the data center grows, individ-
ual server and switch failures may become the norm rather
than exception in data centers. To achieve fault tolerance,

redundancy of hardware and software is usually adopted. For
example, virtual machine replication and placement in data
centers has recently drawn attentions in research community
(e.x., [10], [15]). By replicating virtual machines and placing
replica copies into data center networks, not only does it dis-
tribute the requests to virtual machines into different physical
machines, thus reducing server load, but also it achieves fault
tolerance in risks of server failures by placing multiple copies
of a VM on different servers. Since virtual machines depend
on the physical devices and platforms to function, a failure of
a hosting server becomes a serious problem in virtualization-
based cloud computing data centers. Therefore virtual machine
replication is critical to the smooth operation of data centers.

In addition, power consumption is also a big concern in
any data center. Studies have shown that two largest chunks of
power consumption in a data center go to equipment (including
servers, storages, and network devices) and cooling, each
consuming around 45% of the total power consumption in
data center [7]. The network devices in data centers include
various switches, routers, and links. They usually cost one
third to half of power consumption of the servers and storages.
Another study [1] shows that if the system is underutilized and
the servers are fully energy-proportional (that is, consuming
almost no power when idle and gradually consume more power
as the activity level increases), then the network devices will
consume nearly 50% of overall power in a data center.

However, most of the existing work of virtual machine
replication only focus on the energy consumption on server
machines, failing to consider the power consumption spent
on network devices [10], [15] (please refer to Section II for
more detailed discussion). In contrast, our work considers
power consumptions on servers as well as switches inside
the data center networks. In this paper, we propose to make
redundant deployment of VMs in anticipation of hosting
physical machine failures. In particular, we aim to create
R copies of each VM and place the replica copies in the
data center networks under the storage capacity constraint of
PM, where no two copies of the same VM are stored at the
same PM (for the purpose of fault tolerance). Our goal is to
minimize the power consumption on the switches of the data
center networks. We refer to this problem as virtual machine
replication problem (VMR). With intricate transformation of
the data center network to a flow network, we show that VMR
is equivalent to the minimum cost flow problem [2], [18],
which can be solved optimally and efficiently.



With each VM having R copies in the data center, each
copy stored at one of the PMs, we further reduce the power
consumption in data center via physical machine consolida-
tion. The goal of PM consolidation is to move the VM replica
copies into smaller number of PMs, while still satisfying
aforesaid constraints and maintaining the minimum cost flow
power consumption. This way, we can turn off more PMs
that do not store any VMs to save power consumption. The
power consumption saved in this part is on the physical
machines of the data center. We design power-efficient PM
consolidation algorithm and show that it further reduces the
power consumption in VMR. Finally, we design two power-
efficient and time-efficient heuristic VM replication algorithms
and compare all the algorithms via extensive simulations.

Paper Organization. The rest of the paper is organized as
follows. Section II gives an overview of the related literature,
and introduces the data center topology and the minimum cost
flow problem. In Section III, we formulate the VMR prob-
lem. Section IV presents the different algorithms for VMR,
including minimum cost flow-based optimal VM replication
algorithm and two heuristic algorithms. We present the PM
consolidation algorithm in Section V to further improve the
results of VMR. In Section VI, we compare all the proposed
algorithms, discuss the results in details, and present some
insights. Section VII concludes the paper and discuss possible
future work.

II. Background

Related Work. Power efficiency has become one of the
most active topics in data center research. To our surprise,
however, virtual machine replication for fault tolerance in data
centers has not been actively researched. There are only a few
publications that are reviewed below. Goudarzi and Pedram
[10] presented an approach that first creates multiple copies of
VMs and then uses dynamic programming and local search to
place these copies on the physical servers in order to minimize
the energy cost. Machida et al. [15] proposed a VM placement
method to establish a redundant configuration against physical
machine failures with less physical machines. In particular,
they studied redundant VM placement that survives at any
k physical machine failures while minimizing the number
of physical machines. Both approaches only focused on the
energy consumption on server machines, without considering
the power consumption spent inside the data center networks
such as on network links and switches. This paper considers
energy consumptions on servers as well as in the data center
network when placing replicated virtual machines.

