2568

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

Multi-Objective Optimization for Virtual Machine
Allocation and Replica Placement in
Virtualized Hadoop

Carlos Guerrero", Isaac Lera

, Belen Bermejo

, and Carlos Juiz", Senior Member, IEEE

Abstract—Resource management is a key factor in the performance and efficient utilization of cloud systems, and many research
works have proposed efficient policies to optimize such systems. However, these policies have traditionally managed the resources
individually, neglecting the complexity of cloud systems and the interrelation between their elements. To illustrate this situation, we
present an approach focused on virtualized Hadoop for a simultaneous and coordinated management of virtual machines and file
replicas. Specifically, we propose determining the virtual machine allocation, virtual machine template selection, and file replica
placement with the objective of minimizing the power consumption, physical resource waste, and file unavailability. We implemented our
solution using the non-dominated sorting genetic algorithm-II, which is a multi-objective optimization algorithm. Our approach obtained
important benefits in terms of file unavailability and resource waste, with overall improvements of approximately 400 and 170 percent
compared to three other optimization strategies. The benefits for the power consumption were smaller, with an improvement of

approximately 1.9 percent.

Index Terms—Virtual machine allocation, file replica placement, hadoop, evolutionary computing and genetic algorithms

1 INTRODUCTION

APACHE Hadoop is a common solution for implement-
ing MapReduce for solving big data problems. Its data
organization and distribution rely on HDFS, the Hadoop
distributed file system [1]. HDFS is a distributed and scal-
able file system in which files are split into blocks (chunks)
that are stored across the nodes of a cluster (DataNodes).
Chunks are replicated in different DataNodes to guarantee
data availability. When a MapReduce job is scheduled,
Hadoop distributes the jobs among the DataNodes that
place the chunks to be processed.

Hadoop can be deployed both in bare metal and virtual-
ized datacenters. In the case of virtualized Hadoop, it
deploys DataNodes in virtual machines (VMs), and the
VM manager allocates these VMs in physical machines
(PMs) [2], [3]. Virtualized Hadoop offers several benefits,
such as easy cloning of images with lower operational costs,
setting DataNodes on demand, reusing and sharing the
physical infrastructure, and increasing resource utilization
by consolidating multiple DataNodes on the same PM [4].

The policies for selecting the features of the VMs and dis-
tributing them in PMs and the chunk replicas in DataNodes
are commonly known as VM template selection, VM

o The authors are with the Computer Science Department, Balearic Islands
University, Palma E07122, Spain.
E-mail: {carlos.guerrero, isaac.lera, belen.bermejo, cjuiz}@uib.es.

Manuscript received 25 July 2017; revised 7 May 2018; accepted 14 May
2018. Date of publication 17 May 2018; date of current version 10 Oct. 2018.
(Corresponding author: Carlos Guerrero.)

Recommended for acceptance by R. Prodan.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2018.2837743

allocation, and replica placement. Important questions arise
in this distribution process: How many VMs are necessary
to deploy the HDFS system? Which are the best features for
the VMs? Which PMs should allocate the VMs? Where
should the chunk replicas be stored? The management poli-
cies answer all these questions. An efficient implementation
of these policies has a direct impact on the system perfor-
mance and on the resource usages [5], [6]. However, the
optimal solution cannot be directly calculated because it is
an NP-hard problem and all the possible placement combi-
nations should be measured [7].

Although VM allocation, VM template selection, and rep-
lica placement have been widely studied [5], [8], [9], [10],
[11], [12], to the best of our knowledge, a simultaneous and
coordinated solution for the three problems has not previ-
ously been proposed. Previous studies have focused on
solving either the mapping of replicas in DataNodes [13],
[14] or mapping the VM instances with their VM types
and their allocations in PMs [15]. Our approach is a multi-
objective optimization for power consumption, resource
waste and file availability using a threefold management of
VM allocation, VM type selection, and replica placement in
virtualized Hadoop. We have adopted the non-dominated
sorting genetic algorithm-II (NSGA-II), which is a genetic
algorithm (GA) for multi-objective problems. Evolutionary
approaches are common solutions for resource management
in cloud environments [16]. We have considered several
sizes for the experiments, and the results of our approach
have been compared with three other scenarios based on
the works of Long et al. [17] and Adamuthe et al. [18]. The
main contributions of this article can be summarized as
follows:

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2969-0597
https://orcid.org/0000-0003-2969-0597
https://orcid.org/0000-0003-2969-0597
https://orcid.org/0000-0003-2969-0597
https://orcid.org/0000-0003-2969-0597
https://orcid.org/0000-0002-2826-5970
https://orcid.org/0000-0002-2826-5970
https://orcid.org/0000-0002-2826-5970
https://orcid.org/0000-0002-2826-5970
https://orcid.org/0000-0002-2826-5970
https://orcid.org/0000-0002-9283-2378
https://orcid.org/0000-0002-9283-2378
https://orcid.org/0000-0002-9283-2378
https://orcid.org/0000-0002-9283-2378
https://orcid.org/0000-0002-9283-2378
https://orcid.org/0000-0001-6517-5395
https://orcid.org/0000-0001-6517-5395
https://orcid.org/0000-0001-6517-5395
https://orcid.org/0000-0001-6517-5395
https://orcid.org/0000-0001-6517-5395
mailto:

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN...

(i) An approach for simultaneously managing VM allo-
cation, VM template selection, and replica placement
in virtualized Hadoop with the objective of minimiz-
ing the power consumption, physical resource waste,
and file unavailability;

(i) A formal definition for virtualized Hadoop;
(iii) An experimental validation of the optimization
problem implemented with NSGA-IL

2 RELATED WORK

The related work is organized in two parts: the first is evolu-
tionary approaches for VM management, and the second is
replica placement works in HDFS

Zhu et al. studied the optimization of VM scheduling in
Amazon EC2 using a multi-objective evolutionary algo-
rithm [19]. Gao et al. proposed an ant colony algorithm to
optimize VM placement considering a dual objective: mini-
mize the power consumption and physical resource waste.
They demonstrated the competitiveness of their solution
against multi-objective grouping genetic algorithms and sin-
gle-objective approaches [20]. The same optimization objec-
tives were taken into account in the work of Su et al. based
on a firefly algorithm [21]. Kessaci et al. presented a Pareto
multi-objective version of the energy-aware multi-start local
search algorithm dealing with energy consumption and
SLAs. The algorithm allocates the VMs by reducing the
response time of the jobs inside the machines and the energy
consumption in the physical level [22]. Lopez et al. [23]
formulated a memetic algorithm for a many-objective VM
allocation optimization of power consumption, network
traffic, economical revenue, quality of service, and network
load balancing. Xu et al. used fuzzy logic and grouping
genetic algorithms to optimize the power consumption and
thermal and resource efficiencies in VM placement [24].
Mi et al. proposed a genetic algorithm to self-reconfigure the
allocation of VMs according to time-varying requirements
and dynamic conditions [25].

Adamuthe et al. compared genetic algorithms with non-
dominated sorting genetic algorithms (NSGA) to maximize
physical resource usages, the balanced distribution of VMs
among physical machines and the wasted resources [18].
Their work is probably the most similar work to our approach
in terms of VM allocation.

There are several efforts addressing HDFS placement
strategies. The most similar work to our approach in terms
of replica placement is probably the work of Long et al. [17].
They proposed optimizing file unavailability, service time,
load variance, energy consumption and access latency by
managing the replication factor and replica placement in
VMs. They used an improved artificial immune algorithm
that they called multi-objective optimized replication man-
agement (MORM).

Basanta-Val et al. studied the requirements of time-criti-
cal applications for big data systems [26], and they pro-
posed several patterns for real-time stream processing in
big data to improve application performance [27].

Song et al. proposed a placement algorithm that optimizes
the energy consumption [28]. Dai et al. proposed a policy that
evenly distributes the replicas across the nodes in the data
center to achieve a load-balanced configuration [29]. Eltabakh

2569

et al. [30] extended HDEFS to allow applications to define and
exploit customized placement strategies to improve the per-
formance of the system. Maheshwai et al. proposed a recon-
figuration of the block placements to turn cluster nodes on or
off in terms of the average cluster utilization [31]. They
obtained important benefits in terms of energy consumption.
Cheng et al. [32] proposed a real-time event processing
engine to detect the files with higher popularity and conse-
quently to increase the replication factor. Their experiments
showed improvements in reliability and performance. Wei
et al. proposed a cost-effective replication manager for HDFS
based on the use of B+ trees to improve cost and load balanc-
ing [33]. Wang et al. [34] proposed a placement and schedul-
ing manager for Hadoop based on an evolutionary approach,
the MOEA /D algorithm, to improve CPU and disk utiliza-
tion. The benefits of interrelating elements from the VM allo-
cation and file placement were studied in Lu et al. [35]. They
proposed a decoupled architecture for Hadoop in which the
storage of the files (HDFS) is performed in the PMs and the
computation (MapReduce jobs) is conducted in the VMs.
They defined an orchestrator to distribute the MapReduce
jobs to the VMs allocated in the PMs that allocated the data to
process and consequently reduce the data transfers.

3 PROBLEM STATEMENT AND FORMULATION

3.1 System Modeling

The system is defined by (i) the characteristics of the physi-
cal machines, the virtual machines, and the HDFS file sys-
tem; (ii) the allocation relationships between VMs and PMs,
and the placement relationship between the replicas and
VMs. Table 1 summarizes the model parameters that are
explained in this section.

The system is modeled as a datacenter where each PM
pm; € PM is characterized by the capacity of its resources,
pmResCapyy,,; the power features, pmPowFeat,,;; and the
failure metrics, pmFail,,,. The resource capacity is a vector
that contains the capacities of each physical component.
Our resource model is limited to three components—CPU,
disk bandwidth and network bandwidth—but it could eas-
ily be extended by including as many elements as necessary.
Therefore, pmResCap,,, = (meesC’ap;i’:;; , meesCapzi;";fb“’,
meesC’ap;jf;ff’w). The power features are represented by a
vector that includes all the parameters of the power con-
sumption model that we adopted [36] and whose details are
explained in Section 3.3: pmPowFeat,,, = (pmPowMin,n,,,
P PowMaxym; , Cpmg s Bpm, Spm; ypm), where the first two are
the minimum and maximum power consumptions of the
PM, respectively, and the others are model coefficients.
Finally, failures are modeled as a bathtub curve with respect
to the CPU wusage of the machine [37], pmFuily,, =
(meailz,ﬁfL’; s pmFaily i).

