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Abstract—Service function chaining (SFC), consisting of a
sequence of virtual network functions (VNFs), provides effective
and flexible network service management in a cloud computing
environment. Due to the vulnerabilities of software-implemented
VNFs, existing research has introduced VNF backup servers to
achieve the fault-tolerance of VNFs and improve the availability
of SFCs. However, they either do not consider the failures of
backup servers or do not aim to maximize the availability of
the entire SFC. In this paper, we study how to maximize the
availability of an SFC, considering that both VNFs and backup
servers can fail. We refer to the problem as SAM: service
function chaining availability maximization problem. Given an
SFC and a set of backup servers placed inside a cloud data
center network, the failure probabilities of the VNFs and the
backup servers, the goal of SAM is to assign backup servers to
VNFs to maximize the availability of the SFC while satisfying
the backup capacity constraint of the servers. We design a suite
of optimal and efficient algorithms to solve SAM. Via extensive
simulations with different network parameters, we show that our
work outperforms the existing research by up to 21.7% in SFC
availability, demonstrating the effectiveness of our algorithms in
achieving high fault tolerance of SFC in cloud data centers.

Keywords – Virtual Network Functions, Service Function
Chaining, Availability, Cloud Data Centers

I. Introduction

Motivations. Network Function Virtualization (NFV) is a
cost-effective and flexible technique to provision network
services in a cloud environment [11], [19]. With NFV, pro-
prietary hardware middleboxes (MBs) such as firewalls, cache
proxies, and load balancers can now be implemented as virtual
network functions (VNFs) running as lightweight containers
on general-purpose commodity hardware [5], [18]. Being
instantiated and deployed dynamically, VNFs provide per-
formance and security guarantees to cloud user applications
flexibly and cost-effectively. In particular, cloud providers
create service function chains (SFCs), which consist of a
sequence of VNFs of different functions, and require virtual
machine (VM) application traffic to traverse the SFC to receive
the performance and security support [9].

Despite the achieved flexibility and low cost, implementing
hardware MBs into software VNFs poses significant chal-
lenges to achieving the reliability and fault-tolerance of VNFs.
Compared to dedicated proprietary hardware MB devices, the
VNFs are more vulnerable to software misconfiguration, bugs,
and malfunctions than their hardware counterpart [16]. Be-
sides, as the VM traffic must traverse all the VNFs in the SFC

to achieve requested security and performance guarantees, the
failure of any of its constituent VNFs renders the entire SFC
inoperative and its service unusable, further exacerbating the
problem. Therefore, achieving the fault-tolerance for VNFs
and maximizing the availability of the SFC becomes a critical
problem.

One common approach is to deploy VNF backup servers
[13], [14], [6], [7], where a backup copy of the VNF is in-
stalled.1 For each active VNF in the SFC, its state information
for failure recovery is synchronically updated to its assigned
backup server. If any active VNF fails, its corresponding
backup VNF is activated, and the VM traffic can then be
redirected immediately to it to finish the remaining SFC
traversal. This approach has been shown to increase the fault-
tolerant capabilities of the SFCs dramatically [20], [24], [21],
[4].

However, we have two observations about all the above
research. First, as VNFs are usually more vulnerable than their
backup servers, much of the current research only considered
the failures of the VNFs [13], [14], [6] or the devices that
host them [7], [20], [10], and did not consider the failures
of the backup servers. In practical NFV environments, backup
servers are implemented as virtual machines or containers [10],
thus having non-negligible failure rates as well. Therefore,
to guarantee a robust availability provision for SFCs, it is
critical to consider the failures of the backup servers. Second,
as backup servers are resources for redundancy, most of the
research focused on reducing such resource consumption (e.g.,
number of backup servers) while achieving the required high
availability of the SFCs [6], [7], [24]. This implicitly assumes
that there are always enough backup resources to achieve such
high availability. This, unfortunately, is not always the case
for cloud providers, as there are always a limited amount of
resources at their disposal.