VM placement has been an active research in recent years.
Meng et al. [16] proposed using traffic-aware virtual machine
placement to improve the network scalability, by assigning
VMs with large mutual bandwidth usage to host machines in
close proximity. Alicherry et al. [5] considered the problem
of optimal placement of computational nodes and presented
algorithms for assigning virtual machines to data nodes that
minimize various latency metrics under different constraints.

Li et al. [14] considered the cost caused by network traffics as
well as the cost caused by the utilization of physical machines,
and focused on the optimized placement of VMs to minimize
the combination of both costs. However, none of the existing
VM placement work addresses the issue of fault tolerance,
which is critical in any large-scale data center. We tackle this
challenge by replicating VMs inside data center in a power-
efficient manner.

Minimum Cost Flow Problem. The minimum-cost flow prob-
lem (MCF) [2] is to find the cheapest possible way of sending
a certain amount of flow through a flow network. In a flow
network, some nodes are supply nodes and some are demand
nodes, and the total supply equals the total demand. MCF
is to send flows from supply nodes to demand nodes with
minimum cost while the capacity constraint of each edge
is satisfied. MCF can be solved efficiently and optimally
[2]. It has been recently used to model data center network
virtualization [11] as well as efficient resource allocation for
MapReduce Applications in the Cloud [13]. We use minimum
cost flow to model a totally different problem, which is to
replicate VMs while incurring minimum energy consumption
within data center networks. To the best of our knowledge, this
is the first work that introduces minimum cost flow technique
to solve VM replication problem in data center optimally.

Data Center Topology [4]. We focus on fat-tree networks
[4] as they are widely adopted in data centers to intercon-
nect commodity Ethernet switches. Fat tree is a variation of
three-stage Clos networks [6], which is rearrangeably non-
blocking with 1:1 oversubscription ratio [4]. Rearrangeably
non-blocking means all the bandwidth available to the end
hosts can always be saturated for any communication patterns.
Over-subscription is the ratio of the worst-case achievable
aggregate bandwidth among the end hosts to the total bisec-
tion bandwidth of a particular communication topology. An
oversubscription of 1:1 indicates that all hosts may potentially
communicate with arbitrary other hosts at the full bandwidth
of their network interface.

A k-ary fat-tree is shown in Fig. 1 with k = 4, where k
is the number of ports of each switch. There are three layers
of switches: edge switch, aggregation switch and core switch
from bottom to top. Core switches handles huge amount of
traffic across the entire data center, therefore consuming lots
of energy power. In contrast, aggregate switches and edge
switches transmit less amount of traffic therefore consume
less power. The lower two layers are separated into k pods.
Pods are modular units of compute, storage, and networking
resources that are designed together as a unit in data cen-
ter, each containing k/2 aggregation switches and k/2 edge
switches, while forming a complete bipartite graph in between.
In particular, each edge switch is directly connected to k/2
physical machines; and each of its remaining k/2 ports is
connected to each of the k/2 aggregation switches from the
same pod. There are k2

4 k-port core switches, each of which
is connected to each of k pods. In general, a fat-tree built with
k-port switches supports k3

4 physical machines. In the small
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Fig. 1. A k-ary fat tree topology with k = 4 and 16 physical machines
(PMs). There are p = 5 original virtual machines (VM): (v1, v2, ..., v5)
from left to right, located at PM 3, 5, 9 15, 16, respectively.

data center of Fig. 1, there are 16 physical machines.
One observation is that in data center network, switch

power consumption varies. According to [7], a high-end switch
such as Cisco Catalyst 6500 series consume 400 to 4,000
Watts and an edge switch such as Dell Power Connect series
consumes about 100 Watts only. Accordingly, we consider
that different level of switches cost different amount of power
in our problem formulation and solution. Our cost model
generalizes the cost model in [16], in which the cost definition
is the number of switches on the path between two PMs.