Our scenario defines DataNodes as VM instances, and
both concepts are used indistinctly throughout this article.
DataNodes, or VM instances, vm,, € VM, are characterized
by their VM instance type, vmt, € VMType, defined through
a non-injective and non-surjective function vmtype : VM —
VMType. The VM instance type defines the characteristics of
the VM. In particular, it defines the VM instance’s resource
capacities, vmResCap,,, and the VM instance’s failure
metrics, vmEFail,,,. By considering the resource and failure

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

2570
TABLE 1
Summary of the System Model Parameters
Parameter Description
pm; Physical machine with id ¢
pmResCapyy, Total capacity of the resource elements of
the ith PM
pmPowFeat,,, Power consumption model of the ith PM
PFily,, Failure model of the ith PM
pmResCony,,, Consumption of the physical resources of
the ith PM
hypResCon,,; Consumption of the physical resources con-
sumed by the VM hypervisor
pmUp,, Normalized resource utilization of the ith
PM
vmy, VM instance with id n
vmity VM instance type with id ¢
vmtype(): Relationship that determines the type of a

vmResCapy,

VM instance
Total provisioned capacity of system
resources for the nth VM

vmResCony,y, Consumption of the provisioned resources
for the nth VM

vmFailyy,, Failure rate of the nth VM

allocation(): Relationship for the allocation of VMs in
physical machines

fu File with id u

b The zth chunk of the uth file

Jour] The rth replica of the zth block/chunk of
the uth file

fSizey, The size of the uth file

fbSizey, Block/chunk size for the uth file

fCy, Number of chunks in the uth file

fRy, Replication factor for the uth file

repResCon pu Resource consumption generated in a Data-
Node each time a replica is accessed by an
MR job

repAccRatepu,) MR jobs” access rate for a replica

placement(): Relationship for the storage of file chunks

in VMs

models explained previously for the PMs, the VM capacity

is defined as vmResCap,,, = (vmResCap®"
netbw

vmResCap

vmp,

vmp,?

manuscript, VM refers to VM instance, and template refers

vmResCap

vy ? UMmnp,

’), and equally for the failures, vmFuil,,, =
(vmFail , omFaillye"). For simplicity, throughout this

to VM instance type.

diskbw

HDEFS files are split into ordered pieces called file blocks
or chunks. Thus, a file, f, € HDFS, is defined as the concat-
enation of its chunks, f, = fbf || fo} || fb% 1 .. || fb?;cf“ Y
where fC,, the number of chunks, is determined by the file

size and the chunk size as fCy, = (ﬁ;l;;’;“] HDEFS allows set-

ting the chunk size individually for each file, but it generally
has the same value for all the files. To guarantee the avail-
ability of the files, HDFS replicates each chunk across sev-
eral DataNodes. We define a file chunk as a set of replicas,
for = {fo1(0), oL(L), ... foU(fRy, — 1)}, where fRy, the
replication factor, is also set individually for each file.

The replicas are characterized by the resource consump-
tion that the execution of MapReduce jobs (MR) generates,
repResCon gu),). Apache Hadoop distributes the jobs across
the DataNodes to avoid moving the data [38]. Considering
the scope of our resource model, repResCon gy =

<repResCon;’;g[rJ , repResCon%i’frb]"“, repResC’on%’ﬁﬁ). The total

NOVEMBER 2018

workload in a DataNode depends on the access rate of each
replica, repAccRate gy

The storage of the replicas in the DataNodes is a
many-to-one relationship modeled with a non-injective
and non-surjective function, placement : {fb%[r]} — VM.
Additionally, the VMs are deployed in PMs. This is also a
many-to-one relationship modeled as a non-injective and
non-surjective function allocation : VM — PM.

The total resource consumption of a VM depends on the
access rates of the replicas it places and on the consumption
generated in those accesses. Consequently, the VM resource
consumption can be calculated as

vmResConyy,,

= Z(repResConfbg[r] x repAccRategu), 1)
Joslr]

v foL[r] | placement(fbl[r]) = vm,,.

The PMs’ resource consumption can be calculated con-
sidering the VMs’ resource consumptions and the place-
ment relationships

pmResCony,y,, = Z vmResCony,y,,,
UMnp (2)
Y vm,, | allocation(vm,) = pm;.

Additionally, the hypervisor, or VM monitor (VMM),
installed in the PM also consumes computational reso-
urces. This overhead is represented in our model by
hypResConyp,;. We have assumed that this overhead is
constant.

In summary, the PM resource consumption is generated
by the MapReduce jobs executed in the allocated VMs and
the overhead of the VMM. In any case, the model does not
require a full utilization of the VM, neither of the PM.

Finally, it is also useful to define the utilization of the
physical machines, pmU,,,. The utilization is a metric that
measures the ratio between the consumption and the avail-
able capacity of a system resource, and its value, which
ranges between 0.0 and 1.0, is calculated as

pmBResCony,y,

(3)

mUpm, = .
P pm: pmResCapy,,,
Three constraints emerge from the definition of the
model. The first one is related to the built-in placement pol-
icy of HDFS that does not allow DataNodes to store the
same replica twice.

placement(fb2[r]) # placement(fb%[r'])
VoLl forlr] € oy

The second and third constraints limit the total consump-
tion of resources in a PM, or in a VM, to be smaller than the
available capacities

(4)

pmResCony,y,; + hypResCony,y,, < pmResCapyy,,

(5)
Y pm; € PM

vmResConyy,, < vmResCapyy, ¥ vm,, € VM. (6)

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN...

The performance metrics of a virtualized Hadoop are
strongly influenced by the allocation of the VMs
allocation(), the selection of the VM types vmType(), the
allocation of the replicas placement(), the number of VMs
|VM|, the chunk sizes fbSizes,, and the replication factor
fRy,. These parameters are customized by the system
administrator to optimize, for example, resource usage,
power consumption, or data availability [7]. The remaining
sections are dedicated to explaining the optimization objec-
tives of our proposal.

3.2 Resource Waste Objective

An effective and balanced consumption of the resources
facilitates the allocation or migration of the VMs [39]. An
example of resource waste is a PM that has provisioned 95
percent of its main memory and 30 percent of its CPU for
the already allocated VMs. Under these conditions, the allo-
cation of new VMs will be very difficult because of the low
available memory, and consequently, a high percentage of
the CPU will remain unused.

Our proposed strategy is not only to allocate as many
VMs as possible but also to balance the consumption of the
resources. Effective and balanced use both need to be pro-
portionally considered for all the resources.

Previous studies showed that a good indicator for the
waste of resources can be formulated as [20]

ResourceWaste(pm;)

0, if B om, | allocation(vm,) = pm; o
S pmUpm; ’ otherwise
o(pmUpm;) = o(pmUpss pmUp s pmULL) - (8)

Udis/cbw +me7let (9)

pm; pm; :

= pmU?P" + pm

pm;

Z pm Upmz-

The resource waste is 0 when no VM is allocated since the
PM could be switched off. o(pmU,,) is the standard devia-
tion of the three utilizations for CPU, disk bandwidth and
network bandwidth. It represents how balanced the con-
sumption of the resources is.) pmU,y, is the sum of those
three values, and it represents the usage of the resources.
Finally, the value of ¢ adjusts the weight of resource usage
and resource balancing in the calculation. The smaller the
value of the parameter is, the greater the importance that is
given to the resource balance in front of the usage. We finally
considered ¢ = 0.15 after the evaluation of several values.

3.3 Power Consumption Objective

The components of the PMs do not contribute to the power
consumption in the same way. For example, previous studies
have stated that the CPU power consumption is modeled
with a piecewise linear relationship with the load, while
other components present a linear consumption. We have
adopted the power model presented by De Maio et al. [36].
They modeled the PM power consumption by considering
the CPU, the network bandwidth and the storage bandwidth

PowCons(pm;) = PowCons™"(pm;)

t disk (10)
+PowCons"* (pm;) + PowCons™*"(pm;).

2571

Their CPU power consumption model was defined as a
piecewise linear relationship with the CPU load, Equa-
tion (11), and the network and storage power models were
defined as linear relationships with the bandwidth usage,
Equations (14) and (15). A summary of their model is [36]

PowCons™ (pm;)
- PowConsgu—low (pmi)’ Zf me;j;Zk < Epm,, (11)
Powoonscplh}zigll (pmi)7 lf meg?lr?,k > »Cpm,-
Powconscpu,flmv (pm7) =y, (12)
X (meOU)M(LZCpmi - meO’LUMZ'?’mei) X me;ﬁZ
PowCons®" """ (pm)
= Bym, % (pmPowMazyn, — pmPowMingm,) (13)

+ (1= Bym,) X (pmPowMazy,, — pmPowMin,,)

X pmU:

pm;?

where L, is the load at which the power consumption
trend changes on pm; and «,,,, and B, are the coefficients
for low and high CPU load levels, respectively.

PowCons™™*(pm;) = 8, (14)
x (pmPowMazy,, — pmPowMin,,,) x me,f{if
PowCons™ (pm;) = ¥,
() pmy; (15)

X (pmPowMaxpm, — pmPowMin,,,) x pmU"

pm;?

where §,,,,, and Ypm, are the model coefficients.