Our Contributions. In this paper, we ask the following
question: Considering the failures of both the VNFs and their
backup servers (with limited backup capabilities) in a cloud
environment, how to allocate the backup resources to VNFs to
maximize the availability of the entire SFC?

We identify, formulate, and solve a new algorithmic
problem called SAM: service function chaining availability

1Note that a backup server is not necessarily a physical server. It could be
a virtual machine (VM) or a dedicated set of libraries.



maximization. Given an SFC consisting of a sequence of
VNFs, a set of backup servers with limited backup resource
capacities, and the failure probabilities of both VNFs and
backup servers, the goal of SAM is to assign backup servers to
VNFs to maximize the availability of the SFC while satisfying
the resource capacities of the backup servers. SAM can be
modeled as a minimum cost flow problem [2], which can be
solved efficiently and optimally. We also propose two greedy
heuristic algorithms to solve SAM, one drawing inspiration
from existing research [10]. Via simulations of different net-
work parameters, we show that our algorithms outperform the
existing research [10] that considers the failures of both VNFs
and backup servers by up to 21.7%. This demonstrates the
effectiveness of our algorithm in achieving the high availability
of SFC in cloud environments.

II. Related Work

There are two mechanisms for VNF backup servers. One
is called dedicated backup, wherein at least one standby VNF
instance (on an exclusive backup server) is required for each
active VNF. Fan. et al. [6] studied how to minimize the num-
ber of backup servers while meeting the overall availability
demand of the SFC. Their follow-up work [7] presented a
more general framework to provision SFC request availability
with multiple layers of connected devices and heterogeneous
failure processes. The other is called shared backup, wherein
a backup server is allowed to protect multiple VNFs. Kanizo
et al. [13] considered how to assign backup servers to MBs
to maximize the overall probability of recovering all failing
VNFs or maximize the number of functions that can be recov-
ered simultaneously. They provided a few heuristic algorithms.
Their following work [14] analyzed the maximum number of
failing VNFs that can be fully recovered by a given number
of backup servers. It also showed the minimum number of
backup servers required to guarantee full recovery for a given
number of failing functions.

We take the second approach as it reduces costs by resource-
sharing among the standby instances of the different VNFs.
Besides, all the above works only considered the failure prob-
ability of VNFs while we consider the failures of both VNFs
and backup servers in a more practical cloud environment.

There are only a few works that considered the failure rates
of both the VNFs and their backup servers. Zhang et al. [24]
considered that VNF may request heterogeneous resources and
proposed to minimize the backup resource consumption while
meeting the overall availability demand. He et al. [10] aimed
to find an assignment of backup servers to VNFs to minimize
the maximum unavailability among all the active VNFs. They
showed the problem is NP-hard and proposed a few heuristic
algorithms. Although their goal improves the availability of
the most vulnerable VNF in an SFC, it does not necessarily
improve the availability of the entire SFC. As the cloud traffic
must traverse the entire SFC to receive its network services,
optimizing the availability of the entire SFC is more relevant
to the cloud operators to provide quality of service to cloud

users. Via extensive simulations, we show that our work indeed
achieves higher SFC availability than that of [10].

Qu et al. [20] proposed a VNF placement and traffic routing
optimization framework that jointly maximizes the availability
of SFCs and minimizes the end-to-end delays of service
requests. Huang et al. [12] aimed to maximize the number
of requests admitted while meeting the specified reliability
requirement of each admitted request. This work was then
extended to mobile edge cloud with IoT applications, to study
the VNF service reliability by jointly considering the reliability
of both VNF instances and cloudlets [17]. Wang et al. [22]
focused on the parallelized SFC placement problem in DCN
considering availability guarantee and resource optimization.
Shang et al. [21] proposed a VNF reliability-aware adaptive
deployment scheme named RAD to efficiently place and back
up SFCs over both the edge and the cloud. RAD does not
assume failure rates of VNFs but instead strives to find the
sweet spot between the desired availability of SFCs and the
backup cost. Kong et al. [15] adopted both backup network
paths and VNF replicas to guarantee an SFC’s availability.