III. Virtual Machine Replication Problem (VMR)

Problem Models. We model a data center as a graph G(V,E),
where V = {1, 2, ..., |V |} is a set of |V | PMs and switches,
and E is a set of edges. Let Vs denote the set of PMs, Ve the set
of edge switches, Va the set of aggregate switches, and Vc the
set of core switches. Thus, V = Vs∪Ve∪Va∪Vc. Without loss
of generality, let Vs = {1, 2, ..., |Vs|}. Each edge represents a
physical link that exists either between the switches or between
switches and PMs.

In our model, there is initially a set of p distinct original
virtual machines Vm = {v1, v2, ..., vp} in the data center
network, as shown in Fig. 1. Each VM is of unit size and
is stored in its source physical machine S(j) ∈ Vs (a source
PM can have multiple original VMs initially). Let mi be the
number of units (each unit can store one VM) of initial free
storage of PM i. If i is a source PM, the available space after
storing its original VMs is thus mi− |{1 ≤ j ≤ p|S(j) = i}|.

Let re, ra, and rc denote the power consumption in the
edge, aggregate, or core switches by relaying one VM. Let ci,j
denote the minimum power consumption of transmitting one
VM from one PM i ∈ Vs to another PM j ∈ Vs, and assume
along the way there are x edge switches, y aggregate switches,
and z core switches. Therefore, ci,j = x ∗ re + y ∗ ra + z ∗ rc.
For example, in Fig. 1, if i = 1 and j = 2, then x = 1,
y = z = 0; if i = 1 and j = 16, then x = y = 2, z = 1.
When re = ra = rc, ci,j equals the number of switches on
the path between PMs i and j.

Replication Constraint of VMs. Replica constraint of VMs
refer to the requirement that multiple replica copies of the
same VM can not be stored at the same PM, for the purpose of
fault-tolerance. This has two consequences. First, the number
of replica copies of each VM R ≤ |Vs|; otherwise, replication
constraint can not be satisfied. Second, each PM (including
the source PM) is allowed to store at most p distinct VMs,
even though its storage capacity could possibly be larger than
the total size of the p virtual machines. We therefore define
effective storage capacity as follows.

Definition 1: (Effective Storage Capacity of a PM.) The
effective storage capacity of PM i, denoted as me

i , is the
maximum storage capacity of i that can be used to store
virtual machines in VM replication. me

i is the minimum of
the available storage at i and the total size of the VMs that
can be stored at i (except its own original VMs). That is, me

i =

min{mi−|{1 ≤ j ≤ p|S(j) = i}|, p−|{1 ≤ j ≤ p|S(j) = i}|}.

�

Problem Formulation of VMR. Denote the kth replica copy
of virtual machine vj ∈ Vm, where 1 ≤ j ≤ p and k ∈
{1, 2, ..., R}, as vj,k. We define replication function r : Vm ×
{1, 2, ..., R} → Vs, indicating that vj,k is transmitted from its
source physical machine S(j) ∈ Vs to destination physical
machine r(j, k) ∈ Vs via the minimum power consumption
path between them. Here we assume that the original copy of
vj in S(j) is its primary replica copy and it is not moved,
i.e. r(j, 1) = S(j). VMR is to find a replication function r to
minimize the total replication cost, which is the sum of the
minimum power consumption of transmitting all the R − 1
replica copies (excluding the original copy) of all the p VMs:

p∑
j=1

R∑
k=2

sj × cS(j),r(j,k),

under the storage capacity constraint of each PM:

|{1 ≤ j ≤ p|r(j, k) = i}| ≤ me
i ,∀i ∈ Vs, 1 ≤ k ≤ R,

and the replication constraint of VMs:

r(j, k) 6= r(j, k
′
), 1 ≤ j ≤ p, k 6= k

′
.

IV. Algorithmic Solutions of VMR
In this section we will present the minimum cost flow based

optimal algorithm and two other efficient heuristic algorithms
for VMR.