3.4 Data Unavailability Objective
HDEFS stores replicas of the chunks in several DataNodes to
guarantee data availability. A chunk becomes unavailable
when all the nodes that store a replica are unavailable due
to a temporal or permanent failure. Considering a virtual-
ized Hadoop, a DataNode fails when either the PM or the
VM fails. Thus, a replica becomes unavailable with a failure
in the VM placing it or the PM allocating this VM. Data
unavailability is reduced whether the VMs with the replicas
of the same chunk are allocated in different PMs, and it is
increased if the VMs are in the same PM. We have extended
the file unavailability model presented in Long et al. [17] to
the case of virtualized Hadoop

Unavailability(f,) = Z BlockUnavailability(by). (16)

bieby

The unavailability of a chunk, FailureRate(bY), is repre-
sented as

BlockUnavailability (b))

17
= H <me(l7:lpm1+ H UmFailﬂWn)' 4

pm; PM(bY) vmp €A

The outer multiplication reflects that a chunk is unavail-
able when all the PMs that allocate VMs storing the replicas
of the chunk (b7) are unavailable: [, cpyu), where

PM(bY) = {pm; | allocation(vm,) — pm; Yom,, € {VM(b")}

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

2572

is the set of PMs with at least one VM storing the chunk. The
first term of the formula, pmFuail,,,, represents the cases
when the chunk replicas in the PM become unavailable due
to a failure in that PM. The second term, the inner multipli-
cation, represents the cases when the chunk replicas in
the PM become unavailable due to failures in all the VMs
that contain them: Hwnn c4 vmFail,,,, where A = VM (b%)N
{vm,, | allocation(vm,) = pm;}, considering VM (b*) = {vm,, |
placement(b%[r]) — vm,, Vb![r] € {b"} as the set of VMs con-
taining all the replicas of a chunk.

3.5 Optimization Formulation

The objective of the optimization is to minimize file unavail-
ability, power consumption and the waste of resources in a
virtualized Hadoop. The decision variables, i.e., the ele-
ments to be managed, are the allocation of the VMs, the
selection of the VM templates, the number of VM instances,
and the placement of the replicas. The problem is formally
defined as determining

|VM]| (18)
vmitype(vm,,) ¥ vm,, € VM (19)
allocation(vmy,) ¥ vm, € VM (20)
placement(f52[), ¥ o] € ot o
v fol e fb,, ¥V fb, € HDFS,
by minimizing
Z ResourceWaste(pm;) (22)
pm;ePM
PowCons(pm;) (23)
pm;ePM
Unavailability(f,), (24)
fu€HDFS
subject to the definition of
fSizey,, ¥V fb, € HDFS (25)
fbSize;,. ¥ fb, € HDFS, (26)

and subject to the constraints’in Equations (4), (5), and (6).
This problem has |PM \WM‘ possible allocations of VMs,

(VM| possible placements of chunk replicas with

|VMType| different VM templates, and a variable and unde-
termined value for |VA/|. It is an NP-hard problem since the
evaluation of all the solutions is not approachable.

4 GENETIC ALGORITHM PROPOSAL

We propose using the non-dominated sorting genetic algo-
rithm-II to solve our multi-objective optimization problem.
Genetic algorithms (GAs) are metaheuristic approaches for
solving NP-hard optimizations [40], [41], and NSGA-II is one
of the most common algorithms when the optimization has
multiple objectives to minimize [42]. In the field of GA and
throughout this manuscript, the following terms are used

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

NOVEMBER 2018

PM 1 PM 2
VM 1 Typea)(VM 4 VM 2 Type b
eaEs o] Balis
VM 3 Type b VM 5 Type a
vm-chromosome 12345
allocation 1(2(1(1|2

templatetype |a |b|b|bfa

block-chromosome 1 2 3 4 5 6 7 8 9 10 11 12

[13]2]s[s[z]z[s[s]s |2] 2]

Fig. 1. Example of chromosome representation.

indistinctly: solution, chromosome, and individual; set of sol-
utions and population; algorithm iteration and generation;
and offspring, next population, and next algorithm iteration.

The implementation of a GA involves defining the chro-
mosomes, the fitness function, the crossover and mutation
operators, the selection operator, the replacement operator
(offspring generation), and the execution settings. However,
NSGA-II sets the selection and replacement operators, and
it defines the fitness function as a vector that includes all the
objective functions. The details of NSGA-II can be found in
the original article [43] or in related works regarding
resource management [44], [45]. The following sections
explain the implementation details that are not preset by
NSGA-II.

4.1 Chromosome Representation

In our case, the individuals of the population represent VM
allocation, VM type selection, and replica placement, con-
sidering a fixed number of replicas and a variable number
of VMs. We represent each individual with two arrays: the
vm-chromosome (C"") for the allocation() and vmtype()
relationships and the block-chromosome (C*"*%) for the
placement() relationship. Fig. 1 shows an example with two
PMs, five VMs, two VM template types, and 12 replicas.

The vm-chromosome C"" is a two-dimensional array in
which the column indices represent the VMs, the values of
the first row (allocation) indicate the PM where the VM is
allocated, and the values of the second row (template type)
indicate the template for the VM. The length of the vm-chro-
mosome can change between solutions since there will be
solutions with different numbers of VMs [46].

The block-chromosome is an array where the indices rep-
resent the replicas in the system (b[r]) and the positions
contain the VM where the replica is stored. This chromo-
some has a fixed length since the chunk size (fbSizey,) and
the replication factor (fRy,) are equal and constant for all
the files, and it is known before the optimization process.

4.2 Crossover and Mutation Operators

GAs are based on the idea of biological evolution, where the
highest qualified individuals, chosen by natural selection, are
mated to obtain an offspring with the best features of both
parents. In this evolution, three aspects are essential: the
selection of the individuals, their mating, and random

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN...

arent 1
P block-chromosome

[o]x]3]2]3]s[o[2]a]2]s]s]

vm-chromosome
001 2 3 45

allocation {1 (31§21

w

template |1 [1(0f1[1]2

parent 2
block-chromosome

allocation |13 (32 ‘d‘b‘c‘c‘a‘b‘b‘d‘a‘d‘a‘b‘

template |2]|0|0|1

vm-chromosome
0123 45

hild 1
et block-chromosome

allocation [1|3[3{2|1

w

[o]2]3]2]2]s[o[2]a]e[s]s]

N
o
o
i

template 12

EEEEEEEEEEEE

child 2 vm-chromosome
a cid

allocation |1{3 |12

template [1[(1/0(1

(a) First phase: one-point crossover operator
over the vm-chromosome.

parent 1 vm-chromosome
0

12 3 4 5 block-chromosome

[o]1]3]2]s[s[o]2[e]4]s]s]

allocation |1 |3{3|2|1]3

template |2 |0]0|2|1]|2

parent 2 vm-bchromdosome
C

a block-chromosome

[a[elele [=[o o al= e =]5]

allocation |1 |3]1]2

template |1 [1]0|1 '3

vm-chromosome
0123 abd

child 1
: block-chromosome

allocation [1]3[3]2]1]3]2 |0|1|3|2ia‘b‘b‘d‘a‘d‘a‘b‘

template [2{0f0f1|1|1|1

child 2

i block-chromosome
[a]¢]] - [s]sTolo s]5]5]
i3

allocation |1 |3 (2]1]3]1/2

template

N
o
[
[
N
o
[N

(b) Second phase: one-point crossover operator
over the block-chromosome.

Fig. 2. Example of the two phases of the crossover operator.

changes in the offspring. In GA, these aspects are respectively
translated into selection, crossover and mutation operators.

The crossover operator defines how two parent solutions
are combined to obtain two evolved children. Since we are
dealing with three decision variables (vin allocation, vm
template selection, and replica placement), the crossover is
sequentially divided into a first phase where the crossover
of the vim-chromosome is performed over the allocation and
template-type arrays and a second phase for the crossover
of the block-chromosome. We use one cutting-point cross-
over operator in both cases. This operator generates one ran-
dom cutting point that splits the chromosomes into two
pieces. Children’s chromosomes are generated by combin-
ing the opposite pieces from both parents [47].

The one-point operator for variable chromosome length
is applied to the vm-allocation [48]: one random number is
generated between 0 and the minimum length of both
parents” chromosomes, and it splits the allocation and tem-
plate arrays into two pieces. The first child is generated by

2573

combining the left piece of one parent with the right piece
of the other. Similarly, the second child is generated with
the remaining pieces. Fig. 2a shows an example of this first
phase of the crossover operator.

The second phase of the crossover is more complex since
the combination of the block-chromosomes results in solu-
tions with replicas allocated in VMs from both fathers. Con-
sequently, all the VMs referenced from the new block-
chromosome should be incorporated in the resulting vm-
chromosome. Fig. 2b illustrates an example with the cutting
point placed in position 3. In this example, the new block-
chromosome of the first child results in placing all the repli-
cas in VMs 0, 1, 2, and 3 from the first parent and VMs 4, b,
and d from the second. Consequently, the vm-chromosome
is generated by the concatenation of positions 0, 1, 2, and 3
of the vin-chromosome from the first father (dark gray posi-
tions in the vm-chromosome) and positions a, b, and d from
the second (light gray positions).

Formally, we define the block one cutting-point crossover
similar to the splitting operation between two parents’ block-
chromosomes, Cy = {C}",C9*} and Cpy = {Cfy', O™},
and one uniformly random value, j. The block-chromosomes
of the new individuals are generated from the concatenation
of the opposite segments of both parents split by j: CUe* =

CHrt 0.1 CF1 + 1.1 — 1] and Pt = CRet(0. 4] Ot i+

1..|C**| — 1]. The vm-chromosomes are obtained from join-
ing the genes of the parents corresponding to the VMs that
are contained in the resulting block-chromosome. Consider-
ing GU"(CY**[n]), the VM gene of the corresponding father
where the block C"**[n] of the corresponding child is stored,
the vm-machine chromosomes of the children can be defined
as Cup = {GU(CHo[n]) ¥ CYok[n] € CMt} and Cly =
(G (Cln]) ¥ CHokn] € Clet).

Mutation operators generate random changes in the
chromosomes of a new solution in the offspring. We define
mutations for both vim and block chromosomes.

First, in the VM mutation phase, the VM growth and shrink
mutations respectively increase or decrease the number of
VMs with a probability of £. Then, the VM replace mutation
iterates the positions of both vm-chromosome arrays (alloca-
tion and template) and randomly changes their values with a
probability of 0.5. On average, half of the VM allocations and
template types will be modified in the mutated solution.