However, none of the above works studied the problem
of SFC availability maximization, which is the topic of this
paper. To the best of our knowledge, our work is the first to
explicitly maximize the availability of the entire SFC under
the constraints of limited backup resources while considering
the failure of both VNFs and backup servers.

III. Problem Formulation of SAM

Problem Formulation. We model a VNF-enabled data center
as an undirected general graph G(V = Vp ∪ Vs, E), where
Vs = {s1, s2, ..., s|Vs|} is the set of |Vs| switches and Vp =
{p1, p2, ..., p|Vp|} is the set of |Vp| physical machines (PMs),
and E is the set of edges connecting two nodes (either a switch
or a PM) in V . Each switch is attached to a VNF backup server
which can install multiple backup VNFs. Each backup server
i ∈ Vs has a resource capacity of ri, indicating that it has the
source to install and keep constant updates with at most ri
VNFs. Besides, backup server i has a failure probability pi.
We use Vs to refer to both the set of switches and the set of
backup servers, as the context is clear to distinguish them.

There is a service function chain (SFC) in G consisting of
m VNFs, which is denoted by M = {v1, v2, ..., vm}. vj ∈
M is installed at switch s(j). The failure probability of vj
is qj . We assume that both pi and qj are independent and
identically distributed random variables. To recover from the
possible failure, each VNF must be assigned a backup server
and constantly update with it. If VNF vj’s assigned backup
server is si, then the unavailability of vj , denoted by fj,i =
qj ·pi, is the probability of both vj and si fail simultaneously.
Thus the availability of vj , which is the probability that vj is
available, is 1− qj · pi. We define a backup server assignment
function as a : [1, 2, ...,m] → [1, 2, ..., |Vs|], indicating that
the backup server of VNF vj ∈ M is sa(j) ∈ Vs. Then the
availability of the entire SFC is defined as follows.

Definition 1: (Availability of an SFC.) The availability of
an SFC M is defined as the probability that all the VNFs



in M are available. Let A(a) denote the availability of the
SFC given a backup server assignment function a; A(a) =
(1− f1,a(1)) · (1− f2,a(2)) · ... · (1− fm,a(m)). �

The objective of SAM is to find an a to maximize A(a)
under the constraint that each VNF server i ∈ Vs can be the
backup server of at most ri VNFs; that is, |{j|i ∈ s(j), 1 ≤
j ≤ m}| ≤ ri, ∀i ∈ Vs. Table I shows all the notation.

Theorem 1: Maximizing A(a) is equivalent to minimizing∑
1≤j≤m f ′(j, a(j)), where f ′(j, a(j)) = log 1

(1−fj,a(j))
.

Proof: To maximize A(a) is to maximize logA(a), where

logA(a) = log
(
(1− f1,a(1)) · ... · (1− fm,a(m))

)
= log(1− f1,a(1)) + ... + log(1− fm,a(m)).

(1)

Next, maximizing logA(a) is equivalent to minimizing
−logA(a), where

−logA(a) = log
1

(1− f1,a(1))
+ ... + log

1

(1− fm,a(m))
. (2)

Let f ′(j, a(j)) = log 1
(1−fj,a(j))

. Therefore the goal of the
SAM is to minimize

∑
1≤j≤m f ′(j, a(j)).

Discussions. Note that in our problem formulation, multiple
VNFs of the same SFC can have the same backup server as
long as its resource capacity allows. However, in this case, the
failure among multiple VNFs in the same backup server can
still be considered independent. This is because the software
failure of VNFs and the hardware failure of the backup are
not correlated. In this work, we only consider a single SFC in
order to achieve an optimal solution and rigorous analysis. It
is non-trivial to extend our problem and solution to the case
of multiple SFCs. We leave it as our future work.

IV. Algorithmic Solutions to SAM

In this section, we present an optimal and efficient algorithm
to solve SAM based upon Theorem 1. In particular, we
show that minimizing

∑
1≤j≤m f ′(j, a(j)) on data center

graph G(V,E) is equivalent to a minimum cost flow (MCF)
problem on a flow network G(V ′, E′) properly transformed
from G(V,E). We first introduce the MCF problem and its
algorithms and then show the detailed procedures of the trans-
formation. We also present two heuristic greedy algorithms,
one of which is inspired by an existing work [10].