Minimum Cost Flow (MCF) Solution. Below we show that
the VMR is equivalent to well-known minimum cost flow
problem with below transformation.
Transformation. We first transform the data center network
G(V,E), shown in Fig. 1, into a new flow network G′(V ′, E′),
shown in Fig. 2, following below five steps.
i). V ′ = {s}∪{t}∪Vm∪Vs, where s is the supply node and
t is the new demand node in the flow network.

ii). E′ = {(s, i) : i ∈ Vm} ∪ {(j, t) : j ∈ Vs} ∪ {(i, j) : i ∈
Vm, j ∈ Vs} − {(v1, S(1)), (v2, S(2)), ..., (vp, S(p))}. Note
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Fig. 2. VMR is equivalent to minimum cost flow problem. In each
parenthesis, the first value is the capacity of the edge and the second the
cost of the edge.

that there does not exist an edge between VM node vi and
S(i), the source physical machine of vi. This is because for
each VM, only its R−1 replica copies, not the original copy,
are transmitted.

iii). For each edge (s, vi), set its capacity as R − 1 and its
cost 0. For each edge (j, t), set its capacity as me

j and its
cost 0.

iv). For each edge (vi, j), vi ∈ Vm, j ∈ Vs, set its capacity as
1, and its cost as cS(i),j , the minimum energy cost sending
one VM replica from its source PM S(i) to its destination
PM j.

v). Set the supply at s and the demand at t as p · (R − 1),
which signifying that all together p · (R − 1) replica copies
must be transmitted inside the data center.

MCF Algorithm. The technique used above is similar to that
used in [19] for a closely related problem of data availability
in intermittently connected sensor networks. Next, the flow
network above (Fig. 2) is passed to a minimum cost flow al-
gorithm discussed below, which calculates the VM replication
function r. That is, for each of R−1 replica copies of each of
the p original VM, the MCF outputs its destination PM and
the path in the data center network along which the replica
copy is transmitted.
Time Complexity of Optimal VMR Algorithm. VMR algo-
rithm includes both above transformation and the minimum
cost flow algorithm. In the transformation, finding the mini-
mum energy consumption path between any two PMs takes
O(|Vs|)3, constructing G′(V ′, E′) takes p + p · (|Vs| − 1) +
|Vs| = (p + 1) · |Vs|, which is O(p · |Vs|). Therefore it
takes O(|Vs|3 + p · |Vs|) for transformation. For the minimum
cost flow, we adopt the algorithm proposed in [9], which is
based on scaling push-relabel method and its implementa-
tion works well over a wide range of problem classes. For
any flow network, the algorithm has the time complexity of
O(a2blog(ac)), where a, b, and c are the number of nodes,

number of edges, and maximum edge capacity in the flow
network. Above transformation gives that |V ′| = |Vs|+ p + 2
and |E′| = p + p · (|Vs| − 1) + |Vs| = (p + 1) · |Vs|.
Therefore the time complexity of the minimum cost flow
is O

(
(|Vs + p)2 · (p · |Vs|)log(|Vs + p| · c)

)
, where c =

max
{
R− 1,max|Vs|

i {me
i}
}

.
After all the R − 1 copies of each VM are placed in the

data center following above minimum cost flow algorithm, we
next turn off the inactive physical machines defined below.

Definition 2: (Active Physical Machine (APM) and Inac-
tive Physical Machine (IPM).) A physical machine is active
if it has at least one VM (either original or replica) stored in
its local storage; otherwise, it is considered as inactive and
therefore can be turned off. �

EXAMPLE 1: Fig. 1 shows the final placement of replica
VMs following minimum cost flow solution, with p = 5 and
R = 3. Specifically, replica VMs of v1 are placed at PM 2
and 4; replica VMs of v2 placed at PM 6 and 7; replica VMs
of v3 placed at PM 10 and 11; replica VMs of v4 placed at
PM 16 and 13; and replica VMs of v5 placed at PM 15 and
14. PMs 1, 8, and 12 are IPMs thus turned off. �

Theorem 1: VMR is equivalent to minimum cost flow
problem, therefore can be solved optimally and efficiently.
Proof: We show that with above transformation and minimum
cost flow algorithm, R − 1 copies of each VM are created
and placed with minimum total replication cost, while satisfy
replication constraint of VMs and storage constraint of PMs.