Finally, the block replace mutation is applied to the
block-chromosome by also iterating the positions of the
chromosome and randomly changing their values with a
probability of 0.5. The new random placements of the
chunks are generated by only considering the current VMs
in the solution. Therefore, the block replace mutation does
not generate changes in the length of the vin-chromosome.

4.3 Genetic Algorithm Setting

The execution of a GA needs to set up some parameters that
cannot be generalized between experimental domains, such
as the ending condition, the generation of the initial popula-
tion, and so forth. These parameters are commonly set by
exploration of cases in a previous execution phase [49]. This
exploratory phase consists of executing the experiment with
a wide range of setting alternatives and choosing the values
that obtain better results.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

2574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.11, NOVEMBER 2018
TABLE 2 TABLE 4
GA and AlA Settings Defined in Preliminary Exploratory Phase Characteristics of the PMs
Parameter GA AIA Parameter Units pmy pmy
Population size 100 solutions PowConsg;’,""L’[” Watts 501 164
Mutation probability 0.1 0.95 PowCons™ Watts 804 382
. pm;
Suppression rate . — . . 0.05 Loym; 0.12 0.12
Number of generations 200 iterations o 5.29 4.33
Crossover operator Twofold one — B 0.68 0.47
cutting-point S 0.1 0.1
Mutation operator VM growth, VM shrink, Block replace % 0.05 0.05
VM repla‘;e & block phyResCapli! cores 24 12
replace /],isllc
Selection operator — Tournament phyResCappmi MB/s 17800 15000
Initial population Round-robin with rack-awareness phy ResCap;j'f;fv MB/s 76800 38400
Constrain violation Fitness takes oo value failyy, ' week ™t [0.0015..0.019] [0.003..0.04]
Source: Dell [52], Birke et al. [37], and De Maio et al. [36].
TABLE 3
Characterization of the File System TABLE 5
Characteristics of the VMs

Parameter Value
Base number of files |HDFS| 50 vm type num. disk bandwidth netbandwidth failurerate
Chunk size (MB) fbSizey, 64 cores (MB/s) (MB/s) (week™)
Replication factor fRy, 3 c3.xlarge 4 250 100 [0.002..0.025]
Replica CPU cons. (%) 'r'eleesC’on’;g " 0.1 c3.2xlarge 8 320 240 [0.004..0.05]

. . disk c3.4xlarge 16 400 200 [0.002..0.025]
Replica disk cons. (MB/s) replResConfy; 128 axlarge 4 320 100 [0.004..0.05]
Replica network cons. (MB/s) releesCon%é_’ 128 m32xlarge 8 400 200 [0.002..0.025]

File sizes (MB) size(fy)
[1600, 1623, 1646, 1671, 1696, 1723, 1750, 1779, 1809, 1839,
1872, 1905, 1941, 1977, 2016, 2056, 2099, 2143, 2190, 2239,
2292,2347,2406, 2468, 2535, 2606, 2681, 2763, 2851, 2946,
3049, 3161, 3283, 3418, 3567, 3733, 3918, 4128, 4367, 4643,
4965, 5347, 5810, 6382, 7113, 8087, 9462, 11586, 15412, 25101]
File rate (ms™1) rate(fy)
[128.21,78.97, 58.46, 48.21, 41.03, 35.90, 31.79, 29.74, 26.67,
24.62,

23.59, 21.54,20.51,19.49, 18.46, 17.44,17.44, 16.41, 15.38, 15.38,
14.36,14.36,13.33, 13.33, 13.33, 12.31, 12.31, 12.31, 11.28, 11.28,
11.28,10.26, 10.26, 10.26, 10.26, 10.26, 9.23,9.23, 9.23, 9.23,
9.23,9.23,8.21,8.21, 8.21, 8.21, 8.21, 8.21, 8.21, 7.18]

Source: Xie et al. [51] and Long et al. [17].

Table 2 summarizes the values that showed better results
in the exploratory phase and that we adopted in our experi-
ments. The main values are a population size of 100 individ-
uals, 200 generations to finish the algorithm execution, and
a mutation probability of 0.1.

In addition, the initial replica placement is performed in
a round-robin distribution, but considering the rack-aware-
ness Hadoop constraint [1], two replicas cannot be placed in
the same DataNode. The allocation of the VMs is also per-
formed in a round-robin distribution across the PMs.

The constraints need to be checked for all the solutions
generated during the GA. If any of the constraints are vio-
lated, then the solution is included in the population, but its
fitness value is set to infinity. Thus, the diversity of the solu-
tion space is broadened [50].

5 EXPERIMENT DESIGN

The experiments were conducted with our own implemen-
tation of NSGA-II and a set of data structures that stored the
system model (inputs) and the allocation and placement sol-
utions (outputs). It was developed with Python 2.7, and the

Source: Amazon [53], and Birke et al. [37].

source code is publicly available." Through the iterative exe-
cution of NSGA-II, the Pareto optimal front evolved until
the finish condition was reached. The Pareto optimal front
is the set of solutions that minimize our objective functions.
The program calculated the values of the objective functions
for each individual. The analysis of the results was per-
formed based on those objective values.

The experiments were characterized with a base defini-
tion, which was subsequently varied to study different
experiment sizes. These experiment variations were defined
by sequentially increasing the number of PMs—for values
50, 100, 150, and 200—, and the number of files—for values
25, 50, 100, and 200—, resulting in experiments with a total
number of replicas between 2,286 and 37,200.

The model parameters for the base experiment were
defined using the settings of previous works related with
cloud, VMs, or HDFS. Tables 3, 4, and 5 include the values
for the model parameters and the sources from which these
values were obtained.

File sizes and access rates for 50 files were defined
from [51]. Experiments with more files sequentially
repeated these characteristics for the files after the first 50.
Two PM templates were considered, and each half of the
PMs was assigned to one of these templates. The VM tem-
plates were also uniformly assigned to the VM instances.

The validation of our approach was performed through
comparisons with the following studies: (i) Long et al. [17]
proposed improving the optimization of the HDFS place-
ment using an artificial immune algorithm (AIA); (ii) Ada-
muthe et al. [18] proposed optimizing the VM allocation

1. Available at http://github.com/acsicuib/NSGA2VmHdfs/

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

http://github.com/acsicuib/NSGA2VmHdfs/

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN... 2575
Power consumption g25 files) Resource waste (55 files) File unavailaw k25 files)
BN NSGA-both NSGA-vm NSGA-block W _AlA-block BN NSGA-both NSGA-vm Wl WSGA-block W AIA-block BN NSGA-both NSGA-vm SGA-block W= AIA-block
600 7000 >
$ 04
g% o
g, 400 % 4000 :; ”
& 300 2 3000 % 02 ||
& 200 2000 S
© 0.1 =
100 1000 5
0 0 0.0

50 100 150

Number of PMs
(a) Optimized values for power consumption.

200 50 100

Number of PMs
(b) Optimized values for resource waste.

150 200 50 100 150

Number of PMs
(c) Optimized values for file unavailability.

200

Fig. 3. Objective values for our proposal NSGA-both; Adamuthe [18] NSGA-vm; Long [17] AlA-block; and NSGA-block. Experiments with 25 files.

using NSGA-II. We considered four experimental scenarios
that were determined by the optimization algorithm and
the scope: NSGA-both, our current proposal based on using
NSGA-II simultaneously in the replica placement and in the
VM selection and allocation; NSGA-vm, the proposal based
on the work of Adamuthe et al. [18], where NSGA-II is used
to optimize the VM allocation; AIA-block, the proposal based
on MORM [17], which is an AIA-based optimization for rep-
lica placement; and NSGA-block, which is replica placement
optimization with NSGA-II, defined with a completeness
purpose.

The differences in terms of scope among the implementa-
tions of the experimental scenarios are basically in the cross-
over and mutation operators. NSGA-both implements the
operators as we explained in Section 4.2. NSGA-vm only
applies the first phase of the crossover, corresponding to the
vm-chromosome, and the three mutations for this chromo-
some (v growth, shrink, and replace mutations). NSGA-
block only considers the second phase of the crossover, the
one of the block-chromosome, and its unique mutation (block
replace mutation). Finally, AIA-block does not consider any
crossover since an AIA only applies mutations and the rep-
lica replace mutation in our particular case. The details of the
implementation of AIA can be found in the work of Long
et al. [17], and the execution settings that we used can be
found in Table 2. The values for the case of the GA and AIA
were fixed to be as equal as possible. However, some of the
settings are not specific for NSGA-II, e.g., suppression rate,
and others are not comparable, e.g., mutation probability. In
those cases, we conducted a preliminary exploration phase to
find the most suitable values, as in the case of NSGA-II [49].

6 RESULTS AND DISCUSSION

The output of a multi-objective optimization is a Pareto
optimal front. This is a set that includes the solutions that
are not dominated by any other. A non-dominated solution
has at least one objective with a smaller value than all the
other solutions [43].

Power consum&tion gSO PMs) Resource w:
SGA-both NSGA-vm NSGA-block” W _AlA-block SGA-both NSGA-vm

The analysis of the results is performed by first compar-
ing one solution from the Pareto sets of each experimental
scenario to later compare with the entire Pareto optimal
sets. The former comparison requires selecting one solution
from each Pareto front. There are many studies in the litera-
ture related to decision-making methodologies for selecting
the preferred solution from the Pareto front [54]. We chose a
straightforward method since the solution selection process
was out of the scope of the comparison between the results
of the optimization algorithms. We used the weighted sum
of the objectives [55], setting the same weight for the three
objectives since we considered the same importance for all
of them. Thus, a normalized uniformly weighted sum was
applied to the multi-objective vector, Equation (27), and the
solution with the smallest value was selected.

rw® — rw™n
(,rwmaw _ rw'min) X 3
Jnin fuu _ fumm

pc —pc
(pcmar _ pcmin) X 3 (fumaw _ fumi'n) X 3’

a _

ws =

(27)

(.

where rw?, pc®, and fu® are the objective values for a solution
a, and ,r,wm,in’ rwmaw/ pcmin, pcma.r, fumin, and fumaz' are each
objectives’ minimal and maximum values in the Pareto front.