MCF Problem and Algorithms. Let G′ = (V ′, E′) be
a directed graph representing a flow network, wherein the
capacity and cost of an edge (u, v) ∈ E′ are denoted
by p(u, v) and c(u, v), respectively. The amount of supply
from source node s ∈ V ′ and the amount of demand at
sink node t ∈ V ′ is d. Denote a flow on edge (u, v) as
f(u, v), f : E′ → R+. f(u, v) is subject to (a) capacity
constraint: f(u, v) ≤ p(u, v),∀(u, v) ∈ E′ and (b) flow
conservation constraint:

∑
u∈V ′ f(u, v) =

∑
u∈V ′ f(v, u), for

each v ∈ V ′\{s, t}. The goal of MCF is to find a flow function
f such that the total cost of sending d amount of flow from s
to t, which is Σ(u,v)∈E′

(
c(u, v) · f(u, v)

)
, is minimized.

MCF can be solved optimally and efficiently by many
combinatorial algorithms including cycle-canceling, succes-
sive shortest path, out-of-kilter algorithm, cost- and capacity-
scaling, and network simplex algorithm [2]. In this paper,
we adopt the scaling push-relabel algorithm proposed by
Goldberg [8], which is by far the MCF algorithm implemen-
tation that has the highest performance. Its time complexity is
O(A2 ·B · log(A ·C)), where A, B, and C are the number of
nodes, number of edges, and maximum edge capacity in the
flow network, respectively.

Graph Transformation. Next, we transform the data center
graph G(V,E) into a flow network G′(V ′, E′). Fig. 1 shows
the following five steps.
Step I. V ′ = {s}∪{t}∪M∪Vs. Here, s is the source node and
t is the sink node in the flow network, M = {v1, v2, ..., vm}
is the set of m VNFs, and Vs is the set of backup servers.

Step II. E′ = {(s, vj)} ∪ {(vj , si)} ∪ {(si, t)}, where vj ∈
M and si ∈ Vs. Note that it is a complete bipartite graph
between M and Vs.

Step III. For each edge (s, vj), set its capacity as 1 and cost
as 0. For each edge (si, t), set its capacity as ri, the resource
capacity of si, and cost as 0.

Step IV. For each edge (vj , si), set its capacity as 1 and cost
as f ′(j, i).

Step V. Set the supply at s and the demand at t as m, the
number of VNFs in the SFC M.
Thus, |V ′| = m + |Vs|+ 2 and |E′| = m + |Vs|+ m · |Vs|.

TABLE I
NOTATION SUMMARY

Notation Explanation
G(V,E) Data center network, V = Vp ∪ Vs

Vp Set of |Vp| PMs in G(V,E)
Vs Set of |Vs| switches or VNF backup servers in G(V,E)
M An SFC of m VNFs vj , 1 ≤ j ≤ m
i index for VNF backup servers, 1 ≤ i ≤ |Vs|
j index for VNFs, 1 ≤ j ≤ m
ri The resource capacity of VNF backup server si ∈ Vs

pi Failure probability of VNF backup server si ∈ Vs

qj Failure probability of VNF vj ∈M
fj,i Unavailability of VNF vj with backup server si ∈ Vs

s(j) The switch where VNF vj is installed
a Backup server assignment function
sa(j) Backup server sa(j) ∈ Vs of VNF vj under assignment a
A(a) SFC availability under backup server assignment a

Theorem 2: The SAM in data center network G(V,E) is
equivalent to the MCF in flow network G′(V ′, E′).
Proof: We need to show that by applying the MCF algorithm
upon G′(V ′, E′), it achieves the maximum availability for the
SFC M in G(V,E) while satisfying the capacity constraints
of backup servers and that each VNF is assigned with one
backup server.