First, according to the transformation, since the amount of
supply at s is p·(R−1) (step v), and the capacity of each edge
(s, vi) (1 ≤ i ≤ p) is R− 1 (step iii) , a valid flow of amount
p× (R−1) from s to t must be divided into R−1 amount on
edge (s, v1), R− 1 amount on (s, v2), ..., and R− 1 amount
on (s, vp). Therefore R− 1 amount of flow must come out of
vi, signifying that R − 1 replica copies of each VM must be
created.

Next, since the edge capacity of each edge (vi, j), vi ∈
Vm, j ∈ Vs is 1 (step iv), and there does not exist an edge
between VM node vi and S(i) (step ii), it must be that each
of the R − 1 flows that arrive at vi travels toward a different
PM other than vi’s source PM. This satisfies the replication
constraint of VMs. Meanwhile, that the edge capacity of edge
(j, t) is me

j designates that no more than me
j amount of flow

come out of node j ∈ Vs, meaning PM node j can not
store more VM copies than what its effective storage capacity
allows. This satisfies the storage constraint of PMs.

As for the cost, note that the edge cost of (vi, j), vi ∈
Vm, j ∈ Vs is cS(i),j , the minimum power consumption
between PMs S(i) and j, while all other edges have cost zero.
This reflects the fact that only replication cost is considered
in VMR. Finally, minimum cost flow algorithm gives the
minimum cost of sending p · (R − 1) amount of flow from s
to t, showing that the corresponding replication cost obtained
is indeed minimum.

Heuristic Algorithms for VMR. In addition, we propose two
other time-efficient heuristic VM replication algorithms viz.



First Fit and Greedy, and compare them with the optimal
minimum cost flow solution via simulations.
First Fit. Suppose that all the available PMs are ordered from
left to right in the fat tree data center topology. The algorithm
starts to replicate each of the original VMs and place their R−
1 replica copies on the first available PM, the second available
PM, so on and so forth, until all the VMs have their replica
copies placed in the data center. Note that each placement
has to satisfy the storage constraint of each PM as well as
the replication constraint of VMs. Checking storage constraint
takes constant time while replication constraint takes O(m̄),
where m̄ is the average storage capacity of a PM. Therefore it
takes p · (R− 1) · m̄. Since R = O(|Vs|), the time complexity
of FirstFit is p · |Vs| · m̄.
Greedy. In this algorithm, for each VM, it places each of its
replica copies to the closest PM in terms of power consump-
tion. This continues until all the replica copies of all the VMs
are placed. Finding all the minimum energy consumption paths
between all pair of PMs takes O(|Vs|3), placing all the replica
copies takes O(p · |Vs| · m̄). Therefore the time complexity of
Greedy is O(|Vs|3 + p · |Vs| · m̄).

V. Server Consolidation Algorithm
Recall that at the end of VM replication algorithm, it turns

off all the inactive physical machines (IPMs) based on the VM
replica placement, as shown in Example 1. In this section, we
further consolidate all the left active physical machines, in
order to obtain and turn off more inactive physical machines.
This is indeed possible. To obtain more inactive PMs, the key
observation is that we can move the VM replica copies from
one active PM to another to “empty” some of the active PMs.
During consolidation, however, it needs to maintain the total
replication cost yielded by the minimum cost algorithm as
well as to satisfy the storage and replication constraints. For
example, in Fig. 1, the two replica VMs that are placed at PM
13 and 14 can be placed together in one PM, say PM 13, while
maintaining the same total replication cost and satisfying the
replication constraint of VMs (since they are replica copies
of different original VMs). We can therefore turn off PM 14,
which further saves energy power of the data centers. In server
consolidation process, the original VMs will not be moved,
because they served as the “anchor” nodes in the minimum
cost VM replication process. If they are moved around, the
obtained minimum cost replication cost is no longer achieved.
Before presenting the server consolidation algorithm, we first
give following definitions.