Figs. 3,4, 5, and 6 show the comparison of the optimized
objectives for the selected solutions between each experi-
mental scenario. As representative cases, the figures respec-
tively show the results for the experiments with sizes of 25
files, 50 PMs, 200 files, and 200 PMs, i.e., the cases with the
lowest and greatest numbers of files and PMs.

Our approach obtained better optimizations than the
other scenarios, i.e., the objective values were smaller. The
second best algorithm was NSGA-vm. NSGA-block and AIA-
block obtained the worst objective values. Although the fig-
ures show only a subset of the results, the same patterns
were observed in all the experimental configurations.

NSGA-block and AIA-block did not gather optimized solu-
tions for the experimental configurations with 50 PMs (all

aste (50 PMs)

File unavailabilit ﬁio PMs)
B NSGA-block WEEAIA-blo BN NSGA-both oA sl NSGAblodk mmm_AlA-bio

25 50 100

Number of files

(a) Optimized values for power consumption.

200

25

50

Number of files

(b) Optimized values for resource waste.

5 035
K]

8 0.30
o2
2020
So1s
]

S 0.10

2
5005

0.00
100

200 50 100

Number of files

(c) Optimized values for file unavailability.

Fig. 4. Objective values for our proposal NSGA-both; Adamuthe [18] NSGA-vm; Long [17] AlA-block; and NSGA-block. Experiments with 50 PMs.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

2576

Power consum%}nAZOO files)
EEE NSGA-both NSGA-vm SGA-block” W AIA-block

1000

800

600

400

Power (Watts)

200

0

50 200

100 150
Number of PMs

(a) Optimized values for power consumption.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

Resource waste (200 files)
BN NSGA-both NSGA-vm i "NSGA-block W AIA-block

4000

3000

Waste

2000

1000

0

50 200

100 150
Number of PMs

(b) Optimized values for resource waste.

NOVEMBER 2018

File, unavailabw (200 files)

3

B AlA-block

‘weeks
o o
o o

Unavalaibility (1/weeks)
o o o o

I8 e =
[

0.0

50 200

100 150
Number of PMs

(c) Optimized values for file unavailability.

Fig. 5. Objective values for our proposal NSGA-both; Adamuthe [18] NSGA-vm; Long [17] AlA-block; and NSGA-block. Experiments with 200 files.

Power consumption ’SZOO PMs)
NSGA-vm SGA-block

BN NSGA-both B AlA-block

25 50 100 200
Number of files

(a) Optimized values for power consumption.

Resource waste (200 PMs)
EEN NSGA-both NSGA-vm s NSGA-block
7000

6000

B AlA-block

5000
2

2 4000

= 3000

2000

1000

0

25 50 100 200
Number of files

(b) Optimized values for resource waste.

File unavailabm (200 PMs)

B AlA-block

25 50 100 200
Number of files

(c) Optimized values for file unavailability.

Fig. 6. Objective values for our proposal NSGA-both; Adamuthe [18] NSGA-vm; Long [17] AlA-block; and NSGA-block. Experiments with 200 PMs.

the cases within Fig. 4 and the first ticks within Figs. 3 and
5). All the solutions throughout and after 200 generations
violated the resource usage constraints, Equations (5)
and (6). In these experimental configurations, the process to
find a solution that satisfied the constraints was more com-
plicated since they had the lowest resources with only 50
PMs, and consequently, the free resources after the place-
ment process were also very low. The results reflected that
policies only based on the replica placement, as NSGA-block
and AlIA-block, limited the process of evolving the solution
population and consequently also limited the exploration of
the solution space compared to policies that combined rep-
lica and VM management. This result was even more pro-
nounced for the case of AIA-block, which did not gather
suitable solutions in the case of 100 PMs and 200 files. This
algorithm applied only mutations and did not apply cross-
overs, thus making its limited flexibility to increase the solu-
tion space more clear.

With the purpose of showing the results for all the experi-
ment sizes, we have included Fig. 7. For a clearer analysis,
this figure only includes the results of our proposal and
NSGA-vm, the best of the other three.” The experiments are
labeled on the z-axis with the number of PMs (p) and the
number of files (f), e.g., 100p-50f corresponds to the experi-
ment with a size of 100 PMs and 50 files. The bar charts plot
the optimized values. The improvement percentages of our
solution with respect to NSGA-vm are also included in the
figure with line charts and their values. Positive improve-
ment percentages indicate that our algorithm obtained better
optimizations. In contrast, negative values correspond to
cases where it obtained worse objective values than NSGA-
vm. All the cases had positive values, except for the resource
waste in the cases with 50 PMs-200 files and 150 PMs-100 files.

Our approach obtained the highest benefits in terms
of file unavailability. It obtained 407.41 percent more avail-
ability than NSGA-um on average. This improvement

2. The complete set of results, also including the other two scenarios,
is available in folder article_results in the source code repository.

percentage ranged between 35.81 and 1712.67 percent. Nev-
ertheless, the power consumption was the objective with
the smallest improvements since it only saved 1.9 percent
more power on average, ranging between 0.51 and 3.56 per-
cent. Finally, our solution wasted 170.39 percent less resour-
ces than NSGA-vm on average. However, it showed extreme
cases, from improvements of 538.47 percent to two cases
with decreases of -65.17 and -12.53 percent.

File unavailability depends on the replica placement and
on the VM allocation, Equation (17). Policies that only man-
age VM migrations are less flexible, and their effects are
only reflected in one component of the unavailability model.
Consider an example of two PMs (pm; and pm.), three VMs
(vmy, vma, and vmy), three chunks (fb!, b}, and fb}), and a
replica placement such as vm; = (fbL[1], fb}[2]), vme =
(fbp[1], fbL[2]), and vmy = (fbL[1], fbL[2]). Under these condi-
tions, all the possible VM allocations place the replicas of
at least one chunk in the same PM, reducing the file una-
vailability. In this example, only a new replica placement
could improve the unavailability. This illustrative example
explains the benefits of a twofold management policy in
terms of file unavailability.

Resource waste depends on PM usage and consequently
on the VM allocation and the resource consumptions of the
VMs, Equations (2), (3) and (7). The VM consumption
depends on the replica allocation and the task resource con-
sumptions and execution rates, Equation (1). As in the case
of file unavailability, a policy that only manages the VMs is
less flexible than when both VM and replica placements are
managed. Suppose that we have one VM with high CPU
and low disk consumption. This VM generates high waste
of resources regardless of the PM that allocates it. VM
migrations are not sufficient to balance the resource usage.
It is necessary to redistribute the replica placement to
achieve VMs with more balanced conditions. This again
explains the benefits of our approach in front of NSGA-vm.

These results validate our initial hypothesis that better
optimizations are obtained with a simultaneous and coordi-
nated management in our study domain.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN... 2577

900 % ® |mprovement NSGA-both NSGA-vm 35
0, —_
™ 2540/ - - [| ul ull 2'79%/3'3 {° | | 349% W | | [| 30X
- . 0 . ~
2 o BE B RE I P \F BB
: 55
5 T I I I [[R B |22
i 1.56%)
3 700 I I I .°\ 8.55 !T/ I 190 I 153
b (] o
: AR AR R R I
600 0.51% i . C=
= = i i = = = = = ! 05
A % % % 5 % % % 5 % \ K K % K %
95 2N A o 25 2N A N3 2N A o 99 §2N A o
«° © R T AT T o T AT o N R I
(a) Optimized values and improvement percentage for power consumption.
® Improvement BN NSGA-both NSGA-vm
2500 538.47% 518052% 500 5
. o
2000 400 —
[0) 264.90% I 280.23% 2% 300 IS
3 1500 ; 235.23% e
o 19510% 128.71% 152.31% 200 &
0, . .]
= 1000 1354%% N | 3
100 5
0
500 3.28% 0.32% 1253% m 0% - I m [| [o E
® I - I I I 65.17% I I I =
0 - [| || L]
A % % % % % % % 5 % % % 5 % % %
2o SO o 95 S O o B S ® o a9 S ® AN
S @ @ o T ® R\ ,\009‘7’ N I O S N S s
(b) Optimized values and improvement percentage for resource waste.
= ® Improvement I NSGA-both NSGA-vm
o] 1712.67% 1500
03’ 0.3 X
E I 981.05% E
=02 774.33% 1000 £
3 650.98% (7
T 488.75% L’ | 3
S o1 - q 379.74% 06.61% PYRy o i 500 =
' ; -82%208.94% 207.84% o
© 9 161.42%
: ' d Bl J i B el | E
X % % % 5 % % % X % % % 5 % % %
5 S\ o 9B O A S 98 O o 95 O A N
PR\ 609’7‘ AT o \@Q’q’ RN S A STV AP o ,LQQ\Y'L

(c) Optimized values and improvement percentage for file unavailability.
Fig. 7. Objective comparison and improvement percentage of our approach (NSGA-both) with respect to Adamuthe [18] (NSGA-vm).

The more the solutions are plotted to the left, bottom, or

Fig. 8 shows the scatter plots of the solutions within the
Pareto optimal front for some sizes of the experiments. Each
point in the plots corresponds to a solution in the Pareto
front, and it represents the values of the three objectives.

front positions, the better they are. The comparison of the
Pareto optimal front allowed us to draw conclusions about
all the solutions without being conditioned by the method

@ NSGA-both & AlA-block © NSGA-both ® AlA-block O NSGA-both ® AlA-block
® NSGA-vm ® NSGA-block = ® NSGA-vm ® NSGA-block 2 ® NSGA-vm ® NSGA-block 2
) a a
3 3 o
g g g
© © ©
c c c
010 3 =] =]
2 2 2
i i i
XS

(a) Experiment size of 50 PMs and 25 files.

(b) Experiment size of 50 PMs and 200 files.

(c) Experiment size of 100 PMs and 200 files.

