

Abstract

Fat-Tree Data Center

Energy-Efficient VNF Replication in Virtualized Data Centers Janani Janardhanan, Bin Tang, Mohsen Beheshti jjanardhanan1@toromail.csudh.edu, btang, mbeheshti@csudh.edu Computer Science Department, California State University Dominguez Hills Figure 2 \Box Given a data center graph G(V,E) (See Figure 1), that has □ A set of *p* communicating node pairs *P*, each pair (*s*,*t*) in *P* needs to traverse mb_1 , mb_2 , ..., mb_m in that order □ The cost for p = (s,t) is $c(p) = d(s, mb_1) + d(mb_1, mb_2) + ...$ Goal: Effective replication of m MBs in data center such Figure 3 that there is high availability of middleboxes and overall network cost for traffic flow among all p pairs is minimized **Algorithms and Time Complexity Closest Next Middlebox First Algorithm (CNMF):** Conclusions \Box Takes place in 5k²/4m rounds where 5k²/4 is the number of switches and m is the Every round places a replica copy of every middlebox type by considering every available switch as a host. If the current switch X gives the least cost for a given middlebox type, it is chosen as the destination.

on the traffic flow is random.

Future Work

22%.

service chain policies.

□ We formulate energy-efficient and cost-effective middlebox/VNF replication problem and designed two algorithms for virtualized data centers.

□ Both the algorithms are efficient as they have low convergence time and are easily scalable.

• Extensive simulations show that The Traffic-Aware VNF Replication algorithm outperforms Closest Next Middlebox First algorithm for large number of middleboxes approximately by

□ VNF Replication for special cases in which the order of the network functions to be performed

Adapting the algorithms to perform efficient replication when different VM pairs have different