Definition 3: (Target Physical Machine (TPM) of a
Replica VM vj,k.) Recall that for replica VM vj,k, its source
PM is S(j) and its destination PM (from minimum cost flow)
is r(j, k). A PM i is a TPM of vj,k if a) cS(j),r(j,k) = cS(j),i,
that is, it has the same replication cost to S(j) as r(j, k) does,
b) it has enough storage to store vj,k, and c) it does not store
original VM vj or any replica VM of vj , that is, for any VM
vj′,k′ PM i stores, j′ 6= j. �

Definition 4: (Consolidating Physical Machine (CPM).)
A physical machine is CPM if it is active and it is not a source

PM (i.e., it does not store any original VM). CPMs are PMs
that can be potentially turned off and made inactive. �

Algorithm 1 works as follows. It first finds all the CPMs
that has only one replica VM, and finds the TPMs for this
replica. If at least one such TPM exists, it moves this replica
VM to any one of them and turns off this CPM and marks it
IPM. We assume that once a PM is identified as TPM, it can
no longer be turned off. Next, it finds all the CPMs that has
two replica VMs, tries to find their TPMs and turns off these
CPMs. This takes place until all the CPMs are checked.

Algorithm 1: Server Consolidation Algorithm.
Input: VM replica placement from VM replication algorithm
Output: Number of IPMs.
0. Notations:

m: largest number of replica VMs a CPM stores
Nipm = 0: number of IPMs

1. for (i = 1 to m)
2. for (each of the CPMs that has i replica VMs)
3. flag = true;
4. for (each of the replica VMs)
5. if (it can find a TPM)
6. move the replica VM to the TPM
7. else
8. flag=false;
9. break;
10. end if;
11. end for;
12. if (flag == true)
13. Nipm + +; /*This CPM can be turned off */
14. end for;
15. end for;
16. RETURN Nipm. /*Return number of IPMs */

We emphasize that server consolidation does not incur extra
energy consumption on top of VM replication. To achieve
that, the VM replicas are not physically placed in the data
center until server consolidation is done, at which point the
final placement of all the VM replicas is decided. The total
energy consumption for VM replication and PM consolidation
is still the one yielded by the minimum cost flow based VM
replication algorithm.

Time Complexity. Finding all the minimum energy consump-
tion paths between all pair of PMs takes O(|Vs|3). Finding the
largest number of replica VMs a CPM stores takes O(|Vs|).
There are three for loops in Algorithm 1. For the outermost
and innermost ones, each takes O(m̄), where m̄ is the average
storage capacity of a PM. For the for loop in between, it takes
O(|Vs|). To check if a replica VM has a TPM or not takes
O(|Vs|·m̄). Therefore the total time complexity of Algorithm 1
is O(|Vs|3 + m̄3 · |Vs|2).

VI. Performance Evaluation

Simulation Setting. In this section, we compare the perfor-
mances of the three VM replication algorithms viz. Optimal,
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Fig. 3. Performance comparison by varying p, number of original VMs.
Here, k = 8 and R = 7.

Greedy, and FirstFit, as well as the performances between
Optimal and server consolidation algorithm. We generate data
centers of different sizes: k = 8, a small data center with 128
PMs; and k = 16, a large data center with 1028 PMs. The
original VMs are randomly generated on the PMs. The size
of each VM (and its replica copies) is 1 unit. The storage
capacity of each PM is 30, which means each PM can store
maximum 30 VMs. This is consistent with real-world scenario.
For example, 30 VMs could run on the same host virtualized
with Microsoft Hyper-V on Cisco UCS blades that offer 256
GB RAM and two eight-core Intel E5-2665 CPUs. Recall that
re, ra, and rc denote the power consumption of transmitting
one VM on the edge, aggregate, and core switches respectively.
Throughout the simulation, we set re = ra = rc = 1 (that is,
the power consumption is measured as number of switches a
VM traverses [16]). We also vary them to reflect the fact that
high-end core switches consume more power than aggregation
and edge switches. In all the simulation plots, each data point
is the average of five runs, and the error bars indicate 95% of
confidence interval.