@ NSGA-both ® AlA-block @ NSGA-both & AlA-block © NSGA-both ® AlA-block
NSGA-vm ® NSGAblock 2 ® NSGA-vm ® NSGA-block = ® NSGA-vm ® NSGAblock 2
045 T = =
\.:' 0.40 '8 s 3 o g
035 = 035 = 025 =
0.30 g 0.30 g (>U
025 0.25 0.20
b 020 8 020 & 0.15 g
e o S 2% S 5
%'9..5 & 005 O 010 @ P10 <2
L i i
2500 00
<
860 g79 '503000\1466\6 870 . 'be\e 880 3 '&%\
000 880 890
£0 890 909 1o g 500’ o (< Power é% 90 910 o 500 0 O Wer Cg] S 510000 4\
930 0 ?\QC_, Onsumpﬁon 930 @69 nsu,npﬁOn 930 ?\65

S Umptiop

(d) Experiment size of 150 PMs and 50 files. (e) Experiment size of

150 PMs and 200 files. (f) Experiment size of 200 PMs and 200 files.

Fig. 8. Pareto optimal front comparison for several sizes of the experiments.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

2578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.11, NOVEMBER 2018
630
} —— NSGA-both 600 —— NSGA-both 0 | —— NSGA-both
620 NSGA-vm NSGA-vm © 0.5 NSGA-vm
™ 500 g
© 610 =04
S 2 400 =
< [2] >
= 600 < =03
g = 300 i}
9 {02
x 59 200 2
(]
]| 0.1
580 Az 100 : 5
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Generations Generations Generations
(a) Power consumption (50 PMs 25 files). (b) Resource waste (50 PMs 25 files). (c) File unavailability (50 PMs 25 files).
930 —— NSGA-both 16000 —— NSGA-both D 030 —— NSGA-both
NSGA-vm 14000 NSGA-vm ﬁ NSGA-vm
> 920 14
2 12000 2025
®© ~
= 910 2 10000 <
P S 8000 £0.20
9 900 = 2
g 6000 S5
& 90 4000 g
paiqn) g
550 e 2000 Lo A 5o10
0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Generations
(d) Power consumption (200 PMs 200 files).

Generations
(e) Resource waste (200 PMs 200 files).

Generations

(f) File unavailability (200 PMs 200 files).

Fig. 9. Evolution of the objective values for the experiments with 50 PMs / 25 files and 200 PMs / 200 files.

for selecting one of them. For all the cases, the Pareto opti-
mal fronts obtained with our proposal are closer to the coor-
dinate origin than the other Pareto fronts.

The scatter plots of the Pareto sets also permit the analy-
sis of the diversity in the solution space. A greater disper-
sion of the optimized solutions is commonly considered as
a higher quality optimization since final users have more
flexibility if their requirements or preferences to select the
preferred solution change. The Pareto fronts obtained with
our algorithm showed higher diversity for the solution
space than the other alternatives. At the other end, NSGA-
block and AIA-block showed a high concentration of the solu-
tions, reducing the alternatives to select one solution.

To summarize, we conclude that the management of the
allocation of VMs achieves higher optimizations than the
management of the replica placement in our particular
domain. However, the improvements are higher when the
management of both elements is performed simultaneously
and in coordination.

7 GENETIC ALGORITHM DEPLOYMENT

7.1 Performance Analysis

We analyzed the execution performance of the algorithm in
terms of the stabilization of the objectives and the execution
time.

Fig. 9 shows the evolution of the objectives along the gen-
erations of the GA execution. To provide a clear analysis, we
only present the results for our approach and for NSGA-vm.
Our approach achieved the smallest values for the objec-
tives around generation number 150 in the worst cases. In
the case of the NSGA-vm algorithm, it stabilized the objec-
tive values around generation 100. The figure only shows
the cases for the smallest and the largest experiments, but
the same pattern was observed for all sizes of experiments.

The experiments were executed with Python 2.7.6 on an
Ubuntu Server 14.04.5 LTS distribution installed on an Intel
(R) Core(TM) i7-4770S 3.10 GHz CPU with 8 GB of RAM. The
execution times are measured separately for the optimization

process and the model calculations. Table 6 shows the execu-
tion times for the smallest and largest experiment sizes: the
column Population presents the time for crossover and, in the
cases of NSGA-II, also the mutation operators; the column
Selection sums the times for crowding distance, ordering,
and, only in the cases of NSGA-II, the front generation; the
column Usage presents the PMs and VMs usage calculation
times; and the column Fitness presents the fitness calculations
and constraint checking times. By considering a number of
150 generations to optimize the solutions in the case of our
approach, the executions time ranged between 80 and 950 s
compared with 46 and 569 s in the case of, for example,
NSGA-vm and considering 100 generations.

Note that approximately 90-96 percent of the execution
time was taken by model calculations and only 4-10 percent
in the optimization process. Moreover, approximately 70
percent of the total execution time was taken by the file
unavailability objective calculation, resulting in it being the
most time-demanding task. Furthermore, the execution
time of model calculations is equal, regardless of the optimi-
zation algorithm used in the proposed solution. In general
terms, the model calculation times were homogeneous
among the four experimental scenarios. The differences
appeared in the optimization process, where AIA showed
lowest values. However, this benefit was not important
since it corresponded to the phase with the smallest percent-
age in the total execution time.

TABLE 6
Time Taken in Milliseconds to Obtain a
New Generation in the GA

Optimization Model
Experiment Population Selection Usage Fitness
min/max min/max min/max min/max
NSGA-both 7/617 14/15 123/1449 395/4311
NSGA-vm 7/93 15/15 84/1421 363/4169
NSGA-block 14/251 13/15 82/1342 312/4182
AIA-block 1/18 3/5 82/1397 339/4399

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN...

Although the execution times of evolutionary strategies
are generally greater than those of other alternatives, they
are still common solutions for resource management in
cloud architectures [16], [56]. These optimization tools are
commonly applied in static or offline approaches, such as
VM placement, service placement or workflow schedul-
ing [56]. Note that virtualized Hadoop platforms are very
dynamic scenarios, but replica and VM migration are time-
consuming operations that cannot be performed continu-
ously. Therefore, evolutionary approaches can be applied
periodically, with a time slot larger than the optimization
execution time, as it is commonly done in other previous
studies [57]. The execution time can also be reduced by lim-
iting the optimization to a subset of elements in the system,
such as the most popular files or the files that generate
higher loads in the system [32].

An alternative way to reduce execution times is to take
advantage of the nature of the architecture and to implement
a MapReduce version of NSGA-II [58]. A suitable approach
would be to calculate the fitness functions in the map phase,
the random selection of the individual in the shuffle phase,
and finally, the crossover and mutation operators in the
reduce phase. In this way, the highest time-consuming calcu-
lations (usage and fitness) would be parallelized with the
map tasks.

Finally, we also measured the computational complex-
ity considering P number of PMs, V' number of VMs, R
number of replicas, S population size, M number of objec-
tives, and F replication factor. Resource waste and energy
consumption are calculated with only one iteration over
the PMs: O(P). Unavailability analyzes the replicas of each
chunk several times, O(V + P+ RF + 2F2). Usage con-
straints are calculated with one iteration over the set of
PMs and over the set of VMs: O(P) + O(V). The rack-
awareness constraint needs one iteration over the set of
replicas: O(R). Crossover requires traveling the block-
chromosome to fix unmet dependencies between replicas
and VMs: O(R). Finally, the mutation operator iterates
over both chromosomes, vm and block, O(V + R). The
overall computational complexity considering the previ-
ous tasks for each solution is O(3VS + 3PS + 3RS + RFS+
2SF?). Finally, the overall complexity of NSGA-II is mea-
sured as O(MS?) [43].

7.2 Real Scenario Integration

There are several alternatives for implementing our
approach in a real infrastructure. We propose implementing
it as a plug-in whose inputs are metrics from the system and
the output is the actions to be taken by Hadoop and the
hypervisor or VM monitor.

In the first step, the inputs would be gathered from sev-
eral components: from the NaneNode, the file number,
chunk number, or replication factor; from the JobTracker,
the job execution rates; from the VMM the VM number,
types, virtual resources, or failures metrics; and from the
hardware features of the PMs, the PM number, physical
resources, failure metrics, or power consumptions features.
The gathering of these data could be implemented by moni-
toring daemons using the Hadoop and the VMM daemon
or even with other existing monitoring tools, such as
Ambari for Hadoop and Nagios for VMs [59].

2579

Our optimization process could be run periodically or
according to preconfigured events. Both triggers would
be controlled by these monitoring tools. Each run would
return the replica placement (block-chromosome) and
the VM allocation (vm-chromosome). The replica place-
ments would be integrated into the NaneNode using
the Hadoop API, and VM allocations would be con-
ducted according to the API of the selected VMM, e.g.,
VMware APL

8 CONCLUSION

We presented a simultaneous management of VM alloca-
tion, VM template selection and replica placement in vir-
tualized Hadoop. Our solution minimizes three objectives:
power consumption of the physical machines, waste of
physical resources, and file unavailability. We have imple-
mented the solution with NSGA-II, using a twofold chromo-
some and crossover operator to address this multi-objective
optimization problem. Our solution has been compared
with the proposals from Adamuthe [18] and Long [17], and
it obtained important improvements.

The benefits in power consumption were measured to
have an overall improvement of 1.9 percent. It showed a
better behavior with the resource waste and file unavailabil-
ity, obtaining average improvements of 170.38 and 407.41
percent, respectively. These benefits were achieved at the
expense of a larger number of generations and longer execu-
tion times than the second best scenario, the one that only
managed the VMs.

Our results open new challenges and we consider three
ongoing research lines. The first is to adapt the decision var-
iables to study the benefits of a variable replication factor
and chunk size. Our second active research line is to add an
additional objective to obtain solutions that also reduce the
cost of live migrations of VMs and file replicas. Finally, we
also plan to study the applicability of simultaneous manage-
ment in other cloud/distributed architectures, such as
microservice-based or fog domains.

ACKNOWLEDGMENTS

This research was supported by the Spanish Government
(Agencia Estatal de Investigacién) and the European Commis-
sion (Fondo Europeo de Desarrollo Regional) through grant
number TIN2017-88547-P (MINECO/AEI/FEDER, UE).