First, with the above transformation, sending m amount of
flow from s to t in G′(V ′, E′) ensures that each of the m
VNFs in M is assigned to one backup server. In particular,
since the amount of supply at s is m and the capacity of each
edge (s, vj) is one, a valid flow of m amount from s to t must
have one amount of flow on edge (s, vj). Then, due to the flow
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Fig. 1. The SAM is equivalent to the MCF problem. The values in parenthesis
are the capacity and cost of an edge, respectively.

conservation on each node vj , there must be one amount of
flow that comes out of vj and goes to a backup server sj . This
indicates that each vj will be assigned to one of the backup
servers at the end of MCF computation.

Next, the edge capacity of ri on edge (si, t) ensures that
no more than ri amounts of flow coming out of backup server
si. The flow conservation at si thus ensures that no more than
ri amounts of flow come into si. This indicates that si can be
the backup server of at most ri VNFs, satisfying the capacity
constraint of si.

Finally, as the cost on (vj , si) is f ′j,i, the MCF algorithm
finds a backup server to VNF assignment with a minimum sum
of the costs of f ′j,i on all edges. Combined with Theorem 1,
this shows that this assignment indeed achieves maximum
availability for SFC M.

Time Complexity. Our optimal algorithm that finds the maxi-
mum SFC availability consists of two steps: the graph transfor-
mation from G(V,E) to G′(V ′, E′) and then applying scaling
push-relabel MCF algorithm [8] on G′(V ′, E′). The graph
transformation takes O(m · |Vs|) and the MCF algorithm takes
O
(
|V ′|2 · |E′| · log(|V ′| ·max{ri})

)
. As |V ′| = m + |Vs|+ 2,

|E′| = m+|Vs|+m·|Vs|, the time complexity of our algorithm
is O

(
|Vs|3 ·m · log(|Vs| ·max{ri})

)
.

Heuristic Algorithms for SAM. In addition, we propose two
more time-efficient heuristic algorithms. One is called Sorted
Greedy Algorithm (i.e., Algo. 1) and the other is called Reverse
Sorted Greedy Algorithm (i.e., Algo. 2).

Sorted Greedy Algorithm. Algo. 1 works as follows. We first
sort all the VNF backup servers in the non-descending order
of their failure probabilities (line 1) and sort all the VNFs in
the non-ascending order of their failure probabilities (line 2).
Then for each backup server i, we assign ri number of VNFs
that have not been assigned to any backup server (lines 5-11).
This continues until all the m VNFs are assigned their backup
servers. The time complexity of Algo. 1 is O(|Vs| · log|Vs|+
m · logm).

Algorithm 1: Sorted Greedy Algorithm for SAM.
Input: Data center G(V,E) with failure probability pi for

backup server si and failure probability qj for VNF vj ;
Output: VNF backup server assignment a and SFC

availability A(a).
0. Notations:

l: index of the resources for VNF backup servers;
flag: assignment is done or not, initially false;

1. Sort all the backup servers in non-descending order
of qi; WLOG, q1 ≤ q2 ≤ ... ≤ q|Vs|;

2. Sort all the VNFs in non-ascending order of pj ;
WLOG, p1 ≥ p2 ≥ ... ≥ pm;

3. l = 1;
4. for (i = 1; i ≤ |Vs|; i++)
5. for (j = l; j < l + ri; j++)
6. a(j) = i; // Assign server si to vj
7. if (j ≥ m)
8. flag = true;
9. break;
10. end if;
11. end for;
12. if (flag == true) break;
13. end if;
14. l = l + ri; // Assign next backup server;
15. end for;
16. RETURN a and A(a).

Reverse Sorted Greedy Algorithm. Algo. 2 is different from
the Sorted Greedy Algorithm only in one step. Instead of
sorting all the VNFs vj in the non-ascending order of pj
(Algo. 1, line 2), it sorts them in the non-descending order
of pj . The rest of the algorithm is the same as lines 3-16 in
Algo. 1 and thus are omitted below. Its time complexity is
also O(|Vs| · log|Vs|+ m · logm).