VM Replication Algorithms. Fig. 3 and Fig. 4 compare the
three algorithms in a data center of 128 PMs, by varying
number of original VMs p and number of replica copies of
each VM R, respectively. It shows that with the increase of
either p or R, the replication cost of all three algorithms
increase. In all cases, however, Optimal performs the best,
while Greedy performs very closely as Optimal. Both algo-
rithms cost roughly half of the power consumption that FirstFit
incurs. Table I further shows that the number of active PMs
resulted from the three algorithms. It shows that when p is
small (100 or 200), FirstFit yields least number of active
PMs among the three algorithms; while when p gets large, all
the PMs are active in all three algorithms. This is consistent
with previous finding that FirstFit performs well in terms of
server consolidation [3], even though it incurs the highest VM
replication costs.
Study of Scalability. Since the performances of Optimal and
Greedy are comparable, next we only focus on these two.
Table II shows the replication costs of both algorithms in a
small 128-PM data center and a large 1028-PM data center.
For fair comparison, we set all the parameters such that after
replication, the entire storage capacities of both data centers
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Fig. 4. Performance comparison by varying R, number of replica copies of
each VM. Here, k = 8 and p = 300.

TABLE I
NUMBER OF ACTIVE PHYSICAL MACHINES BY VARYING p, NUMBER OF

ORIGINAL VMS. HERE, k = 8 AND R = 7.

Algorithms p = 100 p = 200 p = 300 p = 400 p = 500
Optimal 126 128 128 128 128
Greedy 124 128 128 128 128
FirstFit 80 113 123 127 128

are half occupied. The last column, Improvement Percentage,
is calculated as the replication cost difference between Optimal
and Greedy divided by replication cost of Greedy. It shows
that in small data center, Optimal improves upon Greedy by
2.2% while in large data center, it is 11.2% improvement. This
shows that Optimal algorithm performs better than Greedy in
large data centers therefore is more scalable.

Varying re, ra, and rc. We set re = 10, ra = 5, and rc = 1 to
reflect the observation that core switches consume more power
than aggregation switches, which consume more power than
edge switches. Fig. 5 shows the replication cost of FirstFit is
five- to ten-times higher that those in Optimal and Greedy.
Comparing with Fig. 3, this shows that the performance
difference between FirstFit and the other two algorithms is
much larger in this case. This is because the placement of
replica VMs in FirstFit goes through the core switches more
frequently than the other two, which costs more power when
re is 10 as opposed to re is 1.

Server Consolidation Algorithm (Algorithm 1). Finally we
study the performance of the proposed server consolidation
algorithm in a 1028-PM data center, and show the num-
ber of inactive physical machines (IPM) obtained from this
algorithm. Fig. 6 shows that with the increase of R, the
number of IPMs decreases. This is because more VM replica
copies spread into data center, making the consolidation more

TABLE II
STUDY OF SCALABILITY. FOR 128-PM DATA CENTER, p = 300 AND

R = 7. FOR 1028-PM DATA CENTER, p = 1500 AND R = 10.

Data Center Size Optimal Greedy Improvement
Percentage (%)

128 3600 3684 2.2
1024 37352.8 42086.4 11.2
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Fig. 6. Server consolidation by varying R, number of replica copies of each
VM. Here, k = 16 and p = 200.

difficult. Fig. 7 shows the number of IPMs by varying p,
number of initial VMs. The reason that p = 400 has the
highest number of 50 IPMs is because in this case, replica
copies of the same VMs could spread to PMs under different
edge switches, giving rise of the scenario that replica copies
from different VMs could be consolidated on the same PMs.

VII. Conclusion and Future Work

We designed power-efficient optimal and heuristic VM
replication algorithms. VM replication is an important measure
to overcome server failure in data centers, and provides
good service to cloud-based data center users. We consider
conserving power consumption inside the data center networks
such as switches and links, as well as the power consumptions
on the physical machines. For the former, we designed an
optimal and efficient virtual machine replication algorithm.
For the latter, we proposed an efficient server consolidation
algorithm that turns off unused physical machines. Extensive
simulation results showed that our algorithms perform well
under different data center scenarios. Currently, our server
consolidation algorithm is a heuristic algorithm. As one of the
future work, we would like to study the hardness of the server
consolidation problem, and propose optimal or approximation
algorithms.
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