REFERENCES

[1] D. Borthakur, “HDFS architecture guide,” Hadoop Project
Website. (2008). [Online]. Available: https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.pdf

[2] T. Ivanov, R. V. Zicari, S. Izberovic, and K. Tolle, “Performance
evaluation of virtualized hadoop clusters,” CoRR, 2014. [Online].
Available: http:/ /arxiv.org/abs/1411.3811

[3] A. Raj, K. Kaur, U. Dutta, V. V. Sandeep, and S. Rao,
“Enhancement of hadoop clusters with virtualization using the
capacity scheduler,” in Proc. 3rd Int. Conf. Serv. Emerging Markets,
Dec. 2012, pp. 50-57.

[4] A. Group, “Virtual hadoop,” Apache Hadoop Wiki. (2017).
[Online]. Available: https:/ /wiki.apache.org/hadoop/ 927 Virtual
%20Hadoop

[5] Z.A.Mann, “Allocation of virtual machines in cloud data centers-
A survey of problem models and optimization algorithms,” ACM
Comput. Surv., vol. 48, no. 1, pp. 11:1-11:34, Aug. 2015. [Online].
Available: http://doi.acm.org/10.1145/2797211

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
http://arxiv.org/abs/1411.3811
https://wiki.apache.org/hadoop/ 927 Virtual%20Hadoop
https://wiki.apache.org/hadoop/ 927 Virtual%20Hadoop
http://doi.acm.org/10.1145/2797211

2580

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO. 11,

K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller, “SWORD:
Workload-aware data placement and replica selection for cloud data
management systems,” VLDB J., vol. 23, no. 6, pp. 845-870, Dec. 2014.
[Online]. Available: https://doi.org/10.1007 /s00778-014-0362-1

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-
the-art and research challenges,” J. Internet Serv. Appl., vol. 1,no. 1,
pp- 7-18, 2010. [Online]. Available: http://dx.doi.org/10.1007/
513174-010-0007-6

S. Singh and I. Chana, “Cloud resource provisioning: Survey, sta-
tus and future research directions,” Knowl. Inf. Syst., vol. 49, no. 3,
pp- 1005-1069, 2016. [Online]. Available: http://dx.doi.org/
10.1007/510115-016-0922-3

R. K. Grace and R. Manimegalai, “Dynamic replica placement and
selection strategies in data grids. A comprehensive survey,” J. Par-
allel Distrib. Comput., vol. 74, no. 2, pp. 2099-2108, 2014. [Online].
Available: http:/ /www.sciencedirect.com/science/article/pii/
S0743731513002207

T. Hamrouni, S. Slimani, and F. B. Charrada, “A survey of
dynamic replication and replica selection strategies based on data
mining techniques in data grids,” Eng. Appl. Artif. Intell., vol. 48,
pp- 140-158, 2016. [Online]. Available: http:/ /www.sciencedirect.
com/science/article/pii/S0952197615002493

S. U. R. Malik, S. U. Khan, S. J. Ewen, N. Tziritas,]J. Kolodziej,
A. Y. Zomaya, S. A. Madani, N. Min-Allah, L. Wang, C.-Z. Xu,
Q. M. Malluhi, J. E. Pecero, P. Balaji, A. Vishnu, R. Ranjan,
S. Zeadally, and H. Li, “Performance analysis of data intensive
cloud systems based on data management and replication: A
survey,” Distrib. Parallel Databases, vol. 34, no. 2, pp. 179-215, 2016.
[Online]. Available: http://dx.doi.org/10.1007/s10619-015-7173-2
B. A. Milani and N. J. Navimipour, “A comprehensive review of
the data replication techniques in the cloud environments: Major
trends and future directions,” J. Netw. Comput. Appl., vol. 64,
pp- 229-238, 2016. [Online]. Available: http:/ /www.sciencedirect.
com/science/article/ pii/51084804516000795

A. K. Karun and K. Chitharanjan, “A review on hadoop: HDFS
infrastructure extensions,” in Proc. IEEE Conf. Inf. Commun. Tech-
nol., Apr. 2013, pp. 132-137.

C. Guerrero, I. Lera, and C. Juiz, “Migration-aware genetic optimi-
zation for MapReduce scheduling and replica placement in
hadoop,” J. Grid Comput., vol. 16, no. 2, pp. 265-284, Jun. 2018.
[Online]. Available: https://doi.org/10.1007/s10723-018-9432-8

S. Singh and I. Chana, “A survey on resource scheduling in cloud
computing: Issues and challenges,”]. Grid Comput., vol. 14, no. 2,
pp. 217-264, 2016. [Online]. Available: http://dx.doi.org/
10.1007/510723-015-9359-2

Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and
Y. Li, “Cloud computing resource scheduling and a survey of its
evolutionary approaches,” ACM Comput. Surv., vol. 47, no. 4,
pp- 63:1-63:33, Jul. 2015. [Online]. Available: http://doi.acm.org/
10.1145/2788397

S.-Q. Long, Y.-L. Zhao, and W. Chen, “MORM: A multi-objective
optimized replication management strategy for cloud storage
cluster,” J. Syst. Archit., vol. 60, no. 2, pp. 234-244, 2014. [Online].
Available: http:/ /www.sciencedirect.com/science/article/pii/
51383762113002671

A. C. Adamuthe, R. M. Pandharpatte, and G. T. Thampi,
“Multiobjective virtual machine placement in cloud environ-
ment,” in Proc. Int. Conf. Cloud Ubiquitous Comput. Emerging Tech-
nol., 2013, pp. 8-13. [Online]. Available: http://dx.doi.org/
10.1109/CUBE.2013.12

Z.Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344-1357, May 2016.

Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant
colony system algorithm for virtual machine placement in cloud
computing,” J. Comput. Syst. Sci., vol. 79, no. 8, pp. 1230-1242,
Dec. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.
jess.2013.02.004

S.Su, Y. Su, F. Shao, and H. Guo, “A power-aware virtual machine
mapper using firefly optimization,” in Proc. 3rd Int. Conf. Advanced
Cloud Big Data, 2015, pp. 96-103. [Online]. Available: http://dx.
doi.org/10.1109/CBD.2015.25

Y. Kessaci, N. Melab, and E.-G. Talbi, “An energy-aware multi-
start local search heuristic for scheduling VMs on the OpenNeb-
ula cloud distribution,” in Proc. Int. Conf. High Perform. Comput.
Simul., 2012, pp. 112-118. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ieeehpcs/ieeehpcs2012. html#KessaciMT12

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

NOVEMBER 2018

F. Lopez-Pires and B. Baran, “Many-objective virtual machine
placement,” |. Grid Comput., vol. 15, no. 2, pp. 161-176, Jun. 2017.
[Online]. Available: https:/ /doi.org/10.1007/s10723-017-9399-x

J. Xu and]. A. B. Fortes, “Multi-objective virtual machine place-
ment in virtualized data center environments,” in Proc. IEEE/
ACM Int Conf. Green Comput. Commun. Int. Conf. Cyber Phys. Social
Comput., 2010, pp. 179-188. [Online]. Available: http://dx.doi.
org/10.1109/GreenCom-CPSCom.2010.137

H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan, “Online
self-reconfiguration with performance guarantee for energy-
efficient large-scale cloud computing data centers,” in Proc. IEEE
Int. Conf. Serv. Comput., Jul. 2010, pp. 514-521.

P. Basanta-Val, N. C. Audsley, A. J. Wellings, I. Gray, and
N. Fernandez-Garcia, “Architecting time-critical big-data sys-
tems,” IEEE Trans. Big Data, vol. 2, no. 4, pp. 310-324, Dec. 2016.

P. Basanta-Val, N. Fernandez-Garcia, L. Sanchez-Fernandez, and
J. Arias-Fisteus, “Patterns for distributed real-time stream proc-
essing,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 11, pp. 3243—
3257, Nov. 2017.

J. Song, H. He, Z. Wang, G. Yu, and J.-M. Pierson, “Modulo based
data placement algorithm for energy consumption optimization
of MapReduce system,” |. Grid Comput., pp. 1-16, 2016. [Online].
Available: https://doi.org/10.1007/s10723-016-9370-2

W. Dai, L. Ibrahim, and M. Bassiouni, “A new replica placement
policy for hadoop distributed file system,” in Proc. IEEE 2nd Int.
Conf. Big Data Secur. Cloud, Apr. 2016, pp. 262-267.

M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and
J. McPherson, “CoHadoop: Flexible data placement and its exploi-
tation in hadoop,” Proc. VLDB Endowment, vol. 4, no. 9, pp. 575—
585, Jun. 2011. [Online]. Available: http://dx.doi.org/10.14778/
2002938.2002943

N. Maheshwari, R. Nanduri, and V. Varma, “Dynamic energy effi-
cient data placement and cluster reconfiguration algorithm for
MapReduce framework,” Future Generation Comput. Syst., vol. 28,
no. 1, pp. 119-127, 2012. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X1100135X

Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang,
and G. Guan, “ERMS: An elastic replication management system
for HDFS,” in Proc. IEEE Int. Conf. Cluster Comput. Workshops, Sep.
2012, pp. 32—40.

Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM: A
cost-effective dynamic replication management scheme for cloud
storage cluster,” in Proc. IEEE Int. Conf. Cluster Comput., Sept 2010,
pp- 188-196.

X. Wang, Y. Wang, and Y. Cui, “A new multi-objective bi-level
programming model for energy and locality aware multi-job
scheduling in cloud computing,” Future Generation Comput. Syst.,
vol. 36, pp. 91-101, 2014. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X13002689

L. Lu, X. Shi, H. Jin, Q. Wang, D. Yuan, and S. Wu, “Morpho: A
decoupled MapReduce framework for elastic cloud computing,”
Future Generation Comput. Syst., vol. 36, pp. 80-90, 2014. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
50167739X13002902

V. D. Maio, G. Kecskemeti, and R. Prodan, “An improved
model for live migration in data centre simulators,” in Proc.
16th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., May
2016, pp. 527-530.