Algorithm 2: Reverse Sorted Greedy Algorithm for SAM.
Input: Data center G(V,E) with failure probability pi for

backup server si and failure probability qj for VNF vj ;
Output: VNF backup server assignment a and SFC

availability A(a).
0. Notations:

l: index of the resources for VNF backup servers;
flag: assignment is done or not, initially false;

1. Sort all the backup servers in non-descending order
of qi; WLOG, q1 ≤ q2 ≤ ... ≤ q|Vs|;

2. Sort all the VNFs in non-descending order of pj ;
WLOG, p1 ≤ p2 ≤ ... ≤ pm;

Discussions and State-of-the-Art [10]. The rationale underly-
ing both algorithms is that to maximize the availability of
the entire SFC, we should first utilize backup servers with
the lowest failure probabilities. However, it is not clear if
VNFs with the highest (Algo. 1) or lowest (Algo. 2) failure
probabilities should be assigned first, which is explored in
the simulations. He et al. [10] is one of the few works
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Fig. 2. Varying m, number of VNFs. Here, ri = 1, 0.025 ≤ qj ≤
0.175, k = 8.

that considered both VNFs and backup server failures. They
studied how to assign backup servers for MBs to minimize the
maximum unavailability of the MBs. As the problem is NP-
hard, they proposed a few heuristic algorithms, one of them is
the Sorted Greedy Algorithm (i.e., Algo. 1). In Section V, we
show that our MCF algorithm constantly achieves higher SFC
availability than SGA under different network parameters.

V. Performance Evaluation
In this section, we compare our designed algorithms with

the existing work [10]. We refer to the optimal MCF algorithm
as MCF, the Sorted Greedy Algorithm (i.e.. Algo. 1) as SGA,
and the Reverse Sorted Greedy Algorithm (Algo. 2) as RSGA.
Simulation Setup. For the simulations, we use k-ary fat-trees
[3], where k is the number of ports of each switch. Fat-tree
topologies are widely adopted in data centers to interconnect
commodity Ethernet switches.2 We consider both k = 8 and
k = 12 fat-trees. Following [10], the failure probability of
VNFs is randomly in the range of [0.025, 0.175], and the
failure probability of backup servers is in the range of [0.01,
0.05] or [0.01, 1], unless otherwise mentioned. Each data point
in the plot is an average of 10 runs with a confidence interval
of 95%. For a fair comparison, we apply different algorithms
on the same SAM instance with the same VNF placement and
failure probabilities of VNF and backup servers. As real-world
SFCs [1] consist of up to 13 VNFs, we consider the number
of VNFs m in an SFC to be at most 13 unless otherwise
mentioned. The VNFs are randomly installed on the different
switches in the data center. The backup servers are attached
to the switches that do not have VNFs installed.
The Case of ri = 1. We first study a basic case of ri wherein
each backup server’s backup capacity is 1; that is, it can only
install one backup VNF. Fig. 2 compares different algorithms
by varying numbers of VNFs m while setting the failure
probabilities of VNFs qj randomly in [0.025, 0.175]. Fig. 2(a)
focuses on more reliable backup servers with pi ∈ [0.01, 0.05]
while Fig. 2(b) on less reliable backup servers with pi ∈
[0.01, 1]. For both cases, we observe that with the increase
of m, the SFC availability for each algorithm decreases. This
shows the fundamental vulnerability of SFC: the more VNFs
it has, the more it is prone to failure. Second, we observe that
MCF achieves the same SFC availability as the SGA does in
most cases, and both perform better than RSGA. This partially

2However, our designed algorithms are applicable to any topologies.
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Fig. 3. Varying ri, resource capacity of backup servers. Here,
0.025 ≤ qj ≤ 0.175, m = 13, k = 8.

supports our claim that the MCF algorithm is optimal. That
SGA performs better than RSGA shows that when ri = 1,
assigning the most vulnerable VNFs (i.e., with the highest
failure probabilities) to the most reliable backup server (i.e.,
with the smallest failure probability) is a good practice to
increase the availability of the entire SFC chain. Finally,
comparing Fig. 2(a) and (b) shows that for each algorithm,
the resultant SFC availability is lower when backup servers
have higher failure rates.

