
Energy-Efficient Data Preservation in Sensor Networks With Spatial Correlation
Setu Taase, B.S, Bin Tang, Ph.D.

Computer Science, California State University, Dominguez Hills.

Abstract:
 Many sensor network applications require deployment in challenging
environments. In these situations, it is not always possible to deploy base
stations in or near the sensor field to collect sensory data. Therefore, the
overflow data of the source nodes is first offloaded to other nodes inside
the network, and is then collected when uploading opportunities become
available. We call this process data preservation in sensor networks. In
this paper, we take into account spatial correlation that exist in sensory
data, and study how to minimize the total energy consumption during
data preservation. We call this problem data preservation problem with
data correlation. We show that with proper transformation, this problem
is equivalent to minimum cost flow problem, which can be solved
optimally and efficiently. Via simulations, we show that it outperforms
an efficient greedy algorithm.

Background:
- We focus on one special kind of sensor network that is
 deployed in challenging environments.

- Each sensor node has limited storage capacity and a finite,
 non-replenishing battery power supply.

-  The system conserves energy by eliminating redundancies in the

system and offloading one copy of each data item for collection.

1.  We must first create a randomly generated virtual Sensor Network
Model with nodes placed at arbitrary x-y coordinates. The system
will be represented by the graph G(V,E), where V = the set of all
Nodes and E = the set of Edges between Nodes. The minimum
number of nodes as well as corresponding edges are dependent on an
inputted transmission range between nodes.

2.  From our graph we can output both entered and randomly generated
data. Such data includes the energy used during transmissions
between nodes, the number of data types as well as the number of
copies of each data type, as well as the coordinates of each individual
node and their respective neighbors (within a distance equal to the
transmission range).

3.  3. Create a converted Data Spatial Correlation Model which is
represented by a new graph G’(V’, E’), where V’ = the new set of
Nodes with the addition of virtual (imaginary) nodes and E’ = new
corresponding set of edges.

4.  4. Generate and input data into a text file that is formatted as an input
file for an Minimum Cost Flow (MCF) program.

INTRODUCTION

OBJECTIVES

Network Model
We use Java programming language to create a program that generates a Sensor Network Model that takes inputs of
network grid area (x-y), desired transmission range and number of nodes, number of data generating nodes (DG) and
data items per data generator, number of data types and copies per type, and finally, storage capacity per storage node.
Nodes are placed randomly on a grid and data items are generated randomly to DG across the network. Figure 1 shows
a typical representation of a physical grid.
Nodes within the transmission range of each other will be labeled “neighbors” and the energy consumption between
them is calculated via ((Eelec*k)*2) + (Eamp*k*(distance*distance)).
The data is then outputted to a text file to await conversion.

Conversion to Data Preservation with Spatial Correlation Model
In this program we employ Visual C++ to create a graph converter which essentially reads input from the network
model and converts it into our new Data Preservation Model.
In addition to the data generating nodes (which we now call source nodes) and storage nodes, our converter generates a
source to send data, imaginary nodes that act as the data types, and a sink to retrieve and store data. Figure 2 gives a
representation of our new model.
The data is printed to a text file in the form of minimum cost flow input which defines each edge of our new model by
adjacent nodes, capacity of the nodes and cost of transmission from one to the other. We use Djikstra’s algorithm here
to determine the shortest path between source and storage nodes.

Minimum Cost Flow – cs2
Using a Visual Studio command prompt, we set a Windows compiler in order to execute an existing program that reads
in our converted data and determines minimum cost flow. This program is called cs2.
By reading each edge from the inputted file and taking into account the cost of each transmission, our program finds
the shortest path and determines the least amount of energy required. We refer to this as the minimum cost flow.

Figure 1. Figure 2.

MATERIALS AND METHODS

I would like to thank my supervisor and mentor, Dr. Bin Tang, for his guidance and
patience throughout this research. I would also like to acknowledge Mr. Javier Lopez
and Mr. Preston Crary for their contributions to our efforts. Finally I would like to
thank LSAMP and the NSF for their continued support of our work.

•  With smaller transmission ranges, we determine that the average
energy consumption increases as the number of copies decreases

•  The larger the transmission range, the more random (non-linear) the
energy consumption as the number of copies decreases. This may be
due to the fact that many direct paths from source to storage are
becoming available with a higher range, so that these transitions
require fewer hops.. even as the number of copies decreases.

•  We maintain that our algorithm outperforms standard Greedy
Algorithms and leave more exhaustive testing to future work.

Minimum Energy Consumption
We generate our network model and give the following inputs.
•  Area of Grid = 50x50
•  Transmission Range = {15, 20, 25, 30 , 35}
•  Total Number of Nodes = 25
•  Data Generators = 10, Storage Nodes = 15
•  Data Items per DG = 10
•  Data Types = 10, Copies per Type = {1, 2, 4, 6, 8, 10}
•  Storage Capacity = 8
Tests are run using all methods described and we note the resulting cost
in energy consumption. Figure 3 represents our data with varying
transmission ranges and copies/data-type.
Figure 4 is the projected performance comparison between Optimal and
Greedy Algorithms.

Figure 3 Figure 4

RESULTS

CONCLUSIONS

ACKOWLEDGEMENTS