R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen,
“Failure analysis of virtual and physical machines: Patterns,
causes and characteristics,” in Proc. 44th Annu. IEEE/IFIP Int. Conf.
Depend. Syst. Netw., Jun. 2014, pp. 1-12.

A. Sheth, “A new landscape for distributed and parallel data man-
agement,” Distrib. Parallel Databases, vol. 30, no. 2, pp. 101-103,
2012. [Online]. Available: http://dx.doi.org/10.1007/s10619-012-
7091-5

K. S. Rao and P. S. Thilagam, “Heuristics based server consolida-
tion with residual resource defragmentation in cloud data cen-
ters,” Future Generation Comput. Syst., vol. 50, pp. 87-98, 2015.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X14001794

H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated pareto sets, MOEA/D and NSGA-II,” IEEE Trans.
Evol. Comput., vol. 13, no. 2, pp. 284-302, Apr. 2009.

A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimiza-
tion using genetic algorithms: A tutorial,” Rel. Eng. Syst. Safety,
vol. 91, no. 9, pp. 992-1007, 2006.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/s00778--014-0362-1
http://dx.doi.org/10.1007/s13174--010-0007-6
http://dx.doi.org/10.1007/s13174--010-0007-6
http://dx.doi.org/10.1007/s10115--016-0922-3
http://dx.doi.org/10.1007/s10115--016-0922-3
http://www.sciencedirect.com/science/article/pii/S0743731513002207
http://www.sciencedirect.com/science/article/pii/S0743731513002207
http://www.sciencedirect.com/science/article/pii/S0952197615002493
http://www.sciencedirect.com/science/article/pii/S0952197615002493
http://dx.doi.org/10.1007/s10619--015-7173-2
http://www.sciencedirect.com/science/article/pii/S1084804516000795
http://www.sciencedirect.com/science/article/pii/S1084804516000795
https://doi.org/10.1007/s10723-018-9432-8
http://dx.doi.org/10.1007/s10723--015-9359-2
http://dx.doi.org/10.1007/s10723--015-9359-2
http://doi.acm.org/10.1145/2788397
http://doi.acm.org/10.1145/2788397
http://www.sciencedirect.com/science/article/pii/S1383762113002671
http://www.sciencedirect.com/science/article/pii/S1383762113002671
http://dx.doi.org/10.1109/CUBE.2013.12
http://dx.doi.org/10.1109/CUBE.2013.12
http://dx.doi.org/10.1016/j.jcss.2013.02.004
http://dx.doi.org/10.1016/j.jcss.2013.02.004
http://dx.doi.org/10.1109/CBD.2015.25
http://dx.doi.org/10.1109/CBD.2015.25
http://dblp.uni-trier.de/db/conf/ieeehpcs/ieeehpcs2012.html#KessaciMT12
http://dblp.uni-trier.de/db/conf/ieeehpcs/ieeehpcs2012.html#KessaciMT12
https://doi.org/10.1007/s10723--017-9399-x
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.137
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.137
https://doi.org/10.1007/s10723-016-9370-2
http://dx.doi.org/10.14778/2002938.2002943
http://dx.doi.org/10.14778/2002938.2002943
http://www.sciencedirect.com/science/article/pii/S0167739X1100135X
http://www.sciencedirect.com/science/article/pii/S0167739X1100135X
http://www.sciencedirect.com/science/article/pii/S0167739X13002689
http://www.sciencedirect.com/science/article/pii/S0167739X13002689
http://www.sciencedirect.com/science/article/pii/S0167739X13002902
http://www.sciencedirect.com/science/article/pii/S0167739X13002902
http://dx.doi.org/10.1007/s10619--012-7091-5
http://dx.doi.org/10.1007/s10619--012-7091-5
http://www.sciencedirect.com/science/article/pii/S0167739X14001794
http://www.sciencedirect.com/science/article/pii/S0167739X14001794

GUERRERO ETAL.: MULTI-OBJECTIVE OPTIMIZATION FOR VIRTUAL MACHINE ALLOCATION AND REPLICA PLACEMENT IN... 2581

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

C. von Liicken, B. Baran, and C. Brizuela, “A survey on multi-
objective evolutionary algorithms for many-objective problems,”
Comput. Optimization Appl., vol. 58, no. 3, pp. 707-756, 2014.
[Online]. Available: http://dx.doi.org/10.1007 /s10589-014-9644-1
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002. [Online]. Available:
http://dx.doi.org/10.1109/4235.996017

C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-
objective optimization of container allocation in cloud archit-
ecture,” J. Grid Comput., vol. 16, no. 1, pp. 113-135, Mar. 2018.
[Online]. Available: https:/ /doi.org/10.1007 /s10723-017-9419-x
C. Guerrero, I. Lera, and C. Juiz, “Resource optimization of con-
tainer orchestration: A case study in multi-cloud microservices-
based applications,” J. Supercomput., pp. 1-28, Apr. 2018. [Online].
Available: https://doi.org/10.1007 /s11227-018-2345-2

C.Y. Lee, “Variable length genomes for evolutionary algorithms,”
in Proc. Genetic Evol. Comput. Conf., 2000, Art. no. 806.

K. Deb, “Multi-objective genetic algorithms: Problem difficulties
and construction of test problems,” Evol. Comput., vol. 7, pp. 205
230, 1999.

A. H. Brie and P. Morignot, “Genetic planning using variable
length chromosomes,” in Proc. 15th Int. Conf. Int. Conf. Automated
Planning Scheduling, 2005, pp. 320-329. [Online]. Available:
http://dblp.uni-trier.de/db/conf/aips/icaps2005.html#BrieM05
J.]. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trans. Syst. Man Cybern., vol. 16, no. 1, pp. 122—
128, Jan. 1986.

Z. Michalewicz, “A survey of constraint handling techniques
in evolutionary computation methods,” Evol. Program., vol. 4,
pp. 135-155, 1995.

T. Xie and Y. Sun, “A file assignment strategy independent of
workload characteristic assumptions,” Trans. Storage, vol. 5, no. 3,
pp. 10:1-10:24, Nov. 2009. [Online]. Available: http://doi.acm.
org/10.1145/1629075.1629079

Dell, “Enterprise infrastructure planning tool,” Dell, Round Rock,
TX, Tech. Rep., 2016. [Online]. Available: http://www.dell.com/
calc

A. W. Services, “Amazon EC2 instance types,” Amazon., Seattle,
WA, Tech. Rep., 2016. [Online]. Available: https://aws.amazon.
com/ec2/instance-types/

E. Zio and R. Bazzo, A Comparison of Methods for Selecting Preferred
Solutions in Multiobjective Decision Making. Paris, France: Atlantis
Press, 2012, pp. 23-43. [Online]. Available: https://doi.org/
10.2991/978-94-91216-77-0_2

R.T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: New insights,” Struct. Multidisciplinary
Optimization, vol. 41, no. 6, pp. 853-862, Jun. 2010. [Online]. Avail-
able: https://doi.org/10.1007 /s00158-009-0460-7

M. Guzek, P. Bouvry, and E. G. Talbi, “A survey of evolutionary
computation for resource management of processing in cloud
computing [review article],” IEEE Comput. Intell. Mag., vol. 10,
no. 2, pp. 53-67, May 2015.

O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” Serv. Oriented Com-
put. Appl., vol. 11, pp. 427-443, Oct. 2017. [Online]. Available:
https://doi.org/10.1007 /s11761-017-0219-8

A. Verma, X. Llor, D. E. Goldberg, and R. H. Campbell, “Scaling
genetic algorithms using MapReduce,” in Proc. 9th Int. Conf. Intell.
Syst. Des. Appl., Nov 2009, pp. 13-18.

S. Wadkar and M. Siddalingaiah, Monitoring Hadoop. Berkeley,
CA: Apress, 2014, pp. 203-215. [Online]. Available: https://doi.
org/10.1007/978-1-4302-4864-4 9

Carlos Guerrero received the PhD degree in
computer engineering from Balearic Islands Uni-
versity, in 2012. He is an assistant professor of
computer architecture and technology with the
Computer Science Department, University of the
Balearic Islands. His research interests include
web performance, resource management, web
engineering, and cloud computing. He has auth-
ored around 40 papers in international conferen-
ces and journals.

Isaac Lera received the PhD degree in computer
engineering from Balearic Islands University, in
2012. He is an assistant professor of computer
architecture and technology with the Computer
Science Department, University of the Balearic
Islands. His research lines are semantic web,
open data, system performance, educational
innovation and human mobility. He has authored
in several journals and international conferences.

Belen Bermejo received the master’s degree in
computer engineering from Balearic Islands Uni-
versity, in 2015. She is a research assistant in the
architecture and performance of computer and
communication systems research group in the
same university. She is currently doing her PhD
Thesis in the field of cloud computing and
resource management. She has authored some
conferences papers during her master period
and in the first stages of the doctoral studies.

Carlos Juiz received the PhD degree in com-
puter engineering from Balearic Islands Univer-
sity, in 2001. He is an associate professor of
computer architecture and technology with the
Computer Science Department, University of the
Balearic Islands. His research interests include
performance engineering, cloud computing and
IT governance. He has authored around 150
papers in different international conferences and
journals. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: California State University Dominguez Hills. Downloaded on March 03,2020 at 17:01:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s10589--014-9644-1
http://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1007/s10723--017-9419-x
https://doi.org/10.1007/s11227-018-2345-2
http://dblp.uni-trier.de/db/conf/aips/icaps2005.html#BrieM05
http://doi.acm.org/10.1145/1629075.1629079
http://doi.acm.org/10.1145/1629075.1629079
http://www.dell.com/calc
http://www.dell.com/calc
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.2991/978--94-91216-77-0_2
https://doi.org/10.2991/978--94-91216-77-0_2
https://doi.org/10.1007/s00158--009-0460-7
https://doi.org/10.1007/s11761-017-0219-8
https://doi.org/10.1007/978--1-4302-4864-4_9
https://doi.org/10.1007/978--1-4302-4864-4_9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