The Effects of Varying ri. Next, Fig. 3 investigates the effects
of varying ri. First, it shows that with the increase of ri, the
resulting SFC availability from all the algorithms increases.
This is because with larger ri, backup servers with low failure
probabilities are able to accommodate and back up more
VNFs, improving the SFC availability. Second, unlike Fig. 2,
which shows that MCF and SGA perform mostly the same
at ri = 1, it shows that MCF outperforms SGA in most
cases. When backup servers have more resources, the MCF,
being optimal, is more effective than SGA in achieving SFC
availability. Finally, the SFC availability in Fig. 3(b) is at least
0.981, which is much higher than those between 0.84 to 0.96
in Fig. 3(a). This again demonstrates that SFC availability gets
lower when backup servers have higher failure rates.
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The Effects of Varying qj . Finally, we investigate the effects
of varying qj , the VNF failure probabilities, in large-scale
k = 12 fat-tree cloud data centers. Following [10], we consider
SFCs of m = 100 VNFs.3 Fig. 4(a) and (b) show the
performance comparison for ri = 5 and ri = 10, respectively.
Again, we observe MCF performs the best in all the cases
with larger SFC availability, partially supporting our claim

3As an SFC in the real world consists of up to 13 VNFs [1], here we adopt
the parameters from existing work only for the comparison purpose.



TABLE II
PERFORMANCE DIFFERENCES BETWEEN MCF AND SGA (%).

qj [0,0.04] [0.04,0.08] [0.08,0.12] [0.12,0.16] [0.16,0.20]
ri = 5 3.5 8.0 5.2 9.2 12.7
ri = 10 2.1 3.9 8.4 15.8 21.7

that MCF is an optimal algorithm that achieves maximum SFC
availability. Second, we observe that for different algorithms,
the resulting SFC availability decreases with the increase of qj .
This is evident as the more vulnerable the constituent VNFs,
the less availability of the entire SFC. Third, it is interesting to
notice that RSGA outperforms SGA in most cases by yielding
slightly larger SFC availability.

Table II shows the performance differences between MCF
and SGA from Fig. 4. We observe that it increases with the
increase in the VNF failure probabilities of qj . As the MCF
algorithm is optimal and is more involved than a simple greedy
algorithm like SGA, it is able to figure out the best backup
assignment in a more stressful scenario of high VNF failures.
Finally, it shows that this performance difference is larger in
ri = 10 than in ri = 5. This shows our algorithm performs
much better than existing work when there are more backup
resources in the network. In particular, it shows that when
ri = 10, MCF outperforms SGA by up to 21.7% in terms of
SFC availability.

VI. Conclusion and Future Work
We have proposed a fault-tolerant SFC framework named

SAM that maximizes availability for SFCs considering both
VNFs and backup server failures. In contrast, most of the
existing research either just considered the failures of VNFs, or
did not strive to maximize the availability for the entire SFC.
We solved SAM by designing a minimum cost flow-based
optimal and efficient algorithm and a suite of time-efficient
heuristic algorithms. Via extensive research, we show our work
outperforms the existing research considering the availability
of both the VNFs and backup servers by up to 21.7%. This
demonstrates the effectiveness of our algorithms in achieving
high availability of SFC in cloud environments.

In future work, we will first extend SAM into the multiple
SFCs case wherein different VNFs could need different pro-
cessing capabilities. For example, a firewall VNF could cost
twice as much memory as a NAT (network address translation)
VNF [6]. Second, currently, we focused on stateless VNF
updates, wherein the communication costs between VNFs and
their backup servers are not considered. In the future, we will
consider stateful VNF updates, wherein the stand-by VNF
instances require constant state updates from active instances.
As pointed out by [23], such state updates could consume
considerable network bandwidth resources. How to maximize
the SFC availability and minimize the bandwidth consumption
of the VNF state updates under both VNF and backup server
failures become a new challenging problem.
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