Analyzing the Convergence of Multi-Agent Reinforcement Learning for Budget-Constrained Prize-

 Collecting Travelling Salesman Problem using ILPBy: Christopher Gonzalez, Andrew Asendorf, Mentor: Dr. Bin Tang
Department of Computer Science, California State University, Dominguez Hills

- Given a weighted complete graph with a set of nodes and edges, each edge has a weight, indicating a travel distance or a cost and each node has a weight, indicating the prize available at that node.
Given any two nodes, the goal of the BC-TSP to find a route between the two nodes such that the prize collected is maximized while the total distance below or equal to the Budget.

Fig. 1: An example.
Fig. 1 shows a BC-TSP with a budget of 8 . The numbers on the edges are their weights and the numbers in the parentheses are the prizes available at the nodes. Assuming the source and destination nodes are E and C respectively, the optimal walk is E,D,B,C with a total prize of 8 and a total cost of 8 .
BC-TSP is an NP-hard problem

- Previous work used heuristics and a reinforcement learning algorithm to try to solve the BC-TSP [1] but did not show how they compare to optimal solutions or if the reinforcement algorithm converges to an optimal solution.
This work compares RL algorithms to the optimal solution by optimally solving BC-TSP by formulating it as an integer linear program (ILP)

BC-TSP is solved optimally with ILP using the above formulation. The formulation's objective is to maximize the prize collected with respect to several constraints that enforce a single tour from the source to the destination, with a cost lower than the budget. The optimal solution is compared with two
reinforcement algorithms and determine their convergence

- The above multi-agent reinforcement learning algorithm (P-MARL) augments Q-learning by using multiple agents that are independent and cooperative learners. Fig 2. shows the workflow of P-MARL

Fig. 2: Workflow of the P-MARL
Lastly, P-MARL is compared to two greedy algorithms GA1 and GA2. For GA1, starting from the first city, the city with the highest prize is visited until there are no unvisited cities or there are no more budget feasible cities to travel to. GA2 is like GA1, except the city with the highest prize to distance ratio is visited instead.

Conclusions and Future Work

- For the P-MARL and Ant-Q algorithms, the learning rate used was 0.1 , the discount factor was 0.35 , and the number of learning episodes was 4000 . To evaluate the performance of \mathbf{P} MARL, first it is compared to GA1 and GA2 on a traveling salesman tours of 48 state capital cities with varying budgets.

Then, P-MARL is compared to the optimal ILP solution (ILP), and Ant-Q MARL [2] (Ant-Q) on travelling salesman tours of 10 cities with varying budgets

- These Algorithms are also compared on travelling salesman tours of 20 cities.

- Finally, the impact of changing the number of agents (m) for \mathbf{P}-MARL is studied

- For a tour of 48 possible cities, It is observed that P-MARL performs best on smaller budget instances. For higher budgets, GA2 performs closer to P-MARL even beating P-MARL with a budget of 10,000.

P-MARL performs better with less possible cities to travel to. Performing optimally with 10 cities, slightly worse with 20 cities, and performing close to GA1 and GA2 with 48 cities

- Changing the number of agents does not affect the traveled distance of the salesman, as the focus of P-MARL is to maximize the prize collected.

Execution time has a big jump from 5 agents to 7 agents

- Future work will investigate whether 5 agents is the right number of agents, and if there is a theoretical optimal number of agents for P-MARL with respect to execution time of the learning process.

References
[1] J. Ruiz, C. Gonzalez, Y. Chen, and B. Tang Prize-collecting traveling salesman problem: a reinforcement learning approach. In Proc. of IEEE ICC, 2023
[2]L. Gambardella and M. Dorigo. Ant-q: A reinforcement learning approach to the traveling salesman problem. In ICML, 1995.

Acknowledgment
This work was supported in part by NSF Grant CISE-MSI: 2240517